Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(3): 1268-1280, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009927

RESUMO

PURPOSE: The aim of this work is to evaluate a new eight-channel transceiver (TxRx) coaxial dipole array for imaging of the human head at 9.4T developed to improve specific absorption rate (SAR) performance, and provide for a more compact and robust alternative to the state-of-the art dipole arrays. METHODS: First, the geometry of a single coaxial element was optimized to minimize peak SAR and sensitivity to the load variation. Next, a multi-tissue voxel model was used to numerically simulate a TxRx array coil that consisted of eight coaxial dipoles with the optimal configuration. Finally, we compared the developed array to other human head dipole arrays. Results of numerical simulations were verified on a bench and in the scanner including in vivo measurements on a healthy volunteer. RESULTS: The developed eight-element coaxial dipole TxRx array coil showed up to 1.1times higher SAR-efficiency than a similar in geometry folded-end and fractionated dipole array while maintaining whole brain coverage and low sensitivity of the resonance frequency to variation in the head size. CONCLUSION: As a proof of concept, we developed and constructed a prototype of a 9.4T (400 MHz) human head array consisting of eight TxRx coaxial dipoles. The developed array improved SAR-efficiency and provided for a more compact and robust alternative to the folded-end dipole design. To the best of our knowledge, this is the first example of using coaxial dipoles for human head MRI at ultra-high field.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Desenho de Equipamento , Cabeça/diagnóstico por imagem
2.
NMR Biomed ; 34(10): e4577, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34169590

RESUMO

MRI at ultra-high field (UHF, ≥7 T) provides a natural strategy for improving the quality of X-nucleus magnetic resonance spectroscopy and imaging due to the intrinsic benefit of increased signal-to-noise ratio. Considering that RF coils require both local transmission and reception at UHF, the designs of double-tuned coils, which often consist of several layers of transmit and receive resonant elements, become quite complex. A few years ago, a new type of RF coil, ie a dipole antenna, was developed and used for human body and head imaging at UHF. Due to the mechanical and electrical simplicity of dipole antennas, combining an X-nucleus surface loop array with 1 H dipoles can substantially simplify the design of a double-tuned UHF human head array coil. Recently, we developed a novel bent folded-end dipole transceiver array for human head imaging at 9.4 T. The new eight-element dipole array demonstrated full brain coverage, and transmit efficiency comparable to that of the substantially more complex 16-element surface loop array. In this work, we developed, constructed and evaluated a double-tuned 13 C/1 H human head 9.4 T array consisting of eight 13 C transceiver surface loops and eight 1 H transceiver bent folded-end dipole antennas all placed in a single layer. We showed that interaction between loops and dipoles can be minimized by placing four 1 H traps into each 13 C loop. The presented double-tuned RF array coil substantially simplifies the design as compared with the common double-tuned surface loop arrays. At the same time, the coil demonstrated an improved 1 H longitudinal coverage and good transmit efficiency.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/instrumentação , Cabeça/diagnóstico por imagem , Espectroscopia de Prótons por Ressonância Magnética/instrumentação , Simulação por Computador , Campos Eletromagnéticos , Humanos , Imagens de Fantasmas
3.
Magn Reson Med ; 86(1): 581-597, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33629436

RESUMO

PURPOSE: To develop an unshielded dipole transceiver array for human head imaging at 9.4 Tesla and to improve decoupling of adjacent dipole elements, a novel array design with modified passive dipole antennas was developed, evaluated, and tested. METHODS: The new array consisted of 8 bent folded-end dipole elements placed in a single row and surrounding the head. Adjacent elements of RF transceiver arrays are usually decoupled by introducing circuits electrically connected to elements. These methods are difficult to use for dipole arrays because of the distant location of the adjacent antennas. A recently developed decoupling technique using passive dipoles is simple and does not require any electrical connection. However, common parallel passive dipoles can produce destructive interference with the RF field of the array itself. To minimize this interference, we placed the passive dipoles perpendicularly to the active dipoles and positioned them at the ends of the array. We also evaluated the effect of different passive dipoles on the array transmit performance. Finally, we optimized the array transmit performance by varying the length of the dipole folded portion. RESULTS: By rotating the passive dipoles 90º and moving them toward the ends of the array, we minimized the destructive interference to an acceptable level without compromising decoupling and the transmit efficiency. CONCLUSION: While keeping the benefits of the passive dipole decoupling method, the new modified dipoles produce substantially less destructive interference with the RF field of the array than the common design. The constructed transceiver array demonstrated good decoupling and whole-brain coverage.


Assuntos
Cabeça , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Cabeça/diagnóstico por imagem , Humanos , Imagens de Fantasmas
4.
Magn Reson Med ; 84(6): 3453-3467, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32627916

RESUMO

PURPOSE: To provide transmit whole-brain coverage at 9.4 T using an array with only eight elements and improve the specific absorption rate (SAR) performance, a novel dipole array was developed, constructed, and tested. METHODS: The array consists of eight optimized bent folded-end dipole antennas circumscribing a head. Due to the asymmetrical shape of the dipoles (bending and folding) and the presence of an RF shield near the folded portion, the array simultaneously excites two modes: a circular polarized mode of the array itself, and the TE mode ("dielectric resonance") of the human head. Mode mixing can be controlled by changing the length of the folded portion. Due to this mixing, the new dipole array improves longitudinal coverage as compared with unfolded dipoles. By optimizing the length of the folded portion, we can also minimize the peak local SAR (pSAR) value and decouple adjacent dipole elements. RESULTS: The new array improves the SEE (< B1+ >/√pSAR) value by about 50%, as compared with the unfolded bent dipole array. It also provides better whole-brain coverage compared with common single-row eight-element dipole arrays, or even to a more complex double-row 16-element surface loop array. CONCLUSION: In general, we demonstrate that rather than compensating for the constructive interference effect using additional hardware, we can use the "dielectric resonance" to improve coverage, transmit field homogeneity, and SAR efficiency. Overall, this design approach not only improves the transmit performance in terms of the coverage and SAR, but substantially simplifies the common surface loop array design, making it more robust, and therefore safer.


Assuntos
Amigos , Imageamento por Ressonância Magnética , Desenho de Equipamento , Cabeça/diagnóstico por imagem , Humanos , Imagens de Fantasmas
5.
Magn Reson Med ; 82(2): 811-824, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30957279

RESUMO

PURPOSE: To improve the receive (Rx) performance of a human head transceiver (TxRx) array at 9.4T without compromising its transmit (Tx) performance, a novel 16-element array was developed, constructed, and tested. METHODS: We designed and constructed a phased array, which consists of 8 TxRx surface loops placed in a single row and circumscribing a head, and 8 Rx-only short folded dipole antennas. Dipoles were positioned along the central axis of each transceiver loop perpendicular to its surface. We evaluated the effect of Rx dipoles on the Tx efficiency of the array and maximum local specific absorption rate (SAR) as compared to the array of 8 surface loops only. We also compared the new array to a 16-channel array of the same size consisting of 8 TxRx surface loops and 8 Rx-only vertical loops in terms of Tx efficiency, SAR, and signal-to-noise ratio (SNR). RESULTS: The new array improves both peripheral (up to 2 times) and central (1.17 times) SNR as compared to the 16-element array of the same geometry consisting of 8 TxRx surface loops and 8 Rx-only vertical loops. We demonstrated that an addition of actively detuned Rx-only dipole elements produces only a small decrease (~7%) of the B1+ transmit field and a small increase (<7%) of the maximum local SAR. CONCLUSION: As a proof of concept, we developed and constructed a prototype of a 9.4T (400 MHz) head array consisting of 8 TxRx surface loops and 8 Rx-only short optimized folded dipoles. We demonstrated that at ultra-high field, dipoles outperformed Rx-only vertical loops in vivo.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Cabeça/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA