Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1287: 342117, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182390

RESUMO

BACKGROUND: Carbonyl-containing metabolites are a class of key intermediate in metabolism, which has potentials to be biomarkers. Since their poor ionization, derivatization reagents, such as dansylhydrazine, are usually used to improve the sensitivity and/or to facilitate quantification. However, most current carbonyl derivatization reagents only have two channels, one is isotopically labeled and the other one is non-labeled. To quantify more samples in a run and using data-independent acquisition (DIA) mode to get comprehensive and unbiased mass fragmentation, we proposed a fragment-controlled isotopic tag, called DiMe-FP-NHNH2 (FP) which has five channels: Δ0, Δ3, Δ6, Δ9, and Δ12, thus up to 5 samples can be analyzed in a run. RESULTS: The most important improvement is that the FP tag can produce multiple characteristic signals in tandem mass, diagnostic ions and neutral losses, which helps to selectively detect aldehydes/ketones for targeted and untargeted analysis. To exhibit all capabilities of the FP tag, we mimicked an untargeted metabolomics experiment, which comprises two steps. First, discovery step, using Data-Independent Analysis (SWATH-MS) and the labeling of two channels (Δ0 and Δ3), we picked out aldehyde/ketone from the pooled urine samples based on three characteristic signals, including isotope patterns, diagnostic ions, and neutral losses. Second, five-plex quantification, relative and absolute quantification were achieved in a single LC-MS analysis. Notably, because of different nominal masses, the FP tag can be used on any low or high resolution mass spectrometers. SIGNIFICANCE: The benefits and performance of the FP tag are demonstrated by the analysis of urine samples collected from patients from a prostate cancer study, in which more than a thousand features were found based on MS1 fingerprint, but only around 120 aldehyde/ketone candidates were confirmed with characteristic signals and nine of which were quantified showing significant differences from healthy and reference urine samples.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Metaboloma , Masculino , Humanos , Aldeídos , Cetonas , Íons
2.
Talanta ; 211: 120747, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32070597

RESUMO

SWATH data independent acquisition (DIA) mass spectrometry (MS) has become an established technique in MS-based 'omics' research and is increasingly used for the screening of xenobiotics (e.g. drugs, drug metabolites, pesticides, toxicants). Such xenobiotic screening methods are mostly applied for tentative compound identification purposes based on spectral library searching, while additional data processing techniques are scarcely used thereby leaving the full potential of these methods often unused. Here we present an analytical workflow for screening xenobiotics in human samples using SWATH/MS based on which we highlight opportunities for unlocking unused potential of these methods. The workflow was applied to urine samples from subjects who tested positive for THC and/or cocaine during roadside drug testing with the goal of confirming the positive roadside drug tests and identifying compounds that relate to illicit drug use (e.g. cutting agents, tobacco components) or associate with corresponding lifestyle choices (e.g. nasal decongestants, painkillers). These goals could only be reached by complementing spectral library search procedures with additional multivariate data analyses due to inherent incompleteness of the spectral library that was employed. Such incompleteness represents a common challenge for applications where limited or no metadata is available for study samples, for example in toxicology, doping control in sports, and workplace or roadside drug testing. It furthermore sets the stage for employing additional data processing techniques as is outlined in the presented work.


Assuntos
Cromatografia Líquida/métodos , Software , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem/métodos , Xenobióticos/urina , Humanos
3.
Anal Bioanal Chem ; 411(22): 5681-5690, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31201456

RESUMO

A hybrid SWATH/MS and HR-SRM/MS acquisition approach using multiple unit mass windows and 100 u precursor selection windows has been developed to interface with a chromatographic lipid class separation. The method allows for the simultaneous monitoring of sum compositions in MS1 and up to 48 lipids in MS2 per lipid class. A total of 240 lipid sum compositions from five phospholipid classes could be monitored in MS2 (HR-SRM/MS) while there was no limitation in the number of analytes in MS1 (HR-SIM/MS). On average, 92 lipid sum compositions and 75 lipid species could be quantified in human plasma samples. The robustness and precision of the workflow has been assessed using technical triplicates of the subject samples. Lipid identification was improved using a combined qualitative and quantitative data processing based on prediction instead of library search. Lipid class specific extracted ion currents of precursors and the corresponding molecular species fragments were extracted based on the information obtained from lipid building blocks and a combinatorial strategy. The SWATH/MS approach with the post-acquisition processing is not limited to the analyzed phospholipid classes and can be applied to other analytes and samples of interest. Graphical abstract.


Assuntos
Espectrometria de Massas/métodos , Fosfolipídeos/sangue , Calibragem , Cromatografia Líquida/métodos , Humanos , Fosfolipídeos/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA