Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.257
Filtrar
1.
Cell ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39303715

RESUMO

Identifying the properties of the rapid eye movement (REM) sleep circuitry and its relation to diseases has been challenging due to the neuronal heterogeneity of the brainstem. Here, we show in mice that neurons in the pontine sublaterodorsal tegmentum (SubLDT) that express corticotropin-releasing hormone-binding protein (Crhbp+ neurons) and project to the medulla promote REM sleep. Within the medullary area receiving projections from Crhbp+ neurons, neurons expressing nitric oxide synthase 1 (Nos1+ neurons) project to the SubLDT and promote REM sleep, suggesting a positively interacting loop between the pons and the medulla operating as a core REM sleep circuit. Nos1+ neurons also project to areas that control wide forebrain activity. Ablating Crhbp+ neurons reduces sleep and impairs REM sleep atonia. In Parkinson's disease patients with REM sleep behavior disorders, CRHBP-immunoreactive neurons are largely reduced and contain pathologic α-synuclein, providing insight into the mechanisms underlying the sleep deficits characterizing this disease.

2.
Viruses ; 16(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39339883

RESUMO

Amid the SARS-CoV-2 pandemic, concerns surfaced regarding the spread of the virus to wildlife. Switzerland lacked data concerning the exposure of free-ranging animals to SARS-CoV-2 during this period. This study aimed to investigate the potential exposure of Swiss free-ranging wildlife to SARS-CoV-2. From 2020 to 2023, opportunistically collected samples from 712 shot or found dead wild mustelids (64 European stone and pine martens, 13 European badgers, 10 European polecats), canids (449 red foxes, 41 gray wolves, one golden jackal) and felids (56 Eurasian lynx, 18 European wildcats), as well as from 45 captured animals (39 Eurasian lynx, 6 European wildcats) were tested. A multi-step serological approach detecting antibodies to the spike protein receptor binding domain (RBD) and N-terminal S1 subunit followed by surrogate virus neutralization (sVNT) and pseudotype-based virus neutralization assays against different SARS-CoV-2 variants was performed. Additionally, viral RNA loads were quantified in lung tissues and in oronasal, oropharyngeal, and rectal swabs by reverse transcription polymerase chain reactions (RT-qPCRs). Serologically, SARS-CoV-2 exposure was confirmed in 14 free-ranging Swiss red foxes (prevalence 3.1%, 95% CI: 1.9-5.2%), two Eurasian lynx (2.2%, 95% CI: 0.6-7.7%), and one European wildcat (4.2%, 95% CI: 0.2-20.2%). Two positive foxes exhibited neutralization activity against the BA.2 and BA.1 Omicron variants. No active infection (viral RNA) was detected in any animal tested. This is the first report of SARS-CoV-2 antibodies in free-ranging red foxes, Eurasian lynx, and European wildcats worldwide. It confirms the spread of SARS-CoV-2 to free-ranging wildlife in Switzerland but does not provide evidence of reservoir formation. Our results underscore the susceptibility of wildlife populations to SARS-CoV-2 and the importance of understanding diseases in a One Health Concept.


Assuntos
Animais Selvagens , Anticorpos Antivirais , COVID-19 , Reservatórios de Doenças , SARS-CoV-2 , Animais , Suíça/epidemiologia , Animais Selvagens/virologia , COVID-19/veterinária , COVID-19/epidemiologia , COVID-19/virologia , COVID-19/transmissão , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Reservatórios de Doenças/virologia , Reservatórios de Doenças/veterinária , Anticorpos Antivirais/sangue , Raposas/virologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Testes de Neutralização , Carga Viral , Humanos , Lynx/virologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-39297227

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants harboring mutations in the structural protein, especially in the receptor binding domain (RBD) of spike protein, have raised concern about potential immune escape. The spike protein of SARS-CoV-2 plays a vital role in infection and is an important target for neutralizing antibodies. The mutations that occur in the structural proteins, especially in the spike protein, lead to changes in the virus attributes of transmissibility, an increase in disease severity, a notable reduction in neutralizing antibodies generated and thus a decreased response to vaccines and therapy. The observed multiple mutations in the RBD of the spike protein showed immune escape because it increases the affinity of spike protein binding with the ACE-2 receptor of host cells and increases resistance to neutralizing antibodies. Cytotoxic T-cell responses are crucial in controlling SARS-CoV-2 infections from the infected tissues and clearing them from circulation. Cytotoxic T cells efficiently recognized the infected cells and killed them by releasing soluble mediator's perforin and granzymes. However, the overwhelming response of T cells and, subsequently, the overproduction of inflammatory mediators during severe infections with SARS-CoV-2 may lead to poor outcomes. This review article summarizes the impact of mutations in the spike protein of SARS-CoV-2, especially mutations of RBD, on immunogenicity, immune escape and vaccine-induced immunity, which could contribute to future studies focusing on vaccine design and immunotherapy.

4.
Biomedicines ; 12(9)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39335628

RESUMO

The safety of the mRNA and inactivated SARS-CoV-2 vaccine has been demonstrated for people living with HIV (PLHIV). However, vaccine studies in PLHIV are limited, and there is a gap in which vaccine type provides the best response in PLHIV. Thus, PLHIV may benefit from mRNA vaccine types compared to inactivated vaccines. This study aims to assess the immune responses to vaccination by measuring specific antibodies (IgG) targeting the receptor binding sites (RBDs) of the SARS-CoV-2 virus and the levels of IL-2 and IFN-γ in plasma. A total of 41 PLHIV who regularly take antiretroviral therapy (ART) over a period of six months, along with 31 individuals in a healthy control group (HC), were administered either two mRNA or inactivated vaccines. Data regarding demographics and clinical information were gathered from the medical records. An analysis was conducted on the neutralisation antibody IgG specific to RBD using the chemiluminescence microparticle assay (CMIA). The levels of IL-2 and IFN-γ were quantified using the Luminex assay method from plasma samples. Data were collected in the laboratory 28 days after each vaccination. After the first vaccination, the level of anti-SARS-CoV-2 RBD IgG was higher in PLHIV who received the mRNA vaccines than those who received inactivated vaccines (p = 0.006). The levels of mRNA in the PLHIV group showed a significant correlation with IL-2 and IFN-γ after the second vaccination (r = 0.51, p = 0.0035; r = 0.68, p = 0.002). The group of PLHIV who received the inactivated vaccine showed increased IL-2 and IFN-γ after the initial vaccination, compared to PLHIV who received the mRNA vaccine (p = 0.04; p = 0.08). Administering a two-dose vaccination is essential to increase the levels of neutralising antibodies significantly (p = 0.013) in PLHIV who have received inactivated vaccines; further study is needed to make this a recommendation. The responses observed after vaccination in PLHIV were not affected by their CD4 cell counts. PLHIV showed higher levels of SARS-CoV-2 IgG and increased IL-2 and IFN-γ levels. Our study encourages SARS-CoV-2 vaccination in PLHIV regardless of its CD4 cell counts. Furthermore, the mRNA vaccine may give robust high antibody responses in PLHIV.

5.
Int J Biol Macromol ; 280(Pt 3): 135977, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39322127

RESUMO

Histone H2B monoubiquitination in budding yeast is a highly conserved post-translational modification. It is involved in normal functions of the cells like DNA Repair, RNA Pol II activation, trans-histone H3K and H79K methylation, meiosis, vesicle budding, etc. Deregulation of H2BK123ub can lead to the activation of proto-oncogenes and is also linked to neurodegenerative and heart diseases. Recent discoveries have enhanced the mechanistic underpinnings of H2BK123ub. For the first time, the Rad6's acidic tail has been implicated in histone recognition and interaction with Bre1's RBD domain. The non-canonical backside of Rad6 showed inhibition in polyubiquitination activity. Bre1 domains RBD and RING play a role in site-specific ubiquitination. The role of single Alaline residue in Rad6 activity. Understanding the mechanism of ubiquitination before moving to therapeutic applications is important. Current advancements in this field indicate the creation of novel therapeutic approaches and a foundation for further study.

6.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39338402

RESUMO

BACKGROUND/OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, was declared a public health emergency in early 2020. The infection initiates when the receptor-binding domain (RBD) of the viral spike protein binds to human angiotensin-converting enzyme 2 (ACE2). Despite the success of vaccination efforts, the emergence of new variants highlights the ongoing need for treatments targeting these evolving strains. In silico methods previously identified peptides BP2, BP9, and BP11 as being capable of disrupting the RBD-ACE2 interaction, though their efficacy has not been experimentally validated until now. METHODS: In this study, these peptides were recombinantly produced in the yeast Komagataella phaffii, and the activity was assessed in vitro using binding assays with multiple RBD variants and the inhibition of the RBD-ACE2 interaction. RESULTS: The production yield for BP2, BP9, and BP11 was 14.34, 4.01, and 1.35 mg per culture liter, respectively. Noteworthy, the three BPs interacted with the RBD of SARS-CoV-2 variants of concern, with BP2 showing higher recognition. Finally, the BPs showed an RBD/hACE2 interaction blocking capacity with IC50 values between 1.03 and 5.35 nM, with BP2 showing the lowest values among the evaluated peptides. CONCLUSIONS: These results demonstrate that BP2, specifically, is a promising candidate for the development of novel therapeutic interventions targeting SARS-CoV-2 and other coronaviruses that use hACE2 for cellular entry.

7.
J Neurol ; 271(10): 6439-6451, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39133321

RESUMO

In the last years, the hypothesis of a close relationship between sleep disorders (SDs) and Parkinson's disease (PD) has significantly strengthened. Whether this association is causal has been also highlighted by recent evidence demonstrating a neurobiological link between SDs and PD. Thus, the question is not whether these two chronic conditions are mutually connected, but rather how and when this relationship is expressed. Supporting this, not all SDs manifest with the same temporal sequence in PD patients. Indeed, SDs can precede or occur concomitantly with the onset of the clinical manifestation of PD. This review discusses the existing literature, putting under a magnifying glass the timing of occurrence of SDs in PD-neurodegeneration. Based on this, here, we propose two possible directions for studying the SDs-PD relationship: the first direction, from SDs to PD, considers SDs as potential biomarker/precursor of future PD-neurodegeneration; the second direction, from PD to SDs, considers SDs as concomitant symptoms in manifest PD, mainly related to primary PD-neuropathology and/or parkinsonian drugs. Furthermore, for each direction, we questioned SDs-PD relationship in terms of risk factors, neuronal circuits/mechanisms, and impact on the clinical phenotype and disease progression. Future research is needed to investigate whether targeting sleep may be the winning strategy to treat PD, in the context of a personalized precision medicine.


Assuntos
Doença de Parkinson , Transtornos do Sono-Vigília , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/fisiopatologia
8.
Evol Bioinform Online ; 20: 11769343241272415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149136

RESUMO

The recombination plays a key role in promoting evolution of RNA viruses and emergence of potentially epidemic variants. Some studies investigated the recombination occurrence among SARS-CoV-2, without exploring its impact on virus-host interaction. In the aim to investigate the burden of recombination in terms of frequency and distribution, the occurrence of recombination was first explored in 44 230 Omicron sequences among BQ subvariants and the under investigation "ML" (Multiple Lineages) denoted sequences, using 3seq software. Second, the recombination impact on interaction between the Spike protein and ACE2 receptor as well as neutralizing antibodies (nAbs), was analyzed using docking tools. Recombination was detected in 56.91% and 82.20% of BQ and ML strains, respectively. It took place mainly in spike and ORF1a genes. For BQ recombinant strains, the docking analysis showed that the spike interacted strongly with ACE2 and weakly with nAbs. The mutations S373P, S375F and T376A constitute a residue network that enhances the RBD interaction with ACE2. Thirteen mutations in RBD (S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, P494S, Q498R, N501Y, and Y505H) and NTD (Y240H) seem to be implicated in immune evasion of recombinants by altering spike interaction with nAbs. In conclusion, this "in silico" study demonstrated that the recombination mechanism is frequent among Omicron BQ and ML variants. It highlights new key mutations, that potentially implicated in enhancement of spike binding to ACE2 (F376A) and escape from nAbs (RBD: F376A, D405N, R408S, N440K, S477N, P494S, and Y505H; NTD: Y240H). Our findings present considerable insights for the elaboration of effective prophylaxis and therapeutic strategies against future SARS-CoV-2 waves.

9.
Sleep ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121093

RESUMO

Alteration of motor control during REM sleep has been extensively described in sleep disorders, in particular in isolated REM sleep behavior disorder (iRBD) and narcolepsy type 1 (NT1). NT1 is caused by the loss of orexin/hypocretin (ORX) neurons. Unlike in iRBD, the RBD comorbid symptoms of NT1 is not associated with alpha-synucleinopathies. To determine whether the chronic absence of ORX neuropeptides is sufficient to induce RBD symptoms, we analyzed during REM sleep the EMG signal of the prepro-hypocretin knockout mice (ORX-/-), a recognized mouse model of NT1. Then, we evaluated the severity of motor alterations by comparing EMG data of ORX-/- mice to those of mice with a targeted suppression of the sublaterodorsal glutamatergic neurotransmission, a recognized rodent model of iRBD. We found a significant alteration of tonic and phasic components of EMG during REM sleep in ORX-/- mice, with more phasic events and more REM sleep episodes without atonia compared to the control wild-type mice. However, these phasic events were fewer, shorter and less complex in ORX-/- mice compared to the RBD-like ORX-/- mice. We thus show that ORX-deficiency, as seen in NT1, is sufficient to impair muscle atonia during REM sleep with a moderate severity of alteration as compared to isolated RBD mice. As described in NT1 patients, we report a major inter-individual variability in the severity and the frequency of RBD symptoms in ORX-deficient mice.

10.
Bull Exp Biol Med ; 177(2): 221-224, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39093475

RESUMO

Squalene-based adjuvant compositions that can provide effective induction of specific humoral immune response have been developed. Recombinant receptor-binding domain (RBD) of surface S-protein of SARS-CoV-2 was used to evaluate the properties of the composition. Immunization of mice with the developed squalene-based compositions in combination with RBD allows obtaining high titers of specific antibodies: from 105 to 2×106. The blood sera from immunized mice exhibit neutralizing activity against SARS-CoV-2 Delta variant (B.1.617.2) with a titer up to 1:2000.


Assuntos
Adjuvantes Imunológicos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Esqualeno , Esqualeno/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Adjuvantes Imunológicos/farmacologia , SARS-CoV-2/imunologia , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Feminino , Humanos , Camundongos Endogâmicos BALB C , Imunidade Humoral/efeitos dos fármacos
11.
Biotechnol Lett ; 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39182215

RESUMO

PURPOSE: The RBD of SARS-CoV-2 mediates viral entry into host cells by binding to the host receptor ACE2. SARS-CoV-2 infection is linked to various health issues resembling amyloid-related problems, persuading us to investigate the amyloidogenicity of the SARS-CoV-2 spike RBD. METHODS: The FoldAmyloid program was used to assess the amyloidogenic propensities in the RBD of Delta Plus and RBD of the Omicron variant, with and without the SUMO tag. After the expression of RBDs, purification, and dialysis steps were performed, subsequently the ThT assay, FTIR, and TEM were employed to check the RBD ability to form fibrils. RESULTS: The ThT assay, TEM, and FTIR revealed the ability of RBD to self-assemble into ß-sheet-rich aggregates (48.4% ß-sheet content). Additionally, the presence of the SUMO tag reduced the formation of RBD amyloid-like fibrils. The amyloidogenic potential of Omicron RBD was higher than Delta Plus, according to both in silico and experimental analyses. CONCLUSIONS: The SARS-CoV-2 RBD can assemble itself by forming aggregates containing amyloid-like fibrils and the presence of a SUMO tag can significantly decrease the formation of RBD amyloid-like fibrils. In silico analysis suggested that variation in the ThT fluorescence intensity of amyloid accumulations in the two SARS-CoV-2 strains arises from specific mutations in their RBD regions.

12.
Biomed Chromatogr ; : e5987, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126351

RESUMO

The traditional formulation Hanchuan zupa granules (HCZPs) have been widely used for controlling coronavirus disease 2019 (COVID-19). However, its active components remain unknown. Here, HCZP components targeting the spike receptor-binding domain (S-RBD) of SARS-CoV-2 were investigated using a surface plasmon resonance (SPR) biosensor-based active ingredient recognition system (SPR-AIRS). Recombinant S-RBD proteins were immobilized on the SPR chip by amine coupling for the prescreening of nine HCZP medicinal herbs. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) identified gallic acid (GA) and methyl gallate (MG) from Rosa rugosa as S-RBD ligands, with KD values of 2.69 and 0.95 µM, respectively, as shown by SPR. Molecular dynamics indicated that GA formed hydrogen bonds with G496, N501, and Y505 of S-RBD, and MG with G496 and Y505, inhibiting S-RBD binding to angiotensin-converting enzyme 2 (ACE2). SPR-based competition analysis verified that both compounds blocked S-RBD and ACE2 binding, and SPR demonstrated that GA and MG bound to ACE2 (KD = 5.10 and 4.05 µM, respectively), suggesting that they blocked the receptor and neutralized SARS-CoV-2. Infection with SARS-CoV-2 pseudovirus showed that GA and MG suppressed viral entry into 293T-ACE2 cells. These S-RBD inhibitors have potential for drug design, while the findings provide a reference on HCZP composition and its use for treating COVID-19.

13.
Emerg Microbes Infect ; 13(1): 2387906, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39087555

RESUMO

Despite the high efficiency of current SARS-CoV-2 mRNA vaccines in reducing COVID-19 morbidity and mortality, waning immunity and the emergence of resistant variants underscore the need for novel vaccination strategies. This study explores a heterologous mRNA/Modified Vaccinia virus Ankara (MVA) prime/boost regimen employing a trimeric form of the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein compared to a homologous MVA/MVA regimen. In C57BL/6 mice, the RBD was delivered during priming via an mRNA vector encapsulated in nanoemulsions (NE) or lipid nanoparticles (LNP), followed by a booster with a replication-deficient MVA-based recombinant virus (MVA-RBD). This heterologous mRNA/MVA regimen elicited strong anti-RBD binding and neutralizing antibodies (BAbs and NAbs) against both the ancestral SARS-CoV-2 strain and different variants of concern (VoCs). Additionally, this protocol induced robust and polyfunctional RBD-specific CD4 and CD8 T cell responses, particularly in animals primed with mLNP-RBD. In K18-hACE2 transgenic mice, the LNP-RBD/MVA combination provided complete protection from morbidity and mortality following a live SARS-CoV-2 challenge compared with the partial protection observed with mNE-RBD/MVA or MVA/MVA regimens. Although the mNE-RBD/MVA regimen only protects half of the animals, it was able to induce antibodies with Fc-mediated effector functions besides NAbs. Moreover, viral replication and viral load in the respiratory tract were markedly reduced and decreased pro-inflammatory cytokine levels were observed. These results support the efficacy of heterologous mRNA/MVA vaccine combinations over homologous MVA/MVA regimen, using alternative nanocarriers that circumvent intellectual property restrictions of current mRNA vaccine formulations.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vaccinia virus , Animais , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Camundongos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , COVID-19/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Vaccinia virus/genética , Vaccinia virus/imunologia , Humanos , Feminino , Nanopartículas/administração & dosagem , Vacinação , Vacinas de mRNA/administração & dosagem , Camundongos Transgênicos , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Linfócitos T CD8-Positivos/imunologia , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/genética , Lipossomos
14.
MedComm (2020) ; 5(9): e687, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39156763

RESUMO

The newly identified XBB.1.16-containing sublineages, including XBB.1.5, have become the prevailing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant in circulation. Unlike previous Omicron XBB variants (e.g., XBB.1.5 and XBB.1.9) harboring the F486P substitution, XBB.1.16 also carries a T478R substitution in the receptor-binding domain (RBD). Numerous researchers have delved into the high transmissibility and immune evasion of XBB.1.16 subvariant. Therefore, developing a new vaccine targeting XBB.1.16, including variants of concern (VOCs), is paramount. In our study, we engineered a recombinant protein by directly linking the S-RBD sequence of the XBB.1.16 strain of SARS-CoV-2 to the sequences of two heptad repeat sequences (HR1 and HR2) from the SARS-CoV-2 S2 subunit. Named the recombinant RBDXBB.1.16-HR/trimeric protein, this fusion protein autonomously assembles into a trimer. Combined with an MF59-like adjuvant, the RBDXBB.1.16-HR vaccine induces a robust humoral immune response characterized by high titers of neutralizing antibodies against variant pseudovirus and authentic VOCs and cellular immune responses. Additionally, a fourth heterologous RBDXBB.1.16-HR vaccine enhances both humoral and cellular immune response elicited by three-dose mRNA vaccines. These findings demonstrate that the recombinant RBDXBB.1.16-HR protein, featuring the new T478R mutation, effectively induces solid neutralizing antibodies to combat newly emerged XBB variants.

15.
Ann Glob Health ; 90(1): 53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39183961

RESUMO

Background: The Registration of Births and Deaths Act (RBD) of 1969 in India mandates continuous recording of vital events; however, after more than 50 years of its enactment, universality remains elusive. Birth registration, a fundamental right, is essential for demographic analysis and effective policy planning. Birth registration is closely linked to child development, access to healthcare, and other societal factors. Analysing its trends helps in designing targeted interventions and monitoring progress toward the Sustainable Development Goals (SDGs). Objectives: This paper aims to analyse the changes in birth registration across Indian states. This paper also examines the impact of institutionalization of births on registration and underscores its significance in policymaking. Methods: The study utilises data from the latest two rounds of National Family Health Survey (NFHS-4 & NFHS-5) to analyse birth registration trends in India. Multivariable logistic regression analysis was employed to examine the impact of place of delivery on birth registration. Findings: The comparison of NFHS-4 and NFHS-5 data demonstrates varying birth registration rates across Indian states, with notable progress in some regions and persistent challenges in others. Multivariable logistic regression analysis highlights the significant influence of place of delivery on registration likelihood. The interaction between wealth and place of delivery suggests a mitigating effect, indicating that increasing institutional births has a positive impact on birth registration, with this effect being more pronounced at different levels of household wealth. It highlights that wealthier households were more likely to register births due to the higher rate of institutional deliveries. Conclusion: India's journey towards universal birth registration under the SDGs presents progress and challenges. NFHS data shows improvements in birth registration, but disparities still persist. Socio-economic status, place of delivery, and maternal education have strong influences on birth registration. Institutional deliveries significantly increase registration likelihood, facilitated by programs like Janani Suraksha Yojana. Integrating birth registration with health services enhances health data accuracy and service delivery. By prioritising targeted interventions, addressing social barriers, and leveraging existing programs, India can ensure that every child's birth is registered, advancing towards a healthier, more equitable future.


Assuntos
Política de Saúde , Humanos , Índia/epidemiologia , Feminino , Parto Obstétrico , Gravidez , Declaração de Nascimento , Modelos Logísticos , Recém-Nascido , Sistema de Registros , Adulto , Inquéritos Epidemiológicos , Entorno do Parto , Fatores Socioeconômicos
16.
Vaccines (Basel) ; 12(8)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39204038

RESUMO

Since the initiation of the COVID-19 pandemic, there has been a need for the development of diagnostic methods to determine the factors implicated in mounting an immune response against the virus. The most promising indicator has been suggested to be neutralizing antibodies (nAbs), which mainly block the interaction between the Spike protein (S) of SARS-CoV-2 and the host entry receptor ACE2. In this study, we aimed to develop and optimize conditions of a competitive ELISA to measure serum neutralizing titer, using a recombinant trimeric Spike protein modified to have six additional proline residues (S(6P)-HexaPro) and h-ACE2. The results of our surrogate Virus Neutralizing Assay (sVNA) were compared against the commercial sVNT (cPass, Nanjing GenScript Biotech Co., Nanjing City, China), using serially diluted sera from vaccinees, and a high correlation of ID50-90 titer values was observed between the two assays. Interestingly, when we tested and compared the neutralizing activity of sera from eleven fully vaccinated individuals who subsequently contracted COVID-19 (hybrid sera), we recorded a moderate correlation between the two assays, while higher sera neutralizing titers were measured with sVNA. Our data indicated that the sVNA, as a more biologically relevant model assay that paired the trimeric S(6P) with ACE2, instead of the isolated RBD-ACE2 pairing cPass test, could identify nAbs other than the RBD-RBM specific ones.

17.
Int J Biol Macromol ; 279(Pt 1): 135069, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39187102

RESUMO

One of the fundamental mechanisms developed by the host to contain the highly infectious and rapidly proliferating SARS-coronavirus is elevation of body temperature, a natural fallout of which is heat shock proteins over-expression. Here, for the first time, we demonstrate that the SARS-CoV-2 exploits the host Heat shock protein 70 (Hsp70) chaperone for its entry and propagation, and blocking it can combat the infection. SARS-CoV-2 infection as well as febrile temperature enhanced Hsp70 expression in host Vero E6 cells. Furthermore, heat shock or viral infection elevated the host cell autophagic response which is a prerequisite for viral propagation. In addition, Hsp70 protein demonstrated strong interaction with host Angiotensin-converting enzyme 2 (ACE2) as well as the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein, indicating that interaction of Hsp70 with ACE2 and Spike protein may serve to protect them during febrile conditions. Suppressive and prophylactic treatment of Vero E6 cells with Hsp70 inhibitor PES, 2-(3-chlorophenyl) ethynesulfonamide (PES-Cl), abrogated viral infection more potently than the currently used drug Remdesivir. In conclusion, our study not only provides a fundamental insight into the role of host Hsp70 in SARS-CoV-2 pathogenesis, it paves the way for development of potent and irresistible anti-viral therapeutics.

18.
Diagnostics (Basel) ; 14(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39202264

RESUMO

COVID-19 infection in high-risk populations is fatal and has a poor prognosis, necessitating a test to determine the protectiveness of immune response. Antibody testing is necessary to determine the body's immune response to COVID-19 infection and also vaccination strategies. Among the various methods available, the chemiluminescent immunoassay (CLIA) test is more widely used and accessible to determine antibody levels. This study aimed to determine the protection level of S-RBD SARS-CoV-2 IgG using CLIA compared to the Surrogate Virus Neutralization Test (SVNT). The population of this study comprised all healthcare professionals who experienced S-RBD SARS-CoV-2 IgG antibody level examinations. S-RBD SARS-CoV-2 IgG antibody levels were examined using CLIA and SVNT. The cut-off was determined using a receiver operating characteristic (ROC) curve, and area under the curve (AUC) measurements were evaluated. The result showed a strong positive correlation between S-RBD SARS-CoV-2 IgG CLIA and SVNT, with a value of r = 0.933 and p < 0.001. The value ≥ 37.29 BAU/mL was determined as the cut-off based on SVNT 30% inhibition level with sensitivity, specificity, and positive and negative predictive values of 96.5%, 90.9%, 96.5%, and 90.9%, respectively. A titer of antibodies greater than or equal to 37.29 BAU/mL with CLIA showed the presence of protective antibodies compared to SVNT.

19.
Cell ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39197450

RESUMO

Immunization with mosaic-8b (nanoparticles presenting 8 SARS-like betacoronavirus [sarbecovirus] receptor-binding domains [RBDs]) elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated the effects of prior COVID-19 vaccinations in non-human primates and mice on anti-sarbecovirus responses elicited by mosaic-8b, admix-8b (8 homotypics), or homotypic SARS-CoV-2 immunizations, finding the greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate mapping, in which antibodies from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced by mosaic-8b, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19-vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.

20.
Adv Sci (Weinh) ; : e2401530, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138901

RESUMO

RAS proteins are peripheral membrane GTPases that activate multiple downstream effectors for cell proliferation and differentiation. The formation of a signaling RAS-RAF complex at the plasma membrane is implicated in a quarter of all human cancers; however, the underlying mechanism remains unclear. In this work, nanodisc platforms and paramagnetic relaxation enhancement (PRE) analyses to determine the structure of a hetero-tetrameric complex comprising KRAS and the RAS-binding domain (RBD) and cysteine-rich domain (CRD) of activated RAF1 are employed. The binding of the RBD or RBD-CRD differentially alters the dimerization modes of KRAS on both anionic and neutral membranes, validated by interface-specific mutagenesis. Notably, the RBD binding allosterically generated two distinct KRAS dimer interfaces in equilibrium, favored by KRAS free and in complex with the RBD-CRD, respectively. Additional interactions of the CRD with both KRAS protomers are mutually cooperative to stabilize a new dimer configuration of KRAS bound to the RBD-CRD. The RAF binding sequentially alters KRAS dimerization, providing new insights into RAF activation, including a configurational transition of the KRAS dimer to provide an interaction site for the CRD and release the autoinhibited RAF complex. These methods are applicable to many other signaling protein complexes on the membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA