Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Entropy (Basel) ; 26(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39056930

RESUMO

The metrological limits of thermometry operated in nonequilibrium dynamical regimes are analyzed. We consider a finite-dimensional quantum system, employed as a quantum thermometer, in contact with a thermal bath inducing Markovian thermalization dynamics. The quantum thermometer is initialized in a generic quantum state, possibly including quantum coherence with respect to the Hamiltonian basis. We prove that the precision of the thermometer, quantified by the Quantum Fisher Information, is enhanced by the quantum coherence in its initial state. We analytically show this in the specific case of qubit thermometers for which the maximization of the Quantum Fisher Information occurs at a finite time during the transient thermalization dynamics. Such a finite-time precision enhancement can be better than the precision that is achieved asymptotically.

2.
Entropy (Basel) ; 26(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39056954

RESUMO

Quantum computing is an exciting field that uses quantum principles, such as quantum superposition and entanglement, to tackle complex computational problems. Superconducting quantum circuits, based on Josephson junctions, is one of the most promising physical realizations to achieve the long-term goal of building fault-tolerant quantum computers. The past decade has witnessed the rapid development of this field, where many intermediate-scale multi-qubit experiments emerged to simulate nonequilibrium quantum many-body dynamics that are challenging for classical computers. Here, we review the basic concepts of superconducting quantum simulation and their recent experimental progress in exploring exotic nonequilibrium quantum phenomena emerging in strongly interacting many-body systems, e.g., many-body localization, quantum many-body scars, and discrete time crystals. We further discuss the prospects of quantum simulation experiments to truly solve open problems in nonequilibrium many-body systems.

3.
Annu Rev Phys Chem ; 75(1): 397-420, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941531

RESUMO

Recent theoretical and algorithmic developments have improved the accuracy with which path integral dynamics methods can include nuclear quantum effects in simulations of condensed-phase vibrational spectra. Such methods are now understood to be approximations to the delocalized classical Matsubara dynamics of smooth Feynman paths, which dominate the dynamics of systems such as liquid water at room temperature. Focusing mainly on simulations of liquid water and hexagonal ice, we explain how the recently developed quasicentroid molecular dynamics (QCMD), fast-QCMD, and temperature-elevated path integral coarse-graining simulations (Te PIGS) methods generate classical dynamics on potentials of mean force obtained by averaging over quantum thermal fluctuations. These new methods give very close agreement with one another, and the Te PIGS method has recently yielded excellent agreement with experimentally measured vibrational spectra for liquid water, ice, and the liquid-air interface. We also discuss the limitations of such methods.

4.
Nanomaterials (Basel) ; 14(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38869587

RESUMO

This paper investigates the performance of vacuum gate dielectric doping-free carbon nanotube/nanoribbon field-effect transistors (VGD-DL CNT/GNRFETs) via computational analysis employing a quantum simulation approach. The methodology integrates the self-consistent solution of the Poisson solver with the mode space non-equilibrium Green's function (NEGF) in the ballistic limit. Adopting the vacuum gate dielectric (VGD) paradigm ensures radiation-hardened functionality while avoiding radiation-induced trapped charge mechanisms, while the doping-free paradigm facilitates fabrication flexibility by avoiding the realization of a sharp doping gradient in the nanoscale regime. Electrostatic doping of the nanodevices is achieved via source and drain doping gates. The simulations encompass MOSFET and tunnel FET (TFET) modes. The numerical investigation comprehensively examines potential distribution, transfer characteristics, subthreshold swing, leakage current, on-state current, current ratio, and scaling capability. Results demonstrate the robustness of vacuum nanodevices for high-performance, radiation-hardened switching applications. Furthermore, a proposal for extrinsic enhancement via doping gate voltage adjustment to optimize band diagrams and improve switching performance at ultra-scaled regimes is successfully presented. These findings underscore the potential of vacuum gate dielectric carbon-based nanotransistors for ultrascaled, high-performance, energy-efficient, and radiation-immune nanoelectronics.

5.
Entropy (Basel) ; 26(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38785659

RESUMO

Quantum simulation qubit models of electronic Hamiltonians rely on specific transformations in order to take into account the fermionic permutation properties of electrons. These transformations (principally the Jordan-Wigner transformation (JWT) and the Bravyi-Kitaev transformation) correspond in a quantum circuit to the introduction of a supplementary circuit level. In order to include the fermionic properties in a more straightforward way in quantum computations, we propose to use methods issued from Geometric Algebra (GA), which, due to its commutation properties, are well adapted for fermionic systems. First, we apply the Witt basis method in GA to reformulate the JWT in this framework and use this formulation to express various quantum gates. We then rewrite the general one and two-electron Hamiltonian and use it for building a quantum simulation circuit for the Hydrogen molecule. Finally, the quantum Ising Hamiltonian, widely used in quantum simulation, is reformulated in this framework.

6.
Entropy (Basel) ; 26(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38785650

RESUMO

Long-range interactions are relevant for a large variety of quantum systems in quantum optics and condensed matter physics. In particular, the control of quantum-optical platforms promises to gain deep insights into quantum-critical properties induced by the long-range nature of interactions. From a theoretical perspective, long-range interactions are notoriously complicated to treat. Here, we give an overview of recent advancements to investigate quantum magnets with long-range interactions focusing on two techniques based on Monte Carlo integration. First, the method of perturbative continuous unitary transformations where classical Monte Carlo integration is applied within the embedding scheme of white graphs. This linked-cluster expansion allows extracting high-order series expansions of energies and observables in the thermodynamic limit. Second, stochastic series expansion quantum Monte Carlo integration enables calculations on large finite systems. Finite-size scaling can then be used to determine the physical properties of the infinite system. In recent years, both techniques have been applied successfully to one- and two-dimensional quantum magnets involving long-range Ising, XY, and Heisenberg interactions on various bipartite and non-bipartite lattices. Here, we summarise the obtained quantum-critical properties including critical exponents for all these systems in a coherent way. Further, we review how long-range interactions are used to study quantum phase transitions above the upper critical dimension and the scaling techniques to extract these quantum critical properties from the numerical calculations.

7.
Nano Lett ; 24(22): 6658-6664, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38770882

RESUMO

Synthetic quantum systems provide a pathway for exploring the physics of complex quantum matter in a programmable fashion. This approach becomes particularly advantageous when it comes to systems that are thermodynamically unfavorable. By sculpting the potential landscape of Cu(111) surfaces with carbon monoxide quantum corrals in a cryogenic scanning tunneling microscope, we created analogue simulators of planar organic molecules, including antiaromatic and non-Kekulé species that are generally reactive or unstable. Spectroscopic imaging of such synthetic molecules reveals close replications of molecular orbitals obtained from ab initio calculations of the organic molecules. We further illustrate the quantitative nature of such analogue simulators by faithful extraction of bond orders and global aromaticity indices, which are otherwise technically daunting using real molecules. Our approach therefore sets the stage for new research frontiers pertaining to the quantum physics and chemistry of designer nanostructures.

8.
Adv Sci (Weinh) ; 11(21): e2400672, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38605674

RESUMO

Artificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many-body effects, and phenomena arising from non-trivial topology. Exciton-polaritons, bosonic part-light and part-matter quasiparticles, combine pronounced nonlinearities with the possibility of on-chip implementation. In this context, organic semiconductors embedded in microcavities have proven to be versatile candidates to study nonlinear many-body physics and bosonic condensation, and in contrast to most inorganic systems, they allow the use at ambient conditions since they host ultra-stable Frenkel excitons. A well-controlled, high-quality optical lattice is implemented that accommodates light-matter quasiparticles. The realized polariton graphene presents with excellent cavity quality factors, showing distinct signatures of Dirac cone and flatband dispersions as well as polariton lasing at room temperature. This is realized by filling coupled dielectric microcavities with the fluorescent protein mCherry. The emergence of a coherent polariton condensate at ambient conditions are demonstrated, taking advantage of coupling conditions as precise and controllable as in state-of-the-art inorganic semiconductor-based systems, without the limitations of e.g. lattice matching in epitaxial growth. This progress allows straightforward extension to more complex systems, such as the study of topological phenomena in 2D lattices including topological lasers and non-Hermitian optics.

9.
Sci Bull (Beijing) ; 69(6): 747-755, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38331706

RESUMO

The realization of spin-orbit-coupled ultracold gases has driven a wide range of research and is typically based on the rotating wave approximation (RWA). By neglecting the counter-rotating terms, RWA characterizes a single near-resonant spin-orbit (SO) coupling in a two-level system. Here, we propose and experimentally realize a new scheme for achieving a pair of two-dimensional (2D) SO couplings for ultracold fermions beyond RWA. This work not only realizes the first anomalous Floquet topological Fermi gas beyond RWA, but also significantly improves the lifetime of the 2D-SO-coupled Fermi gas. Based on pump-probe quench measurements, we observe a deterministic phase relation between two sets of SO couplings, which is characteristic of our beyond-RWA scheme and enables the two SO couplings to be simultaneously tuned to the optimum 2D configurations. We observe intriguing band topology by measuring two-ring band-inversion surfaces, quantitatively consistent with a Floquet topological Fermi gas in the regime of high Chern numbers. Our study can open an avenue to explore exotic SO physics and anomalous topological states based on long-lived SO-coupled ultracold fermions.

10.
Rep Prog Phys ; 87(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38314645

RESUMO

Molecular nanomagnets (MNMs), molecules containing interacting spins, have been a playground for quantum mechanics. They are characterized by many accessible low-energy levels that can be exploited to store and process quantum information. This naturally opens the possibility of using them as qudits, thus enlarging the tools of quantum logic with respect to qubit-based architectures. These additional degrees of freedom recently prompted the proposal for encoding qubits with embedded quantum error correction (QEC) in single molecules. QEC is the holy grail of quantum computing and this qudit approach could circumvent the large overhead of physical qubits typical of standard multi-qubit codes. Another important strength of the molecular approach is the extremely high degree of control achieved in preparing complex supramolecular structures where individual qudits are linked preserving their individual properties and coherence. This is particularly relevant for building quantum simulators, controllable systems able to mimic the dynamics of other quantum objects. The use of MNMs for quantum information processing is a rapidly evolving field which still requires to be fully experimentally explored. The key issues to be settled are related to scaling up the number of qudits/qubits and their individual addressing. Several promising possibilities are being intensively explored, ranging from the use of single-molecule transistors or superconducting devices to optical readout techniques. Moreover, new tools from chemistry could be also at hand, like the chiral-induced spin selectivity. In this paper, we will review the present status of this interdisciplinary research field, discuss the open challenges and envisioned solution paths which could finally unleash the very large potential of molecular spins for quantum technologies.

11.
Proc Natl Acad Sci U S A ; 121(6): e2309627121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38294940

RESUMO

We present an accreditation protocol for analogue, i.e., continuous-time, quantum simulators. For a given simulation task, it provides an upper bound on the variation distance between the probability distributions at the output of an erroneous and error-free analogue quantum simulator. As its overheads are independent of the size and nature of the simulation, the protocol is ready for immediate usage and practical for the long term. It builds on the recent theoretical advances of strongly universal Hamiltonians and quantum accreditation as well as experimental progress toward the realization of programmable hybrid analogue-digital quantum simulators.

12.
Nanomaterials (Basel) ; 14(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276738

RESUMO

In this paper, a new junctionless graphene nanoribbon tunnel field-effect transistor (JLGNR TFET) is proposed as a multi-gas nanosensor. The nanosensor has been computationally assessed using a quantum simulation based on the self-consistent solutions of the mode space non-equilibrium Green's function (NEGF) formalism coupled with the Poisson's equation considering ballistic transport conditions. The proposed multi-gas nanosensor is endowed with two top gates ensuring both reservoirs' doping and multi-gas sensing. The investigations have included the IDS-VGS transfer characteristics, the gas-induced electrostatic modulations, subthreshold swing, and sensitivity. The order of change in drain current has been considered as a sensitivity metric. The underlying physics of the proposed JLGNR TFET-based multi-gas nanosensor has also been studied through the analysis of the band diagrams behavior and the energy-position-resolved current spectrum. It has been found that the gas-induced work function modulation of the source (drain) gate affects the n-type (p-type) conduction branch by modulating the band-to-band tunneling (BTBT) while the p-type (n-type) conduction branch still unaffected forming a kind of high selectivity from operating regime point of view. The high sensitivity has been recorded in subthermionic subthreshold swing (SS < 60 mV/dec) regime considering small gas-induced gate work function modulation. In addition, advanced simulations have been performed for the detection of two different types of gases separately and simultaneously, where high-performance has been recorded in terms of sensitivity, selectivity, and electrical behavior. The proposed detection approach, which is viable, innovative, simple, and efficient, can be applied using other types of junctionless tunneling field-effect transistors with emerging channel nanomaterials such as the transition metal dichalcogenides materials. The proposed JLGNRTFET-based multi-gas nanosensor is not limited to two specific gases but can also detect other gases by employing appropriate gate materials in terms of selectivity.

13.
Heliyon ; 10(1): e23449, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192828

RESUMO

The area of trapping the atoms or molecules using light has advanced tremendously in the last few decades. In contrast, the idea of controlling (not only trapping) the movement of atomic-sized particles using matter waves is a completely new emerging area of particle manipulation. Though a single previous report has suggested the pulling of atoms based on matter-wave tractor beams, an attempt is yet to be made to produce a lateral force using this technique. This article demonstrates an asymmetric setup that engenders reversible lateral force on an atom due to the interaction energy of the matter wave in the presence of a metal surface. Several full-wave simulations and analytical calculations were performed on a particular set-up of Xenon scatterers placed near a Copper surface, with two counter-propagating plane matter waves of Helium impinging in the direction parallel to the surface. By solving the time-independent Schrödinger equation and using the solution, quantum mechanical stress tensor formalism is applied to compute the force acting on the particle. The simulation results are in excellent agreement with the analytical calculations. The results for the adsorbed scatterer case find this technique to be an efficient cleaning procedure similar to electron-stimulated desorption for futuristic applications.

14.
Nat Phys ; 19(11): 1630-1635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970534

RESUMO

Arrays of Josephson junctions are governed by a competition between superconductivity and repulsive Coulomb interactions, and are expected to exhibit diverging low-temperature resistance when interactions exceed a critical level. Here we report a study of the transport and microwave response of Josephson arrays with interactions exceeding this level. Contrary to expectations, we observe that the array resistance drops dramatically as the temperature is decreased-reminiscent of superconducting behaviour-and then saturates at low temperature. Applying a magnetic field, we eventually observe a transition to a highly resistive regime. These observations can be understood within a theoretical picture that accounts for the effect of thermal fluctuations on the insulating phase. On the basis of the agreement between experiment and theory, we suggest that apparent superconductivity in our Josephson arrays arises from melting the zero-temperature insulator.

15.
Entropy (Basel) ; 25(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37998215

RESUMO

Originating from the Hamiltonian of a single qubit system, the phenomenon of the avoided level crossing is ubiquitous in multiple branches of physics, including the Landau-Zener transition in atomic, molecular, and optical physics, the band structure of condensed matter physics and the dispersion relation of relativistic quantum physics. We revisit this fundamental phenomenon in the simple example of a spinless relativistic quantum particle traveling in (1+1)-dimensional space-time and establish its relation to a spin-1/2 system evolving under a PT-symmetric Hamiltonian. This relation allows us to simulate 1-dimensional eigenvalue problems with a single qubit. Generalizing this relation to the eigenenergy problem of a bulk system with N spatial dimensions reveals that its eigenvalue problem can be mapped onto the time evolution of the edge state with (N-1) spatial dimensions governed by a non-Hermitian Hamiltonian. In other words, the bulk eigenenergy state is encoded in the edge state as a hologram, which can be decoded by the propagation of the edge state in the temporal dimension. We argue that the evolution will be PT-symmetric as long as the bulk system admits parity symmetry. Our work finds the application of PT-symmetric and non-Hermitian physics in quantum simulation and provides insights into the fundamental symmetries.

16.
Nano Lett ; 23(22): 10617-10624, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37948635

RESUMO

The development of quantum simulators, artificial platforms where the predictions of many-body theories of correlated quantum materials can be tested in a controllable and tunable way, is one of the main challenges of condensed matter physics. Here we introduce artificial lattices made of lead halide perovskite nanocubes as a new platform to simulate and investigate the physics of correlated quantum materials. We demonstrate that optical injection of quantum confined excitons in this system realizes the two main features that ubiquitously pervade the phase diagram of many quantum materials: collective phenomena, in which long-range orders emerge from incoherent fluctuations, and the excitonic Mott transition, which has one-to-one correspondence with the insulator-to-metal transition described by the repulsive Hubbard model in a magnetic field. Our results demonstrate that time-resolved experiments provide a quantum simulator that is able to span a parameter range relevant for a broad class of phenomena, such as superconductivity and charge-density waves.

17.
Mol Biotechnol ; 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37717248

RESUMO

The review article presents the recent progress in quantum computing and simulation within the field of biological sciences. The article is designed mainly into two portions: quantum computing and quantum simulation. In the first part, significant aspects of quantum computing was illustrated, such as quantum hardware, quantum RAM and big data, modern quantum processors, qubit, superposition effect in quantum computation, quantum interference, quantum entanglement, and quantum logic gates. Simultaneously, in the second part, vital features of the quantum simulation was illustrated, such as the quantum simulator, algorithms used in quantum simulations, and the use of quantum simulation in biological science. Finally, the review provides exceptional views to future researchers about different aspects of quantum simulation in biological science.

18.
Entropy (Basel) ; 25(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37628268

RESUMO

The traveling salesman problem (TSP) is one of the most often-used NP-hard problems in computer science to study the effectiveness of computing models and hardware platforms. In this regard, it is also heavily used as a vehicle to study the feasibility of the quantum computing paradigm for this class of problems. In this paper, we tackle the TSP using the quantum approximate optimization algorithm (QAOA) approach by formulating it as an optimization problem. By adopting an improved qubit encoding strategy and a layer-wise learning optimization protocol, we present numerical results obtained from the gate-based digital quantum simulator, specifically targeting TSP instances with 3, 4, and 5 cities. We focus on the evaluations of three distinctive QAOA mixer designs, considering their performances in terms of numerical accuracy and optimization cost. Notably, we find that a well-balanced QAOA mixer design exhibits more promising potential for gate-based simulators and realistic quantum devices in the long run, an observation further supported by our noise model simulations. Furthermore, we investigate the sensitivity of the simulations to the TSP graph. Overall, our simulation results show that the digital quantum simulation of problem-inspired ansatz is a successful candidate for finding optimal TSP solutions.

19.
Nat Phys ; 19(8): 1128-1134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575364

RESUMO

All-to-all interacting, disordered quantum many-body models have a wide range of applications across disciplines, from spin glasses in condensed-matter physics over holographic duality in high-energy physics to annealing algorithms in quantum computing. Typically, these models are abstractions that do not find unambiguous physical realizations in nature. Here we realize an all-to-all interacting, disordered spin system by subjecting an atomic cloud in a cavity to a controllable light shift. Adjusting the detuning between atom resonance and cavity mode, we can tune between disordered versions of a central-mode model and a Lipkin-Meshkov-Glick model. By spectroscopically probing the low-energy excitations of the system, we explore the competition of interactions with disorder across a broad parameter range. We show how disorder in the central-mode model breaks the strong collective coupling, making the dark-state manifold cross over to a random distribution of weakly mixed light-matter, 'grey', states. In the Lipkin-Meshkov-Glick model, the ferromagnetic finite-sized ground state evolves towards a paramagnet as disorder is increased. In that regime, semi-localized eigenstates emerge, as we observe by extracting bounds on the participation ratio. These results present substantial steps towards freely programmable cavity-mediated interactions for the design of arbitrary spin Hamiltonians.

20.
Nano Lett ; 23(17): 7921-7926, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37585490

RESUMO

Moiré superlattices of twisted van der Waals heterostructures provide a promising and tunable platform for simulating correlated two-dimensional physical models. In twisted bilayer transition-metal dichalcogenides with twist angles close to 0°, the Γ and K valley moiré bands are described by the honeycomb and the triangular effective lattice models, respectively, with distinct physics. Using large-scale first-principles calculations, we show that in-plane biaxial strain and out-of-plane pressure provide effective knobs for switching the moiré lattice models that emerged at the band edges in twisted bilayer WSe2 by shifting the energy positions of the Γ and K valley minibands. The shifting mechanism originates from the differences in the orbital characters of the Γ and K valley states and their responses to strain and pressure. The critical strain and pressure for switching the Γ/K valleys are 2.11% and 2.175 GPa, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA