Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
1.
Med Phys ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852194

RESUMO

BACKGROUND: For proton therapy, a relative biological effectiveness (RBE) of 1.1 is widely applied clinically. However, due to abundant evidence of variable RBE in vitro, and as suggested in studies of patient outcomes, RBE might increase by the end of the proton tracks, as described by several proposed variable RBE models. Typically, the dose averaged linear energy transfer ( LET d $\text{LET}_d$ ) has been used as a radiation quality metric (RQM) for these models. However, the optimal choice of RQM has not been fully explored. PURPOSE: This study aims to propose novel RQMs that effectively weight protons of different energies, and assess their predictive power for variable RBE in proton therapy. The overall objective is to identify an RQM that better describes the contribution of individual particles to the RBE of proton beams. METHODS: High-throughput experimental set-ups of in vitro cell survival studies for proton RBE determination are simulated utilizing the SHIELD-HIT12A Monte Carlo particle transport code. For every data point, the proton energy spectra are simulated, allowing the calculation of novel RQMs by applying different power levels to the spectra of LET or effective Q $Q$ ( Q eff $Q_\mathrm{eff}$ ) values. A phenomenological linear-quadratic-based RBE model is then applied to the in vitro data, using various RQMs as input variables, and the model performance is evaluated by root-mean-square-error (RMSE) for the logarithm of cell surviving fractions of each data point. RESULTS: Increasing the power level, that is, putting an even higher weight on higher LET particles when constructing the RQM is generally associated with an increased model performance, with dose averaged LET 3 $\text{LET}^3$ (i.e., dose averaged cubed LET, cLET d $\mathrm{cLET}_d$ ) resulting in a RMSE value 0.31, compared to 0.45 for a model based on (linearly weighted) LET d $\text{LET}_d$ , with similar trends also observed for track averaged and Q eff $Q_\mathrm{eff}$ -based RQMs. CONCLUSIONS: The results indicate that improved proton variable RBE models can be constructed assuming a non-linear RBE(LET) relationship for individual protons. If similar trends hold also for an in vitro-environment, variable RBE effects are likely better described by cLET d $\mathrm{cLET}_d$ or tracked averaged cubed LET ( cLET t $\mathrm{cLET}_t$ ), or corresponding Q eff $Q_\mathrm{eff}$ -based RQM, rather than linearly weighted LET d $\text{LET}_d$ or LET t $\text{LET}_t$ which is conventionally applied today.

2.
J Radiat Res ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924483

RESUMO

In the next decade, the International Commission on Radiological Protection (ICRP) will issue the next set of general recommendations, for which evaluation of relative biological effectiveness (RBE) for various types of tissue reactions would be needed. ICRP has recently classified diseases of the circulatory system (DCS) as a tissue reaction, but has not recommended RBE for DCS. We therefore evaluated the mean and uncertainty of RBE for DCS by applying a microdosimetric kinetic model specialized for RBE estimation of tissue reactions. For this purpose, we analyzed several RBE data for DCS determined by past animal experiments and evaluated the radius of the subnuclear domain best fit to each experiment as a single free parameter included in the model. Our analysis suggested that RBE for DCS tends to be lower than that for skin reactions, and their difference was borderline significant due to large variances of the evaluated parameters. We also found that RBE for DCS following mono-energetic neutron irradiation of the human body is much lower than that for skin reactions, particularly at the thermal energy and around 1 MeV. This tendency is considered attributable not only to the intrinsic difference of neutron RBE between skin reactions and DCS but also to the difference in the contributions of secondary γ-rays to the total absorbed doses between their target organs. These findings will help determine RBE by ICRP for preventing tissue reactions.

3.
Phys Imaging Radiat Oncol ; 30: 100581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38711920

RESUMO

Background and purpose: Ion beams exhibit an increased relative biological effectiveness (RBE) with respect to photons. This study determined the RBE of oxygen ion beams as a function of linear energy transfer (LET) and dose in the rat spinal cord. Materials and methods: The spinal cord of rats was irradiated at four different positions of a 6 cm spread-out Bragg-peak (LET: 26, 66, 98 and 141 keV/µm) using increasing levels of single and split oxygen ion doses. Dose-response curves were established for the endpoint paresis grade II and based on ED50 (dose at 50 % effect probability), the RBE was determined and compared to model predictions. Results: When LET increased from 26 to 98 keV/µm, ED50 decreased from 17.2 ± 0.3 Gy to 13.5 ± 0.4 Gy for single and from 21.7 ± 0.4 Gy to 15.5 ± 0.5 Gy for split doses, however, at 141 keV/µm, ED50 rose again to 15.8 ± 0.4 Gy and 17.2 ± 0.4 Gy, respectively. As a result, the RBE increased from 1.43 ± 0.05 to 1.82 ± 0.08 (single dose) and from 1.58 ± 0.04 to 2.21 ± 0.08 (split dose), respectively, before declining again to 1.56 ± 0.06 for single and 1.99 ± 0.06 for split doses at the highest LET. Deviations from RBE-predictions were model-dependent. Conclusion: This study established first RBE data for the late reacting central nervous system after single and split doses of oxygen ions. The data was used to validate the RBE-dependence on LET and dose of three RBE-models. This study extends the existing data base for protons, helium and carbon ions and provides important information for future patient treatments with oxygen ions.

4.
J Cancer Res Clin Oncol ; 150(5): 226, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696003

RESUMO

High-linear energy transfer (LET) radiation is a promising alternative to conventional low-LET radiation for therapeutic gain against cancer owing to its ability to induce complex and clustered DNA lesions. However, the development of radiation resistance poses a significant barrier. The potential molecular mechanisms that could confer resistance development are translesion synthesis (TLS), replication gap suppression (RGS) mechanisms, autophagy, epithelial-mesenchymal transition (EMT) activation, release of exosomes, and epigenetic changes. This article will discuss various types of complex clustered DNA damage, their repair mechanisms, mutagenic potential, and the development of radiation resistance strategies. Furthermore, it highlights the importance of careful consideration and patient selection when employing high-LET radiotherapy in clinical settings.


Assuntos
Transferência Linear de Energia , Neoplasias , Tolerância a Radiação , Humanos , Neoplasias/radioterapia , Neoplasias/patologia , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Animais
5.
Cancers (Basel) ; 16(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38672579

RESUMO

BACKGROUND: Pancreatic cancer is one of the most aggressive and lethal cancers. New treatment strategies are highly warranted. Particle radiotherapy could offer a way to overcome the radioresistant nature of pancreatic cancer because of its biological and physical characteristics. Within particles, helium ions represent an attractive therapy option to achieve the highest possible conformity while at the same time protecting the surrounding normal tissue. The aim of this study was to evaluate the cytotoxic efficacy of helium ion irradiation in pancreatic cancer in vitro. METHODS: Human pancreatic cancer cell lines AsPC-1, BxPC-3 and Panc-1 were irradiated with photons and helium ions at various doses and treated with gemcitabine. Photon irradiation was performed with a biological cabin X-ray irradiator, and helium ion irradiation was performed with a spread-out Bragg peak using the raster scanning technique at the Heidelberg Ion Beam Therapy Center (HIT). The cytotoxic effect on pancreatic cancer cells was measured with clonogenic survival. The survival curves were compared to the predicted curves that were calculated via the modified microdosimetric kinetic model (mMKM). RESULTS: The experimental relative biological effectiveness (RBE) of helium ion irradiation ranged from 1.0 to 1.7. The predicted survival curves obtained via mMKM calculations matched the experimental survival curves. Mainly additive cytotoxic effects were observed for the cell lines AsPC-1, BxPC-3 and Panc-1. CONCLUSION: Our results demonstrate the cytotoxic efficacy of helium ion radiotherapy in pancreatic cancer in vitro as well as the capability of mMKM calculation and its value for biological plan optimization in helium ion therapy for pancreatic cancer. A combined treatment of helium irradiation and chemotherapy with gemcitabine leads to mainly additive cytotoxic effects in pancreatic cancer cell lines. The data generated in this study may serve as the radiobiological basis for future experimental and clinical works using helium ion radiotherapy in pancreatic cancer treatment.

6.
Life Sci Space Res (Amst) ; 41: 210-217, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670649

RESUMO

In addition to the continuous exposure to cosmic rays, astronauts in space are occasionally exposed to Solar Particle Events (SPE), which involve less energetic particles but can deliver much higher doses. The latter can exceed several Gy in a few hours for the most intense SPEs, for which non-stochastic effects are thus a major concern. To identify adequate shielding conditions that would allow respecting the dose limits established by the various space agencies, the absorbed dose in the considered organ/tissue must be multiplied by the corresponding Relative Biological Effectiveness (RBE), which is a complex quantity depending on several factors including particle type and energy, considered biological effect, level of effect (and thus absorbed dose), etc. While in several studies only the particle-type dependence of RBE is taken into account, in this work we developed and applied a new approach where, thanks to an interface between the FLUKA Monte Carlo transport code and the BIANCA biophysical model, the RBE dependence on particle energy and absorbed dose was also considered. Furthermore, we included in the considered SPE spectra primary particles heavier than protons, which in many studies are neglected. This approach was then applied to the October 2003 SPE (the most intense SPE of solar cycle 23, also known as "Halloween event") and the January 2005 event, which was characterized by a lower fluence but a harder spectrum, i.e., with higher-energy particles. The calculation outcomes were then discussed and compared with the current dose limits established for skin and blood forming organs in case of 30-days missions. This work showed that the BIANCA model, if interfaced to a radiation transport code, can be used to calculate the RBE values associated to Solar Particle Events. More generally, this work emphasizes the importance of taking into account the RBE dependence on particle energy and dose when calculating equivalent doses.


Assuntos
Radiação Cósmica , Eficiência Biológica Relativa , Atividade Solar , Radiação Cósmica/efeitos adversos , Humanos , Voo Espacial , Método de Monte Carlo , Astronautas , Doses de Radiação
7.
Phys Med Biol ; 69(12)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38527373

RESUMO

Objective.While a constant relative biological effectiveness (RBE) of 1.1 forms the basis for clinical proton therapy, variable RBE models are increasingly being used in plan evaluation. However, there is substantial variation across RBE models, and several newin vitrodatasets have not yet been included in the existing models. In this study, an updatedin vitroproton RBE database was collected and used to examine current RBE model assumptions, and to propose an up-to-date RBE model as a tool for evaluating RBE effects in clinical settings.Approach.A proton database (471 data points) was collected from the literature, almost twice the size of the previously largest model database. Each data point included linear-quadratic model parameters and linear energy transfer (LET). Statistical analyses were performed to test the validity of commonly applied assumptions of phenomenological RBE models, and new model functions were proposed forRBEmaxandRBEmin(RBE at the lower and upper dose limits). Previously published models were refitted to the database and compared to the new model in terms of model performance and RBE estimates.Main results.The statistical analysis indicated that the intercept of theRBEmaxfunction should be a free fitting parameter and RBE estimates were clearly higher for models with free intercept.RBEminincreased with increasing LET, while a dependency ofRBEminon the reference radiation fractionation sensitivity (α/ßx) did not significantly improve model performance. Evaluating the models, the new model gave overall lowest RMSE and highest R2 score. RBE estimates in the distal part of a spread-out-Bragg-peak in water (α/ßx= 2.1 Gy) were 1.24-1.51 for original models, 1.25-1.49 for refits and 1.42 for the new model.Significance.An updated RBE model based on the currently largest database among published phenomenological models was proposed. Overall, the new model showed better performance compared to refitted published RBE models.


Assuntos
Terapia com Prótons , Eficiência Biológica Relativa , Terapia com Prótons/métodos , Transferência Linear de Energia , Humanos , Modelos Biológicos
8.
J Appl Clin Med Phys ; 25(7): e14321, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38436509

RESUMO

PURPOSE: Carbon ion radiotherapy (CIRT) relies on relative biological effectiveness (RBE)-weighted dose calculations. Japanese clinics predominantly use the microdosimetric kinetic model (MKM), while European centers utilize the local effect model (LEM). Despite both models estimating RBE-distributions in tissue, their physical and mathematical assumptions differ, leading to significant disparities in RBE-weighted doses. Several European clinics adopted Japanese treatment schedules, necessitating adjustments in dose prescriptions and organ at risk (OAR) constraints. In the context of these two clinically used standards for RBE-weighted dose estimation, the objective of this study was to highlight specific scenarios for which the translations between models diverge, as shortcomings between them can influence clinical decisions. METHODS: Our aim was to discuss planning strategies minimizing those discrepancies, ultimately striving for more accurate and robust treatments. Evaluations were conducted in a virtual water phantom and patient CT-geometry, optimizing LEM RBE-weighted dose first and recomputing MKM thereafter. Dose-averaged linear energy transfer (LETd) distributions were also assessed. RESULTS: Results demonstrate how various parameters influence LEM/MKM translation. Similar LEM-dose distributions lead to markedly different MKM-dose distributions and variations in LETd. Generally, a homogeneous LEM RBE-weighted dose aligns with lower MKM values in most of the target volume. Nevertheless, paradoxical MKM hotspots may emerge (at the end of the range), potentially influencing clinical outcomes. Therefore, translation between models requires great caution. CONCLUSIONS: Understanding the relationship between these two clinical standards enables combining European and Japanese based experiences. The implementation of optimal planning strategies ensures the safety and acceptability of the clinical plan for both models and therefore enhances plan robustness from the RBE-weighted dose and LETd distribution point of view. This study emphasizes the importance of optimal planning strategies and the need for comprehensive CIRT plan quality assessment tools. In situations where simultaneous LEM and MKM computation capabilities are lacking, it can provide guidance in plan design, ultimately contributing to enhanced CIRT outcomes.


Assuntos
Radioterapia com Íons Pesados , Órgãos em Risco , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa , Humanos , Radioterapia com Íons Pesados/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Radiobiologia , Neoplasias/radioterapia , Transferência Linear de Energia , Cinética , Radioterapia de Intensidade Modulada/métodos
9.
Foods ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540962

RESUMO

Poly-lactic acid/polyhydroxybutyrate (PLA/PHB) bio-based films suppose an environmentally friendly alternative to petroleum-derived packaging. In addition, rice bran extracts (RBEs) are an interesting source of bioactive compounds. In the present study, active films were formulated with 0.3% (w/v) or 0.5% (w/v) RBE (low-RBE and high-RBE) and compared to PLA/PHB films with no RBE. The migrations of active compounds as well as the antimicrobial and the antioxidant activities were analyzed in the three film formulations. The effects of active PLA/PHB films on fresh pork meat were evaluated by measuring the instrumental color, lipid and protein oxidations, and microbiological status of meat refrigerated for 1, 5, or 9 days. The developed films presented antioxidant activity in vitro, but they did not have an antimicrobial effect against bacterial development (E. coli nor L. innocua). The PLA/PHB film with no extract prevented changes in the instrumental color of meat during storage. However, the antioxidant effect of the PLA/PHB films on fresh pork was negligible, and the inclusion of high doses of extract favored microbial development in the pork during storage. Despite the lack of activity of active PLA/PHB films on meat, their use could be a sustainable alternative to the petroleum-based films.

10.
Phys Imaging Radiat Oncol ; 29: 100564, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38544867

RESUMO

Background and Purpose: The effort to translate clinical findings across institutions employing different relative biological effectiveness (RBE) models of ion radiotherapy has rapidly grown in recent years. Nevertheless, even for a chosen RBE model, different implementations exist. These approaches might consider or disregard the dose-dependence of the RBE and the radial variation of the radiation quality around the beam axis. This study investigated the theoretical impact of disregarding these effects during the RBE calculations. Materials and Methods: Microdosimetric simulations were carried out using the Monte Carlo code PHITS along the spread out Bragg peaks of 1H, 4He, 12C, 16O, and 20Ne ions in a water phantom. The RBE was computed using different implementations of the Mayo Clinic Florida microdosimetric kinetic model (MCF MKM) and the modified MKM, considering or not the radial variation of the radiation quality in the penumbra of the ion beams and the dose-dependence of the RBE. Results: For an OAR located 5 mm laterally from the target volume, disregarding the radial variation of the radiation quality or the dose-dependence of the RBE could result in an overestimation of the RBE-weighted dose up to a factor of âˆ¼ 3.5 or âˆ¼ 1.7, respectively. Conclusions: The RBE-weighted dose to OARs close to the tumor volume was substantially impacted by the approach employed for the RBE calculations, even when using the same RBE model and cell line. Therefore, care should be taken in considering these differences while translating clinical findings between institutions with dissimilar approaches.

11.
Front Oncol ; 14: 1328147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482200

RESUMO

Purpose: This study develop a novel linear energy transfer (LET) optimization method for intensity-modulated proton therapy (IMPT) with minimum monitor unit (MMU) constraint using the alternating direction method of multipliers (ADMM). Material and methods: The novel LET optimization method (ADMM-LET) was proposed with (1) the dose objective and the LET objective as the optimization objective and (2) the non-convex MMU threshold as a constraint condition. ADMM was used to solve the optimization problem. In the ADMM-LET framework, the optimization process entails iteratively solving the dose sub-problem and the LET sub-problem, simultaneously ensuring compliance with the MMU constraint. Three representative cases, including brain, liver, and prostate cancer, were utilized to evaluate the performance of the proposed method. The dose and LET distributions from ADMM-LET were compared to those obtained using the published iterative convex relaxation (ICR-LET) method. Results: The results demonstrate the superiority of ADMM-LET over ICR-LET in terms of LET distribution while achieving a comparable dose distribution. More specifically, for the brain case, the maximum LET (unit: keV/µm) at the optic nerve decreased from 5.45 (ICR-LET) to 1.97 (ADMM-LET). For the liver case, the mean LET (unit: keV/µm) at the clinical target volume increased from 4.98 (ICR-LET) to 5.50 (ADMM-LET). For the prostate case, the mean LET (unit: keV/µm) at the rectum decreased from 2.65 (ICR-LET) to 2.14 (ADMM-LET). Conclusion: This study establishes ADMM-LET as a new approach for LET optimization with the MMU constraint in IMPT, offering potential improvements in treatment outcomes and biological effects.

12.
Med Phys ; 51(4): 3093-3100, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353266

RESUMO

BACKGROUND: Brachytherapy for ocular melanoma is based on the application of eye plaques with different spatial dose nonuniformity, time-dependent dose rates and relative biological effectiveness (RBE). PURPOSE: We propose a parameter called the equivalent uniform RBE-weighted dose (EUDRBE) that can be used for quantitative characterization of integrated cell survival in radiotherapy modalities with the variable RBE, dose nonuniformity and dose rate. The EUDRBE is applied to brachytherapy with 125I eye plaques designed by the Collaborative Ocular Melanoma Study (COMS). METHODS: The EUDRBE is defined as the uniform dose distribution with RBE = 1 that causes equal cell survival for a given nonuniform dose distribution with the variable RBE > 1. The EUDRBE can be used for comparison of cell survival for nonuniform dose distributions with different RBE, because they are compared to the reference dose with RBE = 1. The EUDRBE is applied to brachytherapy with 125I COMS eye plaques that are characterized by a steep dose gradient in tumor base-apex direction, protracted irradiation during time intervals of 3-8 days, and variable dose-rate dependent RBE with a maximum of about 1.4. The simulations are based on dose of 85 Gy prescribed to the farthest intraocular extent of the tumor (tumor apex). To compute the EUDRBE in eye plaque brachytherapy and correct for protracted irradiation, the distributions of physical dose have been converted to non-uniform distributions of biologically effective dose (BED) to include the biological effects of sublethal cellular repair, Our radiobiological analysis considers the combined effects of different time-dependent dose rates, spatial dose non-uniformity, dose fractionation and different RBE and can be used to derive optimized dose regimens brachytherapy. RESULTS: Our simulations show that the EUDRBE increases with the prescription depths and the maximum increase may achieve 6% for the tumor height of 12 mm. This effect stems from a steep dose gradient within the tumor that increases with the prescription depth. The simulations also show that the EUDRBE increase may achieve 12% with increasing the dose rate when implant duration decreases. The combined effect of dose nonuniformity and dose rate may change the EUDRBE up to 18% for the same dose prescription of 85 Gy to tumor apex. The absolute dose range of 48-61 Gy (RBE) for the EUDRBE computed using 4 or 5 fractions is comparable to the dose prescriptions used in stereotactic body radiation therapy (SBRT) with megavoltage X-rays (RBE = 1) for different cancers. The tumor control probabilities in SBRT and eye plaque brachytherapy are very similar at the level of 80% or higher that support the hypothesis that the selected approximations for the EUDRBE are valid. CONCLUSIONS: The computed range of the EUDRBE in 125I COMS eye plaque brachytherapy suggests that the selected models and hypotheses are acceptable. The EUDRBE can be useful for analysis of treatment outcomes and comparison of different dose regimens in eye plaque brachytherapy.


Assuntos
Braquiterapia , Neoplasias Oculares , Radioisótopos do Iodo , Melanoma , Humanos , Eficiência Biológica Relativa , Melanoma/radioterapia , Dosagem Radioterapêutica , Neoplasias Oculares/radioterapia
13.
Med Phys ; 51(4): 3076-3092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408025

RESUMO

BACKGROUND: The current radiobiological model employed for boron neutron capture therapy (BNCT) treatment planning, which relies on microdosimetry, fails to provide an accurate representation the biological effects of BNCT. The precision in calculating the relative biological effectiveness (RBE) and compound biological effectiveness (CBE) plays a pivotal role in determining the therapeutic efficacy of BNCT. Therefore, this study focuses on how to improve the accuracy of the biological effects of BNCT. PURPOSE: The purpose of this study is to propose new radiation biology models based on nanodosimetry to accurately assess RBE and CBE for BNCT. METHODS: Nanodosimetry, rooted in ionization cluster size distributions (ICSD), introduces a novel approach to characterize radiation quality by effectively delineating RBE through the ion track structure at the nanoscale. In the context of prior research, this study presents a computational model for the nanoscale assessment of RBE and CBE. We establish a simplified model of DNA chromatin fiber using the Monte Carlo code TOPAS-nBio to evaluate the applicability of ICSD to BNCT and compute nanodosimetric parameters. RESULTS: Our investigation reveals that both homogeneous and heterogeneous nanodosimetric parameters, as well as the corresponding biological model coefficients α and ß, along with RBE values, exhibit variations in response to varying intracellular 10B concentrations. Notably, the nanodosimetric parameter M 1 C 2 $M_1^{{{\mathrm{C}}}_2}$ effectively captures the fluctuations in model coefficients α and RBE. CONCLUSION: Our model facilitates a nanoscale analysis of BNCT, enabling predictions of nanodosimetric quantities for secondary ions as well as RBE, CBE, and other essential biological metrics related to the distribution of boron. This contribution significantly enhances the precision of RBE calculations and holds substantial promise for future applications in treatment planning.


Assuntos
Terapia por Captura de Nêutron de Boro , Modelos Biológicos , Eficiência Biológica Relativa , Radiobiologia , Método de Monte Carlo
14.
Cancers (Basel) ; 16(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398171

RESUMO

PURPOSE: To demonstrate the feasibility of improving prostate cancer patient outcomes with PBS proton LETd optimization. METHODS: SFO, IPT-SIB, and LET-optimized plans were created for 12 patients, and generalized-tissue and disease-specific LET-dependent RBE models were applied. The mean LETd in several structures was determined and used to calculate mean RBEs. LETd- and dose-volume histograms (LVHs/DVHs) are shown. TODRs were defined based on clinical dose goals and compared between plans. The impact of robust perturbations on LETd, TODRs, and DVH spread was evaluated. RESULTS: LETd optimization achieved statistically significant increased target volume LETd of ~4 keV/µm compared to SFO and IPT-SIB LETd of ~2 keV/µm while mitigating OAR LETd increases. A disease-specific RBE model predicted target volume RBEs > 1.5 for LET-optimized plans, up to 18% higher than for SFO plans. LET-optimized target LVHs/DVHs showed a large increase not present in OARs. All RBE models showed a statistically significant increase in TODRs from SFO to IPT-SIB to LET-optimized plans. RBE = 1.1 does not accurately represent TODRs when using LETd optimization. Robust evaluations demonstrated a trade-off between increased mean target LETd and decreased DVH spread. CONCLUSION: The demonstration of improved TODRs provided via LETd optimization shows potential for improved patient outcomes.

15.
Med Phys ; 51(3): 2320-2333, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38345134

RESUMO

BACKGROUND: Variable relative biological effectiveness (RBE) models in treatment planning have been proposed to optimize the therapeutic ratio of proton therapy. It has been reported that proton RBE decreases with increasing tumor oxygen level, offering an opportunity to address hypoxia-related radioresistance with RBE-weighted optimization. PURPOSE: Here, we obtain a voxel-level estimation of partial oxygen pressure to weigh RBE values in a single biologically informed beam orientation optimization (BOO) algorithm. METHODS: Three glioblastoma patients with [18 F]-fluoromisonidazole (FMISO)-PET/CT images were selected from the institutional database. Oxygen values were derived from tracer uptake using a nonlinear least squares curve fitting. McNamara RBE, calculated from proton dose, was then weighed using oxygen enhancement ratios (OER) for each voxel and incorporated into the dose fidelity term of the BOO algorithm. The nonlinear optimization problem was solved using a split-Bregman approach, with FISTA as the solver. The proposed hypoxia informed RBE-weighted method (HypRBE) was compared to dose fidelity terms using the constant RBE of 1.1 (cRBE) and the normoxic McNamara RBE model (RegRBE). Tumor homogeneity index (HI), maximum biological dose (Dmax), and D95%, as well as OAR therapeutic index (TI = gEUDCTV /gEUDOAR ) were evaluated along with worst-case statistics after normalization to normal tissue isotoxicity. RESULTS: Compared to [cRBE, RegRBE], HypRBE increased tumor HI, Dmax, and D95% across all plans by on average [31.3%, 31.8%], [48.6%, 27.1%], and [50.4%, 23.8%], respectively. In the worst-case scenario, the parameters increase on average by [12.5%, 14.7%], [7.3%,-8.9%], and [22.3%, 2.1%]. Despite increased OAR Dmean and Dmax by [8.0%, 3.0%] and [13.1%, -0.1%], HypRBE increased average TI by [22.0%, 21.1%]. Worst-case OAR Dmean, Dmax, and TI worsened by [17.9%, 4.3%], [24.5%, -1.2%], and [9.6%, 10.5%], but in the best cases, HypRBE escalates tumor coverage significantly without compromising OAR dose, increasing the therapeutic ratio. CONCLUSIONS: We have developed an optimization algorithm whose dose fidelity term accounts for hypoxia-informed RBE values. We have shown that HypRBE selects bE:\Alok\aaeams better suited to deliver high physical dose to low RBE, hypoxic tumor regions while sparing the radiosensitive normal tissue.


Assuntos
Glioblastoma , Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Prótons , Eficiência Biológica Relativa , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Planejamento da Radioterapia Assistida por Computador/métodos , Hipóxia/radioterapia , Oxigênio , Dosagem Radioterapêutica
16.
Biomed Phys Eng Express ; 10(3)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38181453

RESUMO

Uncertainties in the relative biological effectiveness (RBE) of proton remains a major barrier to the biological optimization of proton therapy. A large amount of experimental data suggest that proton RBE is variable. As an evolving Monte Carlo code toolkit, Geant4-DNA is able to simulate the initial DNA damage caused by particle beams through physical and chemical interactions at the nanometer scale over a short period of time. This contributes to evaluating the radiobiological effects induced by ionizing radiation. Based on the Geant4-DNA toolkit, this study constructed a DNA geometric model containing 6.32Gbp, simulated the relationship between radiochemical yields (G-values) and their corresponding chemical constructors, and calculated a detailed calculation of the sources of damage and the complexity of damage in DNA strand breaks. The damage model constructed in this study can simulate the relative biological effectiveness (RBE) in the proton Bragg peak region. The results indicate that: (1) When the electron energy is below 400 keV, the yield of OH·account for 18.1% to 25.3% of the total water radiolysis yields. (2) Under the influence of histone clearance function, the yield of indirect damage account for over 72.93% of the yield of DNA strand breaks (SBs). When linear energy transfer (LET) increased from 29.79 (keV/µm) to 64.29 (keV/µm), the yield of double strand breaks (DSB) increased from 17.27% to 32.65%. (3) By investigating the effect of proton Bragg peak depth on the yield of direct DSB (DSBdirect) and total DSB (DSBtotal), theRBEDSBtotandRBEDSBdirlevels of cells show that the RBE value of protons reaches 2.2 in the Bragg peak region.


Assuntos
Terapia com Prótons , Prótons , Eficiência Biológica Relativa , Quebras de DNA de Cadeia Dupla , DNA
17.
Phys Med Biol ; 69(4)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232394

RESUMO

Objective. Helium, oxygen, and neon ions in addition to carbon ions will be used for hypofractionated multi-ion therapy to maximize the therapeutic effectiveness of charged-particle therapy. To use new ions in cancer treatments based on the dose-fractionation protocols established in carbon-ion therapy, this study examined the cell-line-specific radioresponse to therapeutic helium-, oxygen-, and neon-ion beams within wide dose ranges.Approach. Response of cells to ions was described by the stochastic microdosimetric kinetic model. First, simulations were made for the irradiation of one-field spread-out Bragg peak beams in water with helium, carbon, oxygen, and neon ions to achieve uniform survival fractions at 37%, 10%, and 1% for human salivary gland tumor (HSG) cells, the reference cell line for the Japanese relative biological effectiveness weighted dose system, within the target region defined at depths from 90 to 150 mm. The HSG cells were then replaced by other cell lines with different radioresponses to evaluate differences in the biological dose distributions of each ion beam with respect to those of carbon-ion beams.Main results. For oxygen- and neon-ion beams, the biological dose distributions within the target region were almost equivalent to those of carbon-ion beams, differing by less than 5% in most cases. In contrast, for helium-ion beams, the biological dose distributions within the target region were largely different from those of carbon-ion beams, more than 10% in several cases.Significance.From the standpoint of tumor control evaluated by the clonogenic cell survival, this study suggests that the dose-fractionation protocols established in carbon-ion therapy could be reasonably applied to oxygen- and neon-ion beams while some modifications in dose prescription would be needed when the protocols are applied to helium-ion beams. This study bridges the gap between carbon-ion therapy and hypofractionated multi-ion therapy.


Assuntos
Carbono , Hélio , Humanos , Neônio/uso terapêutico , Carbono/uso terapêutico , Hélio/uso terapêutico , Oxigênio/uso terapêutico , Íons , Eficiência Biológica Relativa
18.
Phys Med Biol ; 69(4)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38211313

RESUMO

Objective.In this paper, we present MONAS (MicrOdosimetry-based modelliNg for relative biological effectiveness (RBE) ASsessment) toolkit. MONAS is a TOPAS Monte Carlo extension, that combines simulations of microdosimetric distributions with radiobiological microdosimetry-based models for predicting cell survival curves and dose-dependent RBE.Approach.MONAS expands TOPAS microdosimetric extension, by including novel specific energy scorers to calculate the single- and multi-event specific energy microdosimetric distributions at different micrometer scales. These spectra are used as physical input to three different formulations of themicrodosimetric kinetic model, and to thegeneralized stochastic microdosimetric model(GSM2), to predict dose-dependent cell survival fraction and RBE. MONAS predictions are then validated against experimental microdosimetric spectra andin vitrosurvival fraction data. To show the MONAS features, we present two different applications of the code: (i) the depth-RBE curve calculation from a passively scattered proton SOBP and monoenergetic12C-ion beam by using experimentally validated spectra as physical input, and (ii) the calculation of the 3D RBE distribution on a real head and neck patient geometry treated with protons.Main results.MONAS can estimate dose-dependent RBE and cell survival curves from experimentally validated microdosimetric spectra with four clinically relevant radiobiological models. From the radiobiological characterization of a proton SOBP and12C fields, we observe the well-known trend of increasing RBE values at the distal edge of the radiation field. The 3D RBE map calculated confirmed the trend observed in the analysis of the SOBP, with the highest RBE values found in the distal edge of the target.Significance.MONAS extension offers a comprehensive microdosimetry-based framework for assessing the biological effects of particle radiation in both research and clinical environments, pushing closer the experimental physics-based description to the biological damage assessment, contributing to bridging the gap between a microdosimetric description of the radiation field and its application in proton therapy treatment with variable RBE.


Assuntos
Terapia com Prótons , Prótons , Humanos , Eficiência Biológica Relativa , Método de Monte Carlo , Sobrevivência Celular/efeitos da radiação
19.
DNA (Basel) ; 4(1): 34-51, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38282954

RESUMO

Motivation: Clustered DNA-lesions are predominantly induced by ionizing radiation, particularly by high-LET particles, and considered as lethal damage. Quantification of this specific type of damage as a function of radiation parameters such as LET, dose rate, dose, and particle type can be informative for the prediction of biological outcome in radiobiological studies. This study investigated the induction and complexity of clustered DNA damage for three different types of particles at an LET range of 0.5-250 keV/µm. Methods: Nanometric volumes (36.0 nm3) of 15 base-pair DNA with its hydration shell was modeled. Electron, proton, and alpha particles at various energies were simulated to irradiate the nanometric volumes. The number of ionization events, low-energy electron spectra, and chemical yields for the formation of °OH, H°, eaq-, and H2O2 were calculated for each particle as a function of LET. Single- and double-strand breaks (SSB and DSB), base release, and clustered DNA-lesions were computed from the Monte-Carlo based quantification of the reactive species and measured yields of the species responsible for the DNA lesion formation. Results: The total amount of DNA damage depends on particle type and LET. The number of ionization events underestimates the quantity of DNA damage at LETs higher than 10 keV/µm. Minimum LETs of 9.4 and 11.5 keV/µm are required to induce clustered damage by a single track of proton and alpha particles, respectively. For a given radiation dose, an increase in LET reduces the number of particle tracks, leading to more complex clustered DNA damage, but a smaller number of separated clustered damage sites. Conclusions: The dependency of the number and the complexity of clustered DNA damage on LET and fluence suggests that the quantification of this damage can be a useful method for the estimation of the biological effectiveness of radiation. These results also suggest that medium-LET particles are more appropriate for the treatment of bulk targets, whereas high-LET particles can be more effective for small targets.

20.
Int J Radiat Biol ; : 1-10, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166191

RESUMO

INTRODUCTION: The need for accurate relative biological effectiveness (RBE) estimation for low energy therapeutic X-rays (corresponding to 50 kV nominal energy of a commercial low-energy IORT system (INTRABEAM)) is a crucial issue due to increased radiobiological effects, respect to high energy photons. Modeling of radiation-induced DNA damage through Monte Carlo (MC) simulation approaches can give useful information. Hence, this study aimed to evaluate and compare RBE of low energy therapeutic X-rays using Geant4-DNA toolkit and Monte Carlo damage simulation (MCDS) code. MATERIALS AND METHODS: RBE calculations were performed considering the emitted secondary electron spectra through interactions of low energy X-rays inside the medium. In Geant4-DNA, the DNA strand breaks were obtained by employing a B-DNA model in physical stage with 10.79 eV energy-threshold and the probability of hydroxyl radical's chemical reactions of about 0.13%. Furthermore, RBE estimations by MCDS code were performed under fully aerobic conditions. RESULTS: Acquired results by two considered MC codes showed that the same trend is found for RBEDSB and RBESSB variations. Totally, a reasonable agreement between the calculated RBE values (both RBESSB and RBEDSB) existed between the two considered MC codes. The mean differences of 9.2% and 1.8% were obtained between the estimated RBESSB and RBEDSB values by two codes, respectively. CONCLUSION: Based on the obtained results, it can be concluded that a tolerable accordance is found between the calculated RBEDSB values through MCDS and Geant4-DNA, a fact which appropriates both codes for RBE evaluations of low energy therapeutic X-rays, especially in the case of RBEDSB where lethal damages are regarded.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA