Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
BMC Plant Biol ; 24(1): 515, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851681

RESUMO

BACKGROUND: Plant-parasitic root-knot nematode (Meloidogyne incognita) causes global yield loss in agri- and horticultural crops. Nematode management options rely on chemical method. However, only a handful of nematicides are commercially available. Resistance breeding efforts are not sustainable because R gene sources are limited and nematodes have developed resistance-breaking populations against the commercially available Mi-1.2 gene-expressing tomatoes. RNAi crops that manage nematode infection are yet to be commercialized because of the regulatory hurdles associated with transgenic crops. The deployment of the CRISPR/Cas9 system to improve nematode tolerance (by knocking out the susceptibility factors) in plants has emerged as a feasible alternative lately. RESULTS: In the present study, a M. incognita-responsive susceptibility (S) gene, amino acid permease (AAP6), was characterized from the model plant Arabidodpsis thaliana by generating the AtAAP6 overexpression line, followed by performing the GUS reporter assay by fusing the promoter of AtAAP6 with the ß-glucuronidase (GUS) gene. Upon challenge inoculation with M. incognita, overexpression lines supported greater nematode multiplication, and AtAAP6 expression was inducible to the early stage of nematode infection. Next, using CRISPR/Cas9, AtAAP6 was selectively knocked out without incurring any growth penalty in the host plant. The 'Cas9-free' homozygous T3 line was challenge inoculated with M. incognita, and CRISPR-edited A. thaliana plants exhibited considerably reduced susceptibility to nematode infection compared to the non-edited plants. Additionally, host defense response genes were unaltered between edited and non-edited plants, implicating the direct role of AtAAP6 towards nematode susceptibility. CONCLUSION: The present findings enrich the existing literature on CRISPR/Cas9 research in plant-nematode interactions, which is quite limited currently while compared with the other plant-pathogen interaction systems.


Assuntos
Arabidopsis , Sistemas CRISPR-Cas , Doenças das Plantas , Tylenchoidea , Animais , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Suscetibilidade a Doenças , Técnicas de Inativação de Genes , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Tylenchoidea/fisiologia
2.
Plant Pathol J ; 40(3): 329-335, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835304

RESUMO

Phytophthora root and stem rot (PRR), caused by Phytophthora sojae, can occur at any growth stage under poorly drained and humid conditions. The expansion of soybean cultivation in South Korean paddy fields has increased the frequency of PRR outbreaks. This study aimed to identify four P. sojae isolates newly collected from domestic fields and evaluate race-specific resistance using the hypocotyl inoculation technique. The four isolates exhibited various pathotypes, with GJ3053 exhibiting the highest virulence complexity. Two isolates, GJ3053 and AD3617, were screened from 205 soybeans, and 182 and 190 genotypes (88.8 and 92.7%, respectively) were susceptible to each isolate. Among these accessions, five genotypes resistant to both isolates were selected. These promising genotypes are candidates for the development of resistant soybean cultivars that can effectively control PRR through gene stacking.

3.
Trends Plant Sci ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38811244

RESUMO

Genetic resistance to plant diseases is essential for global food security. Significant progress has been achieved for plant disease-resistance (R) genes comprising nucleotide-binding domain, leucine-rich repeat-containing receptors (NLRs), and membrane-localized receptor-like kinases or proteins (RLKs/RLPs), which we refer to as typical R genes. However, there is a knowledge gap in how non-receptor-type or atypical R genes contribute to plant immunity. Here, we summarize resources and technologies facilitating the study of atypical R genes, examine diverse atypical R proteins for broad-spectrum resistance, and outline potential approaches for trans-crop applications of atypical R genes. Studies of atypical R genes are important for a holistic understanding of plant immunity and the development of novel strategies in disease control and crop improvement.

4.
Epigenetics ; 19(1): 2352683, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38723244

RESUMO

Some benign and malignant breast tumours are similar in pathological morphology, which are difficult to be distinguished in clinical diagnosis. In this study, we intended to explore novel biomarkers for differential diagnosis of benign and malignant breast tumours. Methylation EPIC 850K beadchip and RNA-sequencing were used to analyse 29 tissue samples from patients with early-stage breast cancer (BC) and benign breast tumours for differently methylated and expressed genes. The altered methylation of IL21R was semi-quantitatively validated in an independent study with 566 tissue samples (279 BC vs. 287 benign breast tumours) using mass spectrometry. Binary logistic regression analysis was performed to evaluate the association between IL21R methylation and BC. BC-associated IL21R hypomethylation and overexpression were identified in the discovery round. In the validation round, BC patients presented significant IL21R hypomethylation compared to women with benign breast tumours (ORs ≥1.29 per-10% methylation, p-values ≤ 5.69E-14), and this hypomethylation was even enhanced in BC patients with ER-negative and PR-negative tumours as well as with triple-negative tumours. The methylation of IL21R showed efficient discriminatory power to distinguish benign breast tumours from BC (area under curve (AUC) = 0.88), and especially from ER-negative BC (AUC = 0.95), PR-negative BC (AUC = 0.93) and triple-negative BC (AUC = 0.96). We disclosed significant IL21R hypomethylation in patients with BC compared to women with benign breast tumours, and revealed the somatic change of DNA methylation could be a potential biomarker for molecular pathology of BC.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Metilação de DNA , Feminino , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico , Diagnóstico Diferencial , Subunidade alfa de Receptor de Interleucina-21 , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo
5.
Front Immunol ; 15: 1358960, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655256

RESUMO

Introduction: Early detection of the virus in the environment or in infected pigs is a critical step to stop African swine fever virus (ASFV) transmission. The p22 protein encoded by ASFV KP177R gene has been shown to have no effect on viral replication and virulence and can serve as a molecular marker for distinguishing field virus strains from future candidate KP177R deletion vaccine strains. Methods: This study established an ASFV detection assay specific for the highly conserved ASFV KP177R gene based on recombinase polymerase amplification (RPA) and the CRISPR/Cas12 reaction system. The KP177R gene served as the initial template for the RPA reaction to generate amplicons, which were recognized by guide RNA to activate the trans-cleavage activity of Cas12a protein, thereby leading to non-specific cleavage of single-stranded DNA as well as corresponding color reaction. The viral detection in this assay could be determined by visualizing the results of fluorescence or lateral flow dipstick (LFD) biotin blotting for color development, and was respectively referred to as fluorescein-labeled RPA-CRISPR/Cas12a and biotin-labeled LFD RPA-CRISPR/Cas12a. The clinical samples were simultaneously subjected to the aforementioned assay, while real-time quantitative PCR (RT-qPCR) was employed as a control for determining the diagnostic concordance rate between both assays. Results: The results showed that fluorescein- and biotin-labeled LFD KP177R RPA-CRISPR/Cas12a assays specifically detected ASFV, did not cross-react with other swine pathogens including PCV2, PEDV, PDCoV, and PRV. The detection assay established in this study had a limit of detection (LOD) of 6.8 copies/µL, and both assays were completed in 30 min. The KP177R RPA-CRISPR/Cas12a assay demonstrated a diagnostic coincidence rate of 100% and a kappa value of 1.000 (p < 0.001), with six out of ten clinical samples testing positive for ASFV using both KP177R RPA-CRISPR/Cas12a and RT-qPCR, while four samples tested negative in both assays. Discussion: The rapid, sensitive and visual detection assay for ASFV developed in this study is suitable for field application in swine farms, particularly for future differentiation of field virus strains from candidate KP177R gene-deleted ASFV vaccines, which may be a valuable screening tool for ASF eradication.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteínas de Bactérias , Sistemas CRISPR-Cas , Vírus da Febre Suína Africana/genética , Animais , Suínos , Febre Suína Africana/virologia , Febre Suína Africana/diagnóstico , Proteínas Associadas a CRISPR/genética , Recombinases/genética , Recombinases/metabolismo , Proteínas Virais/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Endodesoxirribonucleases/genética , Sensibilidade e Especificidade
6.
Plant Cell Rep ; 43(4): 105, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522062

RESUMO

KEY MESSAGE: A recently reported Pijx gene interacts and promotes the ATPb degradation through 26 proteasomal pathways activate OsRbohC mediated ROS burst, leading to broad-spectrum rice blast resistance in seedling and panicle.


Assuntos
Plântula , Plântula/genética , Proteólise
7.
Plant Direct ; 8(2): e565, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38389929

RESUMO

The head-to-head oriented pair of melon resistance genes, Fom-1 and Prv, control resistance to Fusarium oxysporum races 0 and 2 and papaya ringspot virus (PRSV), respectively. They encode, via several RNA splice variants, TIR-NBS-LRR proteins, and Prv has a C-terminal extra domain with a second NBS homologous sequence. In other systems, paired R-proteins were shown to operate by "labor division," with one protein having an extra integrated domain that directly binds the pathogen's Avr factor, and the second protein executing the defense response. We report that the expression of the two genes in two pairs of near-isogenic lines was higher in the resistant isoline and inducible by F. oxysporum race 2 but not by PRSV. The intergenic DNA region separating the coding sequences of the two genes acted as a bi-directional promoter and drove GUS expression in transgenic melon roots and transgenic tobacco plants. Expression of both genes was strong in melon root tips, around the root vascular cylinder, and the phloem and xylem parenchyma of tobacco stems and petioles. The pattern of GUS expression suggests coordinated expression of the two genes. In agreement with the above model, Prv's extra domain was shown to interact with the cylindrical inclusion protein of PRSV both in yeast cells and in planta.

8.
Mol Plant Microbe Interact ; 37(2): 143-154, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381127

RESUMO

Plant disease resistance (R) gene-mediated effector-triggered immunity (ETI) is usually associated with hypersensitive response (HR) and provides robust and race-specific disease resistance against pathogenic infection. The activation of ETI and HR in plants is strictly regulated, and improper activation will lead to cell death. Xa27 is an executor-type R gene in rice induced by the TAL effector AvrXa27 and confers disease resistance to Xanthomonas oryzae pv. oryzae (Xoo). Here we reported the characterization of a transgenic line with lesion mimic phenotype, designated as Spotted leaf and resistance 1 (Slr1), which was derived from rice transformation with a genomic subclone located 5,125 bp downstream of the Xa27 gene. Slr1 develops spontaneous lesions on its leaves caused by cell death and confers disease resistance to both Xoo and Xanthomonas oryzae pv. oryzicola. Further investigation revealed that the Slr1 phenotype resulted from the ectopic expression of an Xa27 paralog gene, designated as Xa27B, in the inserted DNA fragment at the Slr1 locus driven by a truncated CaMV35Sx2 promoter in reverse orientation. Disease evaluation of IRBB27, IR24, and Xa27B mutants with Xoo strains expressing dTALE-Xa27B confirmed that Xa27B is a functional executor-type R gene. The functional XA27B-GFP protein was localized to the endoplasmic reticulum and apoplast. The identification of Xa27B as a new functional executor-type R gene provides additional genetic resources for studying the mechanism of executor-type R protein-mediated ETI and developing enhanced and broad-spectrum disease resistance to Xoo through promoter engineering. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Oryza , Xanthomonas , Resistência à Doença/genética , Oryza/genética , Expressão Ectópica do Gene , Genes vpr , Xanthomonas/genética , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas
9.
Mol Syndromol ; 15(1): 77-82, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38357256

RESUMO

Introduction: Familial glucocorticoid deficiency (FGD) is a rare autosomal recessive disease resulting from isolated glucocorticoid deficiency or unresponsiveness to adrenocorticotropic hormone. Patients with FGD usually present in infancy or early childhood with hyperpigmentation, recurrent infections, and hypoglycemia. The salt-wasting crisis is rare. Case Presentation: A term female neonate was admitted to the neonatal intensive care unit due to respiratory distress. On physical examination, she had generalized hyperpigmentation. Initial laboratory work-up yielded normal serum electrolytes and glucose. Hyponatremia and hyperkalemia emerged on follow-up. The patient was diagnosed as having primary adrenal insufficiency (PAI) with elevated plasma adrenocorticotropin hormone and reduced cortisol levels and hydrocortisone. We started on oral sodium (5 mEq/kg/day) and fludrocortisone (FC) (0.2 mg/day) treatment to the patient. Ultrasonography revealed hypoplastic adrenal glands. Molecular genetic analysis revealed a previously reported homozygous pathogenic variant NM_000529.2: c.560delT (p.V187fs*29) in the MC2R gene. FC dose was tapered to 0.05 mg/day on the third month of life and was stopped at tenth months of age with maintenance of normal serum electrolytes and clinical findings. Conclusion: FGD due to MC2R gene mutation may rarely present with a salt-wasting crisis in the neonatal period. Identifying the causative gene with the pathogenic variant in PAI may serve to individualize a treatment plan.

10.
J Bacteriol ; 206(2): e0043023, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38240569

RESUMO

Quorum sensing (QS) is an elaborate regulatory mechanism associated with virulence and bacterial adaptation to the changing environment. QS is widespread in Proteobacteria and acts primarily through N-acylhomoserine lactone (AHL) signals. At the core of the AHL-driven QS systems are the AHL synthase gene (luxI family) and its cognate transcriptional regulator gene (luxR family). Several QS systems display one or more genes intervening between the luxI and luxR, in which gene arrangements are notably different due to the relative position and the transcriptional orientation between the essential luxI/R and the genes of location correlation. These adjacent genes may exert a regulatory impact on the primary QS genes or contribute toward an extension of QS regulatory control. In this review, we describe the organization of AHL-driven QS genes based on previous research and specific genome databases and provide new insights into these atypical QS gene arrangements.


Assuntos
Proteínas Repressoras , Transativadores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo , Lactonas , Percepção de Quorum/genética , Regulação Bacteriana da Expressão Gênica , Acil-Butirolactonas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
11.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256205

RESUMO

Powdery mildew caused by Podosphaera xanthii is a serious fungal disease which causes severe damage to melon production. Unlike with chemical fungicides, managing this disease with resistance varieties is cost effective and ecofriendly. But, the occurrence of new races and a breakdown of the existing resistance genes poses a great threat. Therefore, this study aimed to identify the resistance locus responsible for conferring resistance against P. xanthii race KN2 in melon line IML107. A bi-parental F2 population was used in this study to uncover the resistance against race KN2. Genetic analysis revealed the resistance to be monogenic and controlled by a single dominant gene in IML107. Initial marker analysis revealed the position of the gene to be located on chromosome 2 where many of the resistance gene against P. xanthii have been previously reported. Availability of the whole genome of melon and its R gene analysis facilitated the identification of a F-box type Leucine Rich Repeats (LRR) to be accountable for the resistance against race KN2 in IML107. The molecular marker developed in this study can be used for marker assisted breeding programs.


Assuntos
Ascomicetos , Melhoramento Vegetal , Genes Dominantes , Erysiphe
12.
Pest Manag Sci ; 80(5): 2435-2442, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36869585

RESUMO

BACKGROUND: The phoma stem canker pathogen Leptosphaeria maculans is one of the most widespread and devastating pathogens of oilseed rape (Brassica napus) in the world. Pathogen colonization is stopped by an interaction of a pathogen Avr effector gene with the corresponding host resistance (R) gene. While molecular mechanisms of this gene-for-gene interaction are being elucidated, understanding of effector function remains limited. The purpose of this study was to determine the action of L. maculans effector (AvrLm) genes on incompatible interactions triggered by B. napus noncorresponding R (Rlm) genes. Specifically, effects of AvrLm4-7 and AvrLm1 on Rlm7-mediated resistance were studied. RESULTS: Although there was no major effect on symptom expression, induction of defence genes (e.g. PR1) and accumulation of reactive oxygen species was reduced when B. napus cv. Excel carrying Rlm7 was challenged with a L. maculans isolate containing AvrLm1 and a point mutation in AvrLm4-7 (AvrLm1, avrLm4-AvrLm7) compared to an isolate lacking AvrLm1 (avrLm1, AvrLm4-AvrLm7). AvrLm7-containing isolates, isogenic for presence or absence of AvrLm1, elicited similar symptoms on hosts with or without Rlm7, confirming results obtained with more genetically diverse isolates. CONCLUSION: Careful phenotypic examination of isogenic L. maculans isolates and B. napus introgression lines demonstrated a lack of effect of AvrLm1 on Rlm7-mediated resistance despite an apparent alteration of the Rlm7-dependent defence response using more diverse fungal isolates with differences in AvrLm1 and AvrLm4. As deployment of Rlm7 resistance in crop cultivars increases, other effectors need to be monitored because they may alter the predominance of AvrLm7. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ascomicetos , Brassica napus , Ascomicetos/genética , Ascomicetos/metabolismo , Leptosphaeria , Mutação Puntual , Fenótipo , Brassica napus/genética , Doenças das Plantas/microbiologia
13.
Plant Biotechnol J ; 22(3): 602-616, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37870975

RESUMO

Ralstonia solanacearum, a species complex of bacterial plant pathogens that causes bacterial wilt, comprises four phylotypes that evolved when a founder population was split during the continental drift ~180 million years ago. Each phylotype contains strains with RipTAL proteins structurally related to transcription activator-like (TAL) effectors from the bacterial pathogen Xanthomonas. RipTALs have evolved in geographically separated phylotypes and therefore differ in sequence and potentially functionality. Earlier work has shown that phylotype I RipTAL Brg11 targets a 17-nucleotide effector binding element (EBE) and transcriptionally activates the downstream arginine decarboxylase (ADC) gene. The predicted DNA binding preferences of Brg11 and RipTALs from other phylotypes are similar, suggesting that most, if not all, RipTALs target the Brg11-EBE motif and activate downstream ADC genes. Here we show that not only phylotype I RipTAL Brg11 but also RipTALs from other phylotypes activate host genes when preceded by the Brg11-EBE motif. Furthermore, we show that Brg11 and RipTALs from other phylotypes induce the same quantitative changes of ADC-dependent plant metabolites, suggesting that most, if not all, RipTALs induce functionally equivalent changes in host cells. Finally, we report transgenic tobacco lines in which the RipTAL-binding motif Brg11-EBE mediates RipTAL-dependent transcription of the executor-type resistance (R) gene Bs4C from pepper, thereby conferring resistance to RipTAL-delivering R. solanacearum strains. Our results suggest that cell death-inducing executor-type R genes, preceded by the RipTAL-binding motif Brg11-EBE, could be used to genetically engineer broad-spectrum bacterial wilt resistance in crop plants without any apparent fitness penalty.


Assuntos
Ralstonia solanacearum , Ralstonia solanacearum/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
14.
Mol Plant Pathol ; 25(1): e13407, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009399

RESUMO

The major resistance gene BvCR4 recently bred into sugar beet hybrids provides a high level of resistance to Cercospora leaf spot caused by the fungal pathogen Cercospora beticola. The occurrence of pathogen strains that overcome BvCR4 was studied using field trials in Switzerland conducted under natural disease pressure. Virulence of a subset of these strains was evaluated in a field trial conducted under elevated artificial disease pressure. We created a new C. beticola reference genome and mapped whole genome sequences of 256 isolates collected in Switzerland and Germany. These were combined with virulence phenotypes to conduct three separate genome-wide association studies (GWAS) to identify candidate avirulence genes. We identified a locus associated with avirulence containing a putative avirulence effector gene named AvrCR4. All virulent isolates either lacked AvrCR4 or had nonsynonymous mutations within the gene. AvrCR4 was present in all 74 isolates from non-BvCR4 hybrids, whereas 33 of 89 isolates from BvCR4 hybrids carried a deletion. We also mapped genomic data from 190 publicly available US isolates to our new reference genome. The AvrCR4 deletion was found in only one of 95 unique isolates from non-BvCR4 hybrids in the United States. AvrCR4 presents a unique example of an avirulence effector in which virulent alleles have only recently emerged. Most likely these were selected out of standing genetic variation after deployment of BvCR4. Identification of AvrCR4 will enable real-time screening of C. beticola populations for the emergence and spread of virulent isolates.


Assuntos
Ascomicetos , Estudo de Associação Genômica Ampla , Ascomicetos/genética , Cercospora/genética , Mutação , Virulência/genética , Doenças das Plantas/microbiologia
15.
Plant J ; 118(1): 106-123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38111157

RESUMO

Sorghum anthracnose caused by the fungus Colletotrichum sublineola (Cs) is a damaging disease of the crop. Here, we describe the identification of ANTHRACNOSE RESISTANCE GENES (ARG4 and ARG5) encoding canonical nucleotide-binding leucine-rich repeat (NLR) receptors. ARG4 and ARG5 are dominant resistance genes identified in the sorghum lines SAP135 and P9830, respectively, that show broad-spectrum resistance to Cs. Independent genetic studies using populations generated by crossing SAP135 and P9830 with TAM428, fine mapping using molecular markers, comparative genomics and gene expression studies determined that ARG4 and ARG5 are resistance genes against Cs strains. Interestingly, ARG4 and ARG5 are both located within clusters of duplicate NLR genes at linked loci separated by ~1 Mb genomic region. SAP135 and P9830 each carry only one of the ARG genes while having the recessive allele at the second locus. Only two copies of the ARG5 candidate genes were present in the resistant P9830 line while five non-functional copies were identified in the susceptible line. The resistant parents and their recombinant inbred lines carrying either ARG4 or ARG5 are resistant to strains Csgl1 and Csgrg suggesting that these genes have overlapping specificities. The role of ARG4 and ARG5 in resistance was validated through sorghum lines carrying independent recessive alleles that show increased susceptibility. ARG4 and ARG5 are located within complex loci displaying interesting haplotype structures and copy number variation that may have resulted from duplication. Overall, the identification of anthracnose resistance genes with unique haplotype stucture provides a foundation for genetic studies and resistance breeding.


Assuntos
Colletotrichum , Sorghum , Haplótipos , Sorghum/genética , Variações do Número de Cópias de DNA , Melhoramento Vegetal , Genômica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Colletotrichum/fisiologia , Resistência à Doença/genética
16.
Planta ; 258(6): 103, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874380

RESUMO

MAIN CONCLUSION: As an important biotic stressor, plant-parasitic nematodes afflict global crop productivity. Deployment of CRISPR/Cas9 system that selectively knock out host susceptibility genes conferred improved nematode tolerance in crop plants. As an important biotic stressor, plant-parasitic nematodes cause a considerable yield decline in crop plants that eventually contributes to a negative impact on global food security. Being obligate plant parasites, the root-knot and cyst nematodes maintain an intricate and sophisticated relationship with their host plants by hijacking the host's physiological and metabolic pathways for their own benefit. Significant progress has been made toward developing RNAi-based transgenic crops that confer nematode resistance. However, the strategy of host-induced gene silencing that targets nematode effectors is likely to fail because the induced silencing of effectors (which interact with plant R genes) may lead to the development of nematode phenotypes that break resistance. Lately, the CRISPR/Cas9-based genome editing system has been deployed to achieve host resistance against bacteria, fungi, and viruses. In these studies, host susceptibility (S) genes were knocked out to achieve resistance via loss of susceptibility. As the S genes are recessively inherited in plants, induced mutations of the S genes are likely to be long-lasting and confer broad-spectrum resistance. A number of S genes contributing to plant susceptibility to nematodes have been identified in Arabidopsis thaliana, rice, tomato, cucumber, and soybean. A few of these S genes were targeted for CRISPR/Cas9-based knockout experiments to improve nematode tolerance in crop plants. Nevertheless, the CRISPR/Cas9 system was mostly utilized to interrogate the molecular basis of plant-nematode interactions rather than direct research toward achieving tolerance in crop plants. The current standalone article summarizes the progress made so far on CRISPR/Cas9 research in plant-nematode interactions.


Assuntos
Sistemas CRISPR-Cas , Nematoides , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes , Inativação Gênica , Produtos Agrícolas/genética
17.
Viruses ; 15(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37896777

RESUMO

Plant proteins with domains rich in leucine repeats play important roles in detecting pathogens and triggering defense reactions, both at the cellular surface for pattern-triggered immunity and in the cell to ensure effector-triggered immunity. As intracellular parasites, viruses are mostly detected intracellularly by proteins with a nucleotide binding site and leucine-rich repeats but receptor-like kinases with leucine-rich repeats, known to localize at the cell surface, have also been involved in response to viruses. In the present review we report on the progress that has been achieved in the last decade on the role of these leucine-rich proteins in antiviral immunity, with a special focus on our current understanding of the hypersensitive response.


Assuntos
Vírus de Plantas , Plantas , Leucina , Proteínas de Plantas/metabolismo , Proteínas de Transporte , Vírus de Plantas/metabolismo , Doenças das Plantas , Imunidade Vegetal
18.
Curr Diabetes Rev ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37855360

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a common complication of type 2 diabetes (T2D). Chronic inflammation and a combination of environmental and genetic factors are involved in the pathogenesis and development of DN. OBJECTIVE: This case-control study aimed to determine the relationship between rs7529229 and rs2228145 polymorphisms of the IL-6R gene with the incidence of nephropathy among T2D patients. METHODS: Fifty-six diabetic patients with nephropathy and 57 T2D patients without nephropathy were included based on inclusion criteria, along with 150 healthy individuals. METHODS: Fifty-six diabetic patients with nephropathy and 57 T2D patients without nephropathy were included based on inclusion criteria, along with 150 healthy individuals. RESULTS: The frequencies of AC and CC genotype distributions of the rs2228145 polymorphism in DN patients were significantly higher than in healthy individuals (24.1 and 9.3% versus 10.7 and 6.7%, respectively, P= 0.02). Moreover, the frequency of allele C was higher in DN patients compared to healthy controls (21.30% versus 12%, P=0.025). However, genotype distribution and allele frequencies of the rs7529229 IL-6R polymorphism in DN patients were not statistically significant in comparison with diabetic patients and healthy individuals (P> 0.05). CONCLUSION: The results showed that the allele and genotype distribution frequencies of rs2228145 IL-6R gene polymorphism in patients with DN were significantly higher than in healthy individuals. Therefore, the presence of this polymorphism may be involved in the development of diabetic nephropathy in this population.

19.
Plant Biotechnol J ; 21(10): 2019-2032, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37421233

RESUMO

Citrus bacterial canker (CBC), caused by Xanthomonas citri subsp. citri (Xcc), causes dramatic losses to the citrus industry worldwide. Transcription activator-like effectors (TALEs), which bind to effector binding elements (EBEs) in host promoters and activate transcription of downstream host genes, contribute significantly to Xcc virulence. The discovery of the biochemical context for the binding of TALEs to matching EBE motifs, an interaction commonly referred to as the TALE code, enabled the in silico prediction of EBEs for each TALE protein. Using the TALE code, we engineered a synthetic resistance (R) gene, called the Xcc-TALE-trap, in which 14 tandemly arranged EBEs, each capable of autonomously recognizing a particular Xcc TALE, drive the expression of Xanthomonas avrGf2, which encodes a bacterial effector that induces plant cell death. Analysis of a corresponding transgenic Duncan grapefruit showed that transcription of the cell death-inducing executor gene, avrGf2, was strictly TALE-dependent and could be activated by several different Xcc TALE proteins. Evaluation of Xcc strains from different continents showed that the Xcc-TALE-trap mediates resistance to this global panel of Xcc isolates. We also studied in planta-evolved TALEs (eTALEs) with novel DNA-binding domains and found that these eTALEs also activate the Xcc-TALE-trap, suggesting that the Xcc-TALE-trap is likely to confer durable resistance to Xcc. Finally, we show that the Xcc-TALE-trap confers resistance not only in laboratory infection assays but also in more agriculturally relevant field studies. In conclusion, transgenic plants containing the Xcc-TALE-trap offer a promising sustainable approach to control CBC.


Assuntos
Citrus , Xanthomonas , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Citrus/genética , Citrus/microbiologia , Xanthomonas/genética , Regiões Promotoras Genéticas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
20.
BMC Pulm Med ; 23(1): 265, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464360

RESUMO

BACKGROUND: Severe tuberculosis constitutes a significant menace to human safety and well-being, with a considerable mortality rate. The severity of tuberculosis can be impacted by genetic variations in host genes, particularly single nucleotide polymorphisms (SNPs). METHODS: A case‒control study was undertaken, encompassing a cohort of 1137 tuberculosis patients (558 with severe tuberculosis and 579 with mild tuberculosis), alongside 581 healthy controls within the age range of fifteen to forty-five years. Whole blood DNA was extracted from all participants, and three tag polymorphisms (rs1884444, rs7518660, rs7539625) of the IL23R gene were selectively identified and genotyped. RESULTS: No significant correlation was observed between the IL23R gene polymorphisms (rs1884444, rs7518660, and rs7539625) and tuberculosis. Upon comparing the tuberculosis group with the healthy control group, the mild tuberculosis group with the healthy control group, and the severe tuberculosis group with the healthy control group, the obtained P-values were> 0.05. However, in the comparison between severe tuberculosis and mild tuberculosis, the presence of rs1884444 G alleles exhibited a significantly increased risk of severe tuberculosis after adjusting for age and sex (ORa: 1.199, 95% CI: 1.009-1.424; Pa=0.039, respectively). In subgroup analysis, after accounting for confounding factors, including age and sex, rs1884444 G alleles continued to demonstrate a significantly heightened risk of severe tuberculosis. Nonetheless, the comparison between the multisystemic tuberculosis group and the mild tuberculosis group was no significant difference. Notably, rs1884444 of the IL23R gene exhibited a noteworthy association with the risk of severe tuberculosis in the comparison between severe tuberculosis and mild tuberculosis before and after adjusting for age and sex (ORa: 1.301, 95% CI: 1.030-1.643; Pa=0.027, respectively). Furthermore, the presence of the rs1884444 G allele exhibited a significantly increased risk of severe tuberculosis after adjusting for age and sex in the comparison between tuberculous meningitis and mild tuberculosis (ORa: 1.646, 95% CI: 1.100-2.461; Pa=0.015, respectively). CONCLUSIONS: The present study suggests that there is no significant association between IL23R gene polymorphism and tuberculosis susceptibility in the Chinese Han population. However, it does indicate a potential link between IL23R polymorphism and an increased risk of developing severe tuberculosis.


Assuntos
Polimorfismo de Nucleotídeo Único , Tuberculose , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Predisposição Genética para Doença , Estudos de Casos e Controles , População do Leste Asiático , Genótipo , Tuberculose/genética , Frequência do Gene , Receptores de Interleucina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA