Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
J Agric Food Chem ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365249

RESUMO

The rice-blast fungus Pyricularia oryzae poses a significant threat to rice production worldwide. Ferroptosis, an iron-dependent form of regulated cell death, has recently been reported to be involved in P. oryzae pathogenicity during plant-fungal interactions. Ferroptosis regulates the developmental cell death of conidia necessary for appressorium maturation. In this study, we have established that a series of benzamides containing a chelating catechol moiety suppresses the formation/maturation of appressoria, which are essential for host infection by the rice blast fungus. Moreover, for the most active compounds we have shown that their activity can be at least partially reversed by adding exogenous Fe3+. These results highlight the close association between iron availability and appressorium maturation, opening new avenues for the development of targeted strategies for P. oryzae management.

2.
Sci Rep ; 14(1): 21813, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294226

RESUMO

Rice (Oryza sativa) is a staple food for billions of people across the globe, that feeds nearly three-quarters of the human population on Earth, particularly in Asian countries. Rice yield has been drastically reduced and severely affected by various biotic and abiotic stresses, especially pathogens. Controlling the attack of such pathogens is a matter of immediate concern as yield losses in rice crops could deprive millions of lives of nourishment worldwide. Pyricularia oryzae is one such pathogen that has been considered the major disease of rice because of its worldwide geographic distribution. P. oryzae belongs to the kingdom fungi, that causes rice blast ultimately adversely affecting the yield of the rice crop. Keeping in view this alarming scenario, the present study was designed so that the identifications of genome-encoded miRNAs of Oryza sativa were employed to target and silence the genome of P. oryzae. This study accomplished the computational analysis of algorithms related to miRNA target prediction. Four computational target prediction algorithms i.e., psRNATarget, RNA22, miRanda, and RNAhybrid were utilized in this investigation. The consensus among target prediction algorithms was created to discover six miRNAs from the O. sativa genome with the conservation of the target site fully evaluated on the genome of P. oryzae. The discovery of these novel six miRNAs in Oryza sativa paved a strong way toward the control of this disease in rice. It will open doors for further research in the field of gene silencing in rice. These miRNAs can be designed and employed in the future as experimentation to create constructs regarding the silencing of P. oryzae in rice crops. In the future, this research would be surely helpful for the development of P. oryzae resistant rice varieties.


Assuntos
Ascomicetos , MicroRNAs , Oryza , Doenças das Plantas , Oryza/genética , Oryza/microbiologia , MicroRNAs/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Ascomicetos/genética , Ascomicetos/patogenicidade , Genoma Fúngico , Genoma de Planta , Biologia Computacional/métodos , Algoritmos
3.
Plant Cell Environ ; 47(11): 4259-4274, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38946254

RESUMO

Plant pathogens cause devastating diseases, leading to serious losses to agriculture. Mechanistic understanding of pathogenesis of plant pathogens lays the foundation for the development of fungicides for disease control. Mitophagy, a specific form of autophagy, is important for fungal virulence. The role of cardiolipin, mitochondrial signature phospholipid, in mitophagy and pathogenesis is largely unknown in plant pathogenic fungi. The functions of enzymes involved in cardiolipin biosynthesis and relevant inhibitors were assessed using a set of assays, including genetic deletion, plant infection, lipidomics, chemical-protein interaction, chemical inhibition, and field trials. Our results showed that the cardiolipin biosynthesis-related gene MoGEP4 of the rice blast fungus Magnaporthe oryzae regulates growth, conidiation, cardiolipin biosynthesis, and virulence. Mechanistically, MoGep4 regulated mitophagy and Mps1-MAPK phosphorylation, which are required for virulence. Chemical alexidine dihydrochloride (AXD) inhibited the enzyme activity of MoGep4, cardiolipin biosynthesis and mitophagy. Importantly, AXD efficiently inhibited the growth of 10 plant pathogens and controlled rice blast and Fusarium head blight in the field. Our study demonstrated that MoGep4 regulates mitophagy, Mps1 phosphorylation and pathogenesis in M. oryzae. In addition, we found that the MoGep4 inhibitor, AXD, displays broad-spectrum antifungal activity and is a promising candidate for fungicide development.


Assuntos
Cardiolipinas , Doenças das Plantas , Cardiolipinas/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Virulência , Oryza/microbiologia , Mitofagia/efeitos dos fármacos , Antifúngicos/farmacologia , Fosforilação , Ascomicetos
4.
Phytopathology ; 114(9): 2113-2120, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38870178

RESUMO

Wheat blast, caused by Pyricularia oryzae (syn. Magnaporthe oryzae) pathotype Triticum (MoT), is a devastating disease that can result in up to 100% yield loss in affected fields. To find new resistance genes against wheat blast, we screened 199 accessions of Aegilops tauschii, the D genome progenitor of common wheat (Triticum aestivum), by seedling inoculation assays with Brazilian MoT isolate Br48 and found 14 resistant accessions. A synthetic hexaploid wheat line (Ldn/KU-2097) derived from a cross between the T. turgidum 'Langdon' (Ldn) and resistant A. tauschii accession KU-2097 exhibited resistance in seedlings and spikes against Br48. In an F2 population derived from 'Chinese Spring' × Ldn/KU-2097, resistant and susceptible individuals segregated in a 3:1 ratio, suggesting that the resistance from KU-2097 is controlled by a single dominant gene. We designated this gene Rmg10. Genetic mapping using an F2:3 population from the same cross mapped the RMG10 locus to the short arm of chromosome 2D. Rmg10 was ineffective against Bangladesh isolates but effective against Brazilian isolates. Field tests in Bolivia showed increased spike resistance in a synthetic octaploid wheat line produced from a cross between common wheat cultivar 'Gladius' and KU-2097. These results suggest that Rmg10 would be beneficial in farmers' fields in South America.


Assuntos
Aegilops , Resistência à Doença , Doenças das Plantas , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/imunologia , Aegilops/genética , Aegilops/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Ascomicetos/fisiologia , Ascomicetos/genética , Genes de Plantas/genética , Mapeamento Cromossômico , Plântula/microbiologia , Plântula/genética , Plântula/imunologia
5.
Phytopathology ; 114(8): 1878-1883, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723149

RESUMO

Wheat blast caused by Pyricularia oryzae pathotype Triticum has spread to Asia (Bangladesh) and Africa (Zambia) from the endemic region of South America. Wheat varieties with durable resistance are needed, but very limited resistance resources are currently available. After screening tetraploid wheat accessions, we found an exceptional accession St19 (Triticum dicoccum, KU-114). Primary leaves of St19 were resistant not only to Brazilian isolate Br48 (a carrier of Type eI of AVR-Rmg8) but also to Br48ΔA8, an AVR-Rmg8 disruptant of Br48, even at 30°C, suggesting that the resistance of St19 is tolerant to high temperature and controlled by a gene or genes other than Rmg8. When an F2 population derived from a cross between St19 and St30 (a susceptible accession of T. paleocolchicum, KU-191) was inoculated with Br48, resistant and susceptible seedlings segregated in a 3:1 ratio, indicating that resistance of St19 is conferred by a single gene. We designated this gene Rmg11. Molecular mapping revealed that the RMG11 locus is located on the short arm of chromosome 7A. Rmg11 is effective not only against other two Brazilian isolates (Br5 and Br116.5) but also against Bangladeshi isolates (T-108 and T-109) at the seedling stage. At the heading stage, lines containing Rmg11 were highly susceptible to the Bangladeshi isolates but moderately resistant to the Brazilian isolates. Stacking of Rmg11 with Rmg8 and the 2NS segment is highly recommended to achieve durable wheat blast resistance.


Assuntos
Resistência à Doença , Doenças das Plantas , Tetraploidia , Triticum , Triticum/genética , Triticum/microbiologia , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Ascomicetos/fisiologia , Genes de Plantas/genética , Temperatura Alta , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Folhas de Planta/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Proteínas de Plantas/genética
6.
Phytopathology ; 114(8): 1843-1850, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38776064

RESUMO

Wheat blast caused by Pyricularia oryzae pathotype Triticum (MoT) has been transmitted from South America to Bangladesh and Zambia and is now spreading in these countries. To prepare against its further spread to Asian countries, we introduced Rmg8, a gene for resistance to wheat blast, into a Japanese elite cultivar, Chikugoizumi (ChI), through recurrent backcrosses and established ChI near-isogenic lines, #2-1-10 with the Rmg8/Rmg8 genotype and #4-2-10 with the rmg8/rmg8 genotype. A molecular analysis suggested that at least 96.6% of the #2-1-10 genome was derived from the recurrent parent ChI. The #2-1-10 line was resistant to MoT not only in primary leaves at the seedling stage but also in spikes and flag leaves at the heading stage. The strength of the resistance in spikes of this Rmg8 carrier was comparable to that of a carrier of the 2NS segment, which has been the only genetic resource released to farmers' fields for wheat blast resistance. On the other hand, the 2NS resistance was not expressed on leaves at the seedling stage nor flag leaves at the heading stage. Considering that leaf blast has been increasingly reported and regarded as an important inoculum source for spike blast, Rmg8 expressed at both the seedling and heading stages, or more strictly in both leaves and spikes, is suggested to be useful to prevent the spread of MoT in Asia and Africa.


Assuntos
Resistência à Doença , Doenças das Plantas , Plântula , Triticum , Triticum/genética , Triticum/microbiologia , Plântula/microbiologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Folhas de Planta/microbiologia , Folhas de Planta/genética , Ascomicetos/fisiologia , Melhoramento Vegetal , Genótipo , Genes de Plantas
7.
Plant Signal Behav ; 19(1): 2350869, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38722963

RESUMO

Fungal pathogens deliver effector proteins into living plant cells to suppress plant immunity and control plant processes that are needed for infection. During plant infection, the devastating rice blast fungus, Magnaporthe oryzae, forms the specialized biotrophic interfacial complex (BIC), which is essential for effector translocation. Cytoplasmic effectors are first focally secreted into BICs, and subsequently packaged into dynamic membranous effector compartments (MECs), then translocated via clathrin-mediated endocytosis (CME) into the host cytoplasm. This study demonstrates that clathrin-heavy chain inhibitors endosidin-9 (ES9) and endosidin-9-17 (ES9-17) blocked the internalization of the fluorescently labeled effectors Bas1 and Pwl2 in rice cells, leading to swollen BICs lacking MECs. In contrast, ES9-17 treatment had no impact on the localization pattern of the apoplastic effector Bas4. This study provides further evidence that cytoplasmic effector translocation occurs by CME in BICs, suggesting a potential role for M. oryzae effectors in co-opting plant endocytosis.


Assuntos
Endocitose , Oryza , Oryza/microbiologia , Oryza/metabolismo , Doenças das Plantas/microbiologia , Ascomicetos , Interações Hospedeiro-Patógeno , Transporte Proteico , Proteínas Fúngicas/metabolismo , Clatrina/metabolismo
8.
Mol Plant Pathol ; 25(4): e13449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619508

RESUMO

Pyricularia oryzae (syn. Magnaporthe oryzae), is a filamentous ascomycete that causes a major disease called blast on cereal crops, as well as on a wide variety of wild and cultivated grasses. Blast diseases have a tremendous impact worldwide particularly on rice and on wheat, where the disease emerged in South America in the 1980s, before spreading to Asia and Africa. Its economic importance, coupled with its amenability to molecular and genetic manipulation, have inspired extensive research efforts aiming at understanding its biology and evolution. In the past 40 years, this plant-pathogenic fungus has emerged as a major model in molecular plant-microbe interactions. In this review, we focus on the clarification of the taxonomy and genetic structure of the species and its host range determinants. We also discuss recent molecular studies deciphering its lifecycle. TAXONOMY: Kingdom: Fungi, phylum: Ascomycota, sub-phylum: Pezizomycotina, class: Sordariomycetes, order: Magnaporthales, family: Pyriculariaceae, genus: Pyricularia. HOST RANGE: P. oryzae has the ability to infect a wide range of Poaceae. It is structured into different host-specialized lineages that are each associated with a few host plant genera. The fungus is best known to cause tremendous damage to rice crops, but it can also attack other economically important crops such as wheat, maize, barley, and finger millet. DISEASE SYMPTOMS: P. oryzae can cause necrotic lesions or bleaching on all aerial parts of its host plants, including leaf blades, sheaths, and inflorescences (panicles, spikes, and seeds). Characteristic symptoms on leaves are diamond-shaped silver lesions that often have a brown margin and whose appearance is influenced by numerous factors such as the plant genotype and environmental conditions. USEFUL WEBSITES Resources URL Genomic data repositories http://genome.jouy.inra.fr/gemo/ Genomic data repositories http://openriceblast.org/ Genomic data repositories http://openwheatblast.net/ Genome browser for fungi (including P. oryzae) http://fungi.ensembl.org/index.html Comparative genomics database https://mycocosm.jgi.doe.gov/mycocosm/home T-DNA mutant database http://atmt.snu.kr/ T-DNA mutant database http://www.phi-base.org/ SNP and expression data https://fungidb.org/fungidb/app/.


Assuntos
Ascomicetos , Hordeum , Ascomicetos/genética , Produtos Agrícolas , Triticum
9.
Plant Dis ; 108(8): 2283-2290, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38587798

RESUMO

Rice blast, caused by Pyricularia oryzae, is one of the most destructive rice diseases worldwide. Using resistant rice varieties is the most cost-effective way to control rice blast. Consequently, it is critical to monitor the distribution frequency of avirulence (Avr) genes in rice planting fields to facilitate the breeding of resistant rice varieties. In this study, we established a rapid recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) detection system for the identification of AvrPik, Avr-Piz-t, and Avr-Pi9. The optimized reaction temperature and duration were 37°C and 20 min, indicating that the reaction system could be initiated by body temperature without relying on any precision instruments. Specificity analysis showed that the primer and probe combinations targeting the three Avr genes exhibited a remarkable specificity at genus-level detection. Under the optimized condition, the lower detected thresholds of AvrPik, Avr-Piz-t, and Avr-Pi9 were 10 fg/µl, 100 fg/µl, and 10 pg/µl, respectively. Notably, the detection sensitivity of the three Avr genes was much higher than that of PCR. In addition, we also successfully detected the presence of AvrPik, Avr-Piz-t, and Avr-Pi9 in the leaf and panicle blast lesions with the RPA-LFD detection system. In particular, the genomic DNA was extracted using the simpler PEG-NaOH rapid extraction method. In summary, we developed an RPA detection system for AvrPik, Avr-Pi9, and Avr-Piz-t, combined with the PEG-NaOH rapid DNA extraction method. The innovative approach achieved rapid, real-time, and accurate detection of the three Avr genes in the field, which is helpful to understand the distribution frequency of the three Avr genes in the field and provide theoretical reference for the scientific layout of resistant rice varieties.


Assuntos
Ascomicetos , Oryza , Doenças das Plantas , Doenças das Plantas/microbiologia , Oryza/microbiologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Virulência/genética , Genes Fúngicos/genética
10.
Plants (Basel) ; 13(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674547

RESUMO

Conferring crops with resistance to multiple diseases is crucial for stable food production. Genetic engineering is an effective means of achieving this. The rice receptor-like cytoplasmic kinase BSR1 mediates microbe-associated molecular pattern-induced immunity. In our previous study, we demonstrated that rice lines overexpressing BSR1 under the control of the maize ubiquitin promoter exhibited broad-spectrum resistance to rice blast, brown spot, leaf blight, and bacterial seedling rot. However, unfavorable phenotypes were observed, such as a decreased seed germination rate and a partial darkening of husked rice. Herein, we present a strategy to address these unfavorable phenotypes using an OsUbi7 constitutive promoter with moderate expression levels and a pathogen-inducible PR1b promoter. Rice lines expressing BSR1 under the influence of both promoters maintained broad-spectrum disease resistance. The seed germination rate and coloration of husked rice were similar to those of the wild-type rice.

11.
Pathogens ; 13(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535554

RESUMO

In order to understand the pathogenicity differentiation of rice blast fungus (Pyricularia oryzae Cavara), a total of 206 isolates of P. oryzae were collected from three Japonica rice regions in Jilin Province, northeast China. Pathogenicity test showed that the reaction pattern of 25 monogenic differential varieties (MDVs) of rice (Oryza sativa L.) demonstrated a wide pathogenic diversity among the isolates. Those MDVs harbor 23 resistance (R) genes with the susceptible variety Lijiangxintuanheigu (LTH) as control. Virulent isolates of MDVs harboring R genes Pish, Pit, Pia, Pii, Pik-s, Pik, Pita (two lines), and Pita-2 (two lines) had high frequencies ranging from 80 to 100%, to MDVs harboring R genes Pib, Pi5(t), Pik-m, Pi1, Pik-h, Pik-p, Pi7(t), Piz, Piz-5, and Piz-t showed intermediate frequencies ranging from 40 to 80%, and to MDVs with R genes Pi3, Pi9(t), Pi12(t), Pi19(t) and Pi20(t) presented low frequencies ranging only from 0 to 40%. The U-i-k-z-ta pattern of race-named criteria categorized the 206 isolates into 175 races. Sub-unit U73 for Pib, i7 for Pi3 and Pi5(t), k177 for Pik-m/Pik-h/Pik-p, z17 for Pi9(t), and ta332 for Pi20(t) were crucial on pathogenic differences in regions. Twenty-seven standard differential blast isolates (SDBIs) were selected to characterize resistance in rice accessions. This study could help to build a durable identification system against blast in the Japonica rice area of northeast China and enhance our understanding of the differentiation and diversity of blast races in the world.

12.
Molecules ; 29(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542989

RESUMO

Rice blast, caused by the filamentous fungus Pyricularia oryzae, has long been one of the major threats to almost all rice-growing areas worldwide. Metconazole, 5-(4-chlorobenzyl)-2, 2-dimethyl-1-(1H-1, 2, 4-triazol-1-ylmethyl) cyclopentanol, is a lipophilic, highly active triazole fungicide that has been applied in the control of various fungal pathogens of crops (cereals, barley, wheat), such as the Fusarium and Alternaria species. However, the antifungal activity of metconazole against P. oryzae is unknown. In this study, metconazole exhibited broad spectrum antifungal activities against seven P. oryzae strains collected from rice paddy fields and the wild type strain P131. Scanning electron microscopic analysis and fluorescein diacetate staining assays revealed that metconazole treatment damaged the cell wall integrity, cell membrane permeability and even cell viability of P. oryzae, resulting in deformed and shrunken hyphae. The supplementation of metconazole in vitro increased fungal sensitivity to different stresses, such as sodium dodecyl sulfate, congo red, sodium chloride, sorbitol and oxidative stress (H2O2). Metconazole could inhibit key virulence processes of P. oryzae, including conidial germination, germ tube elongation and appressorium formation. Furthermore, this chemical prevented P. oryzae from infecting barley epidermal cells by disturbing appressorium penetration and subsequent invasive hyphae development. Pathogenicity assays indicated a reduction of over 75% in the length of blast lesions in both barley and rice leaves when 10 µg/mL of metconazole was applied. This study provides evidence to understand the antifungal effects of metconazole against P. oryzae and demonstrates its potential in rice blast management.


Assuntos
Ascomicetos , Hordeum , Magnaporthe , Oryza , Antifúngicos/farmacologia , Oryza/microbiologia , Peróxido de Hidrogênio/farmacologia , Triazóis/farmacologia , Doenças das Plantas/microbiologia
13.
Genetics ; 226(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38290434

RESUMO

Fungi use the accessory gene content of their pangenomes to adapt to their environments. While gene presence-absence variation contributes to shaping accessory gene reservoirs, the genomic contexts that shape these events remain unclear. Since pangenome studies are typically species-wide and do not analyze different populations separately, it is yet to be uncovered whether presence-absence variation patterns and mechanisms are consistent across populations. Fungal plant pathogens are useful models for studying presence-absence variation because they rely on it to adapt to their hosts, and members of a species often infect distinct hosts. We analyzed gene presence-absence variation in the blast fungus, Magnaporthe oryzae (syn. Pyricularia oryzae), and found that presence-absence variation genes involved in host-pathogen and microbe-microbe interactions may drive the adaptation of the fungus to its environment. We then analyzed genomic and epigenomic features of presence-absence variation and observed that proximity to transposable elements, gene GC content, gene length, expression level in the host, and histone H3K27me3 marks were different between presence-absence variation genes and conserved genes. We used these features to construct a model that was able to predict whether a gene is likely to experience presence-absence variation with high precision (86.06%) and recall (92.88%) in M. oryzae. Finally, we found that presence-absence variation genes in the rice and wheat pathotypes of M. oryzae differed in their number and their genomic context. Our results suggest that genomic and epigenomic features of gene presence-absence variation can be used to better understand and predict fungal pangenome evolution. We also show that substantial intra-species variation can exist in these features.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Magnaporthe/genética , Genômica , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
14.
Plant Commun ; 5(1): 100679, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37653727

RESUMO

Plant diseases cause enormous economic losses in agriculture and threaten global food security, and application of agrochemicals is an important method of crop disease control. Exploration of disease-resistance mechanisms and synthesis of highly bioactive agrochemicals are thus important research objectives. Here, we show that propranolol, a phosphatidate phosphatase (Pah) inhibitor, effectively suppresses fungal growth, sporulation, sexual reproduction, and infection of diverse plants. The MoPah1 enzyme activity of the rice blast fungus Magnaporthe oryzae is inhibited by propranolol. Alterations in lipid metabolism are associated with inhibited hyphal growth and appressorium formation caused by propranolol in M. oryzae. Propranolol inhibits a broad spectrum of 12 plant pathogens, effectively inhibiting infection of barley, wheat, maize, tomato, and pear. To improve antifungal capacity, we synthesized a series of propranolol derivatives, one of which shows a 16-fold increase in antifungal ability and binds directly to MoPah1. Propranolol and its derivatives can also reduce the severity of rice blast and Fusarium head blight of wheat in the field. Taken together, our results demonstrate that propranolol suppresses fungal development and infection through mechanisms involved in lipid metabolism. Propranolol and its derivatives may therefore be promising candidates for fungicide development.


Assuntos
Fungicidas Industriais , Magnaporthe , Oryza , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Oryza/microbiologia , Fosfatidato Fosfatase/metabolismo , Fosfatidato Fosfatase/farmacologia , Propranolol/farmacologia , Propranolol/metabolismo , Magnaporthe/metabolismo , Triticum
15.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003546

RESUMO

In Arabidopsis thaliana (Arabidopsis), nonhost resistance (NHR) is influenced by both leaf age and the moment of inoculation. While the circadian clock and photoperiod have been linked to the time-dependent regulation of NHR in Arabidopsis, the mechanism underlying leaf age-dependent NHR remains unclear. In this study, we investigated leaf age-dependent NHR to Pyricularia oryzae in Arabidopsis. Our findings revealed that this NHR type is regulated by both miR156-dependent and miR156-independent pathways. To identify the key players, we utilized rice-FOX Arabidopsis lines and identified the rice HD-Zip I OsHOX6 gene. Notably, OsHOX6 expression confers robust NHR to P. oryzae and Colletotrichum nymphaeae in Arabidopsis, with its effect being contingent upon leaf age. Moreover, we explored the role of AtHB7 and AtHB12, the Arabidopsis closest homologues of OsHOX6, by studying mutants and overexpressors in Arabidopsis-C. higginsianum interaction. AtHB7 and AtHB12 were found to contribute to both penetration resistance and post-penetration resistance to C. higginsianum in a leaf age- and time-dependent manner. These findings highlight the involvement of HD-Zip I AtHB7 and AtHB12, well-known regulators of development and abiotic stress responses, in biotic stress responses in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Zíper de Leucina , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
16.
Mitochondrial DNA B Resour ; 8(10): 1036-1040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799450

RESUMO

The complete mitochondrial genome of Pyricularia oryzae Cavara 1892 strain Guy11 is 34,865 bp in length (GenBank accession number OP095391), containing 29 tRNA genes, 2 rRNA genes, and 15 protein-coding genes (PCGs). The gene order and orientation are novel compared to other Sordariomycetes species with sequenced mitogenomes in the GenBank database. Phylogenetic analysis suggests that P. oryzae Guy11 and 19 other Sordariomycetes species form a monophyletic group. The complete mitochondrial sequence of P. oryzae Guy11 will be a valuable resource for species identification, population genetics, phylogenetics, and comparative genomics studies in Sordariomycetes and Magnaporthales.

17.
Mol Plant Microbe Interact ; 36(11): 716-725, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37432132

RESUMO

Pyricularia oryzae, a blast fungus of gramineous plants, is composed of various host genus-specific pathotypes. The avirulence of an Avena isolate on wheat is conditioned by PWT3 and PWT4. We isolated the third avirulence gene from the Avena isolate and designated it as PWT7. PWT7 was effective as an avirulence gene only at the seedling stage or on leaves. PWT7 homologs were widely distributed in a subpopulation of the Eleusine pathotype and the Lolium pathotype but completely absent in the Triticum pathotype (the wheat blast fungus). The PWT7 homolog found in the Eleusine pathotype was one of the five genes involved in its avirulence on wheat. A comparative analysis of distribution of PWT7 and the other two genes previously identified in the Eleusine pathotype suggested that, in the course of parasitic specialization toward the wheat blast fungus, a common ancestor of the Eleusine, Lolium, Avena, and Triticum pathotypes first lost PWT6, secondly PWT7, and, finally, the function of PWT3. PWT7 or its homologs were located on core chromosomes in Setaria and Eleusine isolates but on supernumerary chromosomes in Lolium and Avena isolates. This is an example of interchromosomal translocations of effector genes between core and supernumerary chromosomes. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Magnaporthe , Triticum/microbiologia , Ascomicetos/genética , Genes de Plantas , Cromossomos , Doenças das Plantas/microbiologia , Magnaporthe/genética
18.
Pest Manag Sci ; 79(11): 4254-4263, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37341444

RESUMO

BACKGROUND: To gain a better understanding of how Pyricularia oryzae population shifts is important for selecting suitable resistance genes for rice breeding programs. However, the relationships between P. oryzae pathogenic dynamics, geographic distribution, rice varieties, and timeline are not well studied. RESULTS: Resistance genes Piz-5, Pi9(t), Pi12(t), Pi20(t), Pita-2, and Pi11 showed stable resistance to the Taiwan rice blast fungus over 8 years of observations. Furthermore, 1749 rice blast isolates were collected from 2014 to 2021 and categorized into five pathotype clusters based on their correlation analysis between the geographic sources and virulence of Lijiangxintuanheigu monogenic lines. A detailed map of their distributions in Taiwan is presented. Isolates collected from the western region of Taiwan had greater pathotype diversity than those from the east region. Isolates collected from the subtropical region had greater diversity than those from the tropical region. Rice cultivars carrying Pik alleles were highly susceptible to pathotype L4. Cultivars with Piz-t were highly susceptible to pathotype L5, and those with Pish were highly susceptible to pathotype L1. The geographical distribution of each pathotype was distinct, and the population size of each pathotype fluctuated significantly each year. CONCLUSION: The regional mega cultivars significantly impact the evolution of Pyricularia oryzae in Taiwan within the span of 8 years. However, the annual fluctuation of pathotype populations likely correlate to the rising annual temperatures that selected pathotype clusters by their optimal growth temperature. The results will provide useful information for effective disease management, and enable the R-genes to prolong their function in the fields. © 2023 Society of Chemical Industry.


Assuntos
Magnaporthe , Oryza , Magnaporthe/genética , Taiwan , Oryza/genética , Doenças das Plantas/microbiologia , Melhoramento Vegetal
19.
New Phytol ; 239(1): 255-270, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148193

RESUMO

As phospholipids of cell membranes, phosphatidylethanolamine (PE) and phosphatidylserine (PS) play crucial roles in glycerophospholipid metabolism. Broadly, some phospholipid biosynthesis enzymes serve as potential fungicide targets. Therefore, revealing the functions and mechanism of PE biosynthesis in plant pathogens would provide potential targets for crop disease control. We performed analyses including phenotypic characterizations, lipidomics, enzyme activity, site-directed mutagenesis, and chemical inhibition assays to study the function of PS decarboxylase-encoding gene MoPSD2 in rice blast fungus Magnaporthe oryzae. The Mopsd2 mutant was defective in development, lipid metabolism, and plant infection. The PS level increased while PE decreased in Mopsd2, consistent with the enzyme activity. Furthermore, chemical doxorubicin inhibited the enzyme activity of MoPsd2 and showed antifungal activity against 10 phytopathogenic fungi including M. oryzae and reduced disease severity of two crop diseases in the field. Three predicted doxorubicin-interacting residues are important for MoPsd2 functions. Our study demonstrates that MoPsd2 is involved in de novo PE biosynthesis and contributes to the development and plant infection of M. oryzae and that doxorubicin shows broad-spectrum antifungal activity as a fungicide candidate. The study also implicates that bacterium Streptomyces peucetius, which biosynthesizes doxorubicin, could be potentially used as an eco-friendly biocontrol agent.


Assuntos
Carboxiliases , Fungicidas Industriais , Magnaporthe , Oryza , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Magnaporthe/genética
20.
Fungal Genet Biol ; 166: 103794, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003467

RESUMO

We characterized the genetic structure of 609 strains of Pyricularia oryzae, the fungal pathogen causing rice blast disease, in three main regions in Vietnam using microsatellites (SSR) markers. From the 447 distinct multilocus genotypes identified, six genetic clusters were defined, all of them showing elevated genetic and genotypic diversities. Four of these clusters were related to rice-attacking lineages already described at the worldwide scale, whereas the two remaining clusters were endemic to Vietnam. Strains were unevenly distributed into the six clusters depending on their groups of rice variety (indica / japonica) or type of varieties (traditional / modern) of origin, but none of the clusters was specifically related to these two factors. The highest diversity of blast population was found in Northern mountainous area, and the lowest in Red River Delta in both terms of genetic diversity and gene diversity. Hierarchical AMOVAs confirmed that all three factors considered (rice variety group, type of variety origin and geography) significantly contributed to the population structure of P. oryzae in Vietnam, with highest contribution from rice variety group. Mating types were unevenly distributed among clusters. Combined with results of female fertility and linkage disequilibirum, we hypothesized that clonal reproduction probably occurred in all clusters, but that sexual reproduction likely took place at least in some restricted areas in the Northern mountainous area for strains belonging to the cluster related to the previously described recombinant lineage (worldwide lineage 1). Our study pictures the genetic diversity, population structure and reproductive mode of the blast fungus in central and north Vietnam, and shows that the observed population structure is explained by several factors, the most important one being the variability of rice variety. All these new information might help for elaborating appropriate strategies to controlling the blast disease.


Assuntos
Magnaporthe , Oryza , Vietnã/epidemiologia , Magnaporthe/genética , Variação Genética/genética , Pandemias , Oryza/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA