Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 30(9): 1213-1226, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38918043

RESUMO

Telomere replication is essential for continued proliferation of human cells, such as stem cells and cancer cells. Telomerase lengthens the telomeric G-strand, while C-strand replication is accomplished by CST-polymerase α-primase (CST-PP). Replication of both strands is inhibited by formation of G-quadruplex (GQ) structures in the G-rich single-stranded DNA. TMPyP4 and pyridostatin (PDS), which stabilize GQ structures in both DNA and RNA, inhibit telomerase in vitro, and in human cells they cause telomere shortening that has been attributed to telomerase inhibition. Here, we show that TMPyP4 and PDS also inhibit C-strand synthesis by stabilizing DNA secondary structures and thereby preventing CST-PP from binding to telomeric DNA. We also show that these small molecules inhibit CST-PP binding to a DNA sequence containing no consecutive guanine residues, which is unlikely to form GQs. Thus, while these "telomerase inhibitors" indeed inhibit telomerase, they are also robust inhibitors of telomeric C-strand synthesis. Furthermore, given their binding to GQ RNA and their limited specificity for GQ structures, they may disrupt many other protein-nucleic acid interactions in human cells.


Assuntos
Inibidores Enzimáticos , Quadruplex G , Telomerase , Telômero , Telomerase/antagonistas & inibidores , Telomerase/metabolismo , Telomerase/genética , Humanos , Telômero/metabolismo , Quadruplex G/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Ácidos Picolínicos/farmacologia , Ácidos Picolínicos/química , Replicação do DNA/efeitos dos fármacos , DNA Polimerase I/antagonistas & inibidores , DNA Polimerase I/metabolismo , DNA/metabolismo , Aminoquinolinas , Porfirinas , DNA Primase
2.
Heliyon ; 10(8): e29828, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699732

RESUMO

Aims: This pilot study investigates the potential pathogenic role of G-quadruplex (G4) structures in RPGR-associated retinal degeneration, starting from a case of suspected X-linked form affected family. We hypothesize that the stabilization of these structures might alter DNA replication and transcription, inducing genetic instability and influencing gene expression. Main methods: We conducted whole genome amplification experiments and next-generation sequencing to detect the blockade of polymerase activity by G4 structures. Our specific focus was the RPGR gene, which hosts a high concentration of predicted G4-forming motifs and is implicated in most X-linked retinal degeneration cases. To understand the potential interference of G4 structures, we applied computational and 3D molecular modeling to visualize interferences in DNA replication and transcription regulation. Key findings: Our data confirmed the obstruction of DNA polymerase enzymes by G4 structures, particularly when stabilized by the compound pyridostatin. This obstruction was evident in the reduced amplification of RPGR gene regions and a shift in the start/end sites of putative G4 motifs. Moreover, the modeling indicated a potential disruption of critical promoter elements and RNA polymerase binding, which could drastically alter gene expression. Significance: Our findings suggest that G4 formation in the RPGR gene could lead to genetic instability and affect the expression of RPGR, contributing to retinal dystrophy. Moreover, this study underscores the broader implications of G4 structures in other genetic disorders. Improved understanding of G4 structures could reveal novel therapeutic targets to combat genetic disorders, promoting the advancement of personalized medicine and precision health.

3.
Pharmacol Res ; 203: 107164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569981

RESUMO

The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.


Assuntos
Doenças Cardiovasculares , Proteínas Mitocondriais , Proteínas Musculares , Humanos , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos
4.
Chemistry ; 30(22): e202400285, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38386665

RESUMO

The main goal of this work was to elucidate the potential relevance of (radio)metal chelates of 99mTc and Re targeting G-quadruplex structures for the design of new tools for cancer theranostics. 99mTc provides the complexes with the ability to perform single-photon-emission computed tomography imaging studies, while the Re complexes should act as anticancer agents upon interaction with specific G4 DNA or RNA structures present in tumor tissues. Towards this goal, we have developed isostructural 99mTc(I) and Re(I) tricarbonyl complexes anchored by a pyrazolyl-diamine (Pz) chelator carrying a pendant pyridostatin (PDS) fragment as the G4-binding motif. The interaction of the PDF-Pz-Re (8) complex with different G4-forming oligonucleotides was studied by circular dichroism, fluorescence spectroscopy and FRET-melting assays. The results showed that the Re complex retained the ability to bind and stabilize G4-structures from different DNA or RNA sequences, namely those present on the SRC proto-oncogene and telomeric RNA (TERRA sequence). PDF-Pz-Re (8) showed low to moderate cytotoxicity in PC3 and MCF-7 cancer cell lines, as typically observed for G4-binders. Biodistribution studies of the congener PDF-Pz-99mTc (12) in normal mice showed that the complex undergoes a fast blood clearance with a predominant hepatobiliary excretion, pointing also for a high in vitro stability.


Assuntos
Aminoquinolinas , Quadruplex G , Neoplasias , Ácidos Picolínicos , Rênio , Camundongos , Animais , Tecnécio/química , Distribuição Tecidual , DNA/química , Quelantes/química , Tomografia Computadorizada de Emissão de Fóton Único , RNA , Rênio/química , Compostos Radiofarmacêuticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA