Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chromatogr A ; 1678: 463361, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35914408

RESUMO

In this study, an on-tissue chemical labeling - matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) method was developed for visualization of the distribution of three catecholamine (CA) compounds (dopamine, epinephrine and norepinephrine) in porcine adrenal gland. Commercially available pyrene-1-boronic acid (PBA) was employed as an effective in situ derivatizing reagent dissolved in acetonitrile containing 0.1% pyridine for the chemical labeling and the matrix coating. Without extra matrix coating, the tissue section was directly analyzed by MALDI-MS. The detection specificity and sensitivity were greatly improved with the on-tissue PBA labeling and successful imaging of the three CAs in porcine adrenal gland was achieved. Compared with previously reported methods for MALDI-MSI of the CAs, the analytical strategy proposed in the study provided a robust, easy-to-use and low-cost on-tissue chemical derivatization method that facilitated simultaneous molecular imaging of the three compounds.


Assuntos
Ácidos Borônicos , Catecolaminas , Glândulas Suprarrenais/química , Animais , Catecolaminas/análise , Pirenos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Suínos
2.
Talanta ; 219: 121324, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887061

RESUMO

Fiber-based techniques make it possible to implant a miniaturized and flexible surface plasmon resonance (SPR) sensor into the human body for glucose detection. However, the miniaturization of fiber SPR sensors results in low sensitivity compared with traditional prism-type SPR sensors due to limited sensing area. In this paper, we proposed a D-shaped fiber SPR sensor with a composite nanostructure of molybdenum disulfide (MoS2)-graphene to improve the sensor sensitivity. Compared with the traditional cylindrical fiber, the planar sensing area on the side-polished fiber makes it easier to modify two-dimensional materials. Chemical vapor deposition (CVD) graphene and CVD MoS2 were modified on the sensor surface to obtain the MoS2-graphene composite nanostructure. π-π stacking interactions were used to modify pyrene-1-boronic acid (PBA) on the graphene. The excellent photoelectric properties of the MoS2-graphene composite nanostructure and the ability of PBA to specifically bind glucose molecules improved the glucose detection performance of the SPR sensor. The results show that specific detection of glucose was realized and that the highest sensitivity was achieved with three-layer MoS2 and monolayer graphene.

3.
ACS Appl Mater Interfaces ; 9(44): 38863-38869, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29023095

RESUMO

A novel graphene-based variable capacitor (varactor) that senses glucose based on the quantum capacitance effect was successfully developed. The sensor utilizes a metal-oxide-graphene varactor device structure that is inherently compatible with passive wireless sensing, a key advantage for in vivo glucose sensing. The graphene varactors were functionalized with pyrene-1-boronic acid (PBA) by self-assembly driven by π-π interactions. Successful surface functionalization was confirmed by both Raman spectroscopy and capacitance-voltage characterization of the devices. Through glucose binding to the PBA, the glucose concentration in the buffer solutions modulates the level of electrostatic doping of the graphene surface to different degrees, which leads to capacitance changes and Dirac voltage shifts. These responses to the glucose concentration were shown to be reproducible and reversible over multiple measurement cycles, suggesting promise for eventual use in wireless glucose monitoring.


Assuntos
Glucose/química , Glicemia , Automonitorização da Glicemia , Eletrólitos , Grafite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA