Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Microbes Infect ; 24(8): 105017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35709935

RESUMO

The acquisition of iron is a crucial mechanism for the survival of pathogenic bacteria such as Pseudomonas aeruginosa in eukaryotic hosts. The key iron chelator in this organism is the siderophore pyoverdine, which was shown to be crucial for iron homeostasis. Pyoverdine is a non-ribosomal peptide with several maturation steps in the cytoplasm and others in the periplasmatic space. A key enzyme for its maturation is the acylase PvdQ. The inhibition of PvdQ stops the maturation of pyoverdine causing a significant imbalance in the iron homeostasis and hence can negatively influence the survival of P. aeruginosa. In this work, we successfully synthesized chromene-derived inhibitory molecules targeting PvdQ in a low micromolar range. In silico modeling as well as kinetic evaluations of the inhibitors suggest a competitive inhibition of the PvdQ function. Further, we evaluated the inhibitor in vivo on P. aeruginosa cells and report a dose-dependent reduction of pyoverdine formation. The compound also showed a protecting effect in a Galleria mellonella infection model.


Assuntos
Benzopiranos , Pseudomonas aeruginosa , Benzopiranos/farmacologia , Amidoidrolases/química , Sideróforos , Ferro , Proteínas de Bactérias/química
2.
Microbes Infect ; 24(4): 104951, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35151875

RESUMO

Acinetobacter baumannii is an opportunistic Gram-negative bacterial pathogen that poses a threat for frail patients worldwide. The high ability to withstand environmental stresses as well as its resistance towards a broad range of antibiotics make A. baumannii an effective hard-to-eradicate pathogen. One of the key mechanisms mediating tolerance against antibiotic treatment is the formation of biofilms, a process that is controlled by a multitude of different regulatory mechanisms. A key factor with major impact on biofilm formation is cell-to-cell communication by quorum-sensing, which in A. baumannii is mediated by acyl homoserine lactone signaling molecules. Here we show that the Ntn-Hydrolase PvdQ from Pseudomonas aeruginosa can reduce biofilm formation by the A. baumannii ATCC 17978 type strain and several clinical isolates on abiotic surfaces. Further, our study shows that a combination treatment of PvdQ-mediated quorum-quenching with the antibiotic gentamicin has a synergistic effect on the clearance of A. baumannii biofilms and possible biofilm dispersal. Moreover, we demonstrate in a Galleria mellonella larval infection model that PvdQ administration significantly prolongs survival of the larvae. Altogether, we conclude that the acylase-mediated irreversible cleavage of quorum-sensing signaling molecules as exemplified with PvdQ can set a profound limit to the progression of A. baumannii infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acil-Butirolactonas , Amidoidrolases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Humanos , Percepção de Quorum
3.
J Mol Graph Model ; 88: 104-120, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30703686

RESUMO

Quorum sensing is a cell to cell signaling mechanism that enables them to coordinate their behaviors in a density-dependent manner mediated by small diffusible signaling molecules, which can control the virulence and biofilm gene expression in many Gram-negative and positive bacteria. N-acyl homoserine lactone acylase PvdQ from human opportunistic pathogen Pseudomonas aeruginosa is a quorum-quenching enzyme that can hydrolyze the amide bond of the quorum signaling N-acyl homoserine lactones (AHLs) thereby degrading the signaling molecules, turning off the biofilm phenotype and resulting in a reduction of bacterial virulence. Previous studies demonstrated that PvdQ has different preferences for N-acyl substrates with different acyl chain lengths and substituents. However, the substrate binding specificity determinants of the quorum-quenching enzyme PvdQ with the different bacterial ligands are unknown and unintuitive. Further, elucidation of these determinants can lead to mutants with efficiency and broader substrate promiscuity. To investigate this question, a computational study was carried out combining multiple molecular docking methods, molecular dynamics simulations, residue interaction network analysis, and binding free energy calculations. The main findings are: firstly, the results from pKa predictions support that the pKa of the N-terminus of Serß1 was depressed due to the surrounding residues. Multiple molecular docking studies provide useful information about the detailed binding modes and binding affinities. Secondly, 300 ns molecular dynamics simulations were carried out to analyze the overall molecular motions of substrate-bound and substrate-free PvdQ. The specific interactions between the active site of PvdQ and different ligands revealed the determinants for the preference among the ligands. A systematic comparison and analysis of the protein dynamic fingerprint of each complex demonstrated that binding of the most favorable ligand, C12-homoserine lactone (C12-HSL), reduced the global motions of the complex and maintained the correct arrangement of the catalytic site. Further, the residue interaction network analysis of each system illustrated that there are more communication contacts and pathways between the residues in the C12-HSL complex as compared to complexes with the other ligands. The binding of the C12-HSL ligand facilitates structural communication between the two knobs and the active site. While the binding of the other ligands tend to impair specific communication pathways between the two knobs and the active site, and lead to a catalytically inefficient state. Finally, simulation results from free energy landscape and binding free energy analysis revealed that the C12-HSL ligand has the lowest binding free energy and greater stability than the less favored ligands. Each of the following residues: Serß1, Hisß23, Pheß24, Metß30, Pheß32, Leuß50, Asnß57, Thrß69, Valß70, Trpß162, Trpß186, Asnß269, Argß297 and Leuα146, play different roles in substrate binding specificity. This is the first computational study that provides molecular information for structure-dynamic-function relationships of PvdQ with different ligands and demonstrates determinants of bacterial substrate binding specificity.


Assuntos
Amidoidrolases/química , Proteínas de Bactérias/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Percepção de Quorum , Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
4.
Artigo em Inglês | MEDLINE | ID: mdl-29755959

RESUMO

Pseudomonas aeruginosa is the predominant pathogen in pulmonary infections associated with cystic fibrosis. Quorum sensing (QS) systems regulate the production of virulence factors and play an important role in the establishment of successful P. aeruginosa infections. Inhibition of the QS system (termed quorum quenching) renders the bacteria avirulent thus serving as an alternative approach in the development of novel antibiotics. Quorum quenching in Gram negative bacteria can be achieved by preventing the accumulation of N-acyl homoserine lactone (AHL) signaling molecule via enzymatic degradation. Previous work by us has shown that PvdQ acylase hydrolyzes AHL signaling molecules irreversibly, thereby inhibiting QS in P. aeruginosa in vitro and in a Caenorhabditis elegans model of P. aeruginosa infection. The aim of the present study is to assess the therapeutic efficacy of intranasally instilled PvdQ acylase in a mouse model of pulmonary P. aeruginosa infection. First, we evaluated the deposition pattern of intranasally administered fluorochrome-tagged PvdQ (PvdQ-VT) in mice at different stages of pulmonary infection by in vivo imaging studies. Following intranasal instillation, PvdQ-VT could be traced in all lung lobes with 42 ± 7.5% of the delivered dose being deposited at 0 h post-bacterial-infection, and 34 ± 5.2% at 72 h post bacterial-infection. We then treated mice with PvdQ during lethal P. aeruginosa pulmonary infection and that resulted in a 5-fold reduction of lung bacterial load and a prolonged survival of the infected animals with the median survival time of 57 hin comparison to 42 h for the PBS-treated group. In a sublethal P. aeruginosa pulmonary infection, PvdQ treatment resulted in less lung inflammation as well as decrease of CXCL2 and TNF-α levels at 24 h post-bacterial-infection by 15 and 20%, respectively. In conclusion, our study has shown therapeutic efficacy of PvdQ acylase as a quorum quenching agent during P. aeruginosa infection.


Assuntos
Acil-Butirolactonas/metabolismo , Amidoidrolases/metabolismo , Amidoidrolases/uso terapêutico , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum/fisiologia , Infecções Respiratórias/tratamento farmacológico , Animais , Carga Bacteriana/efeitos dos fármacos , Quimiocina CXCL2/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/metabolismo , Infecções Respiratórias/microbiologia , Infecções Respiratórias/patologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA