RESUMO
A recombinant vaccine for rabbit hemorrhagic disease virus 2, a highly pathogenic virus, was granted emergency use authorization in the United States after the detection and spread of the virus starting in 2018. The goal of the current study was to assess pet rabbits (n = 29) through physical examination and routine clinical pathology testing using repeated assessments post-vaccination. In addition, seroconversion was also monitored after the initial vaccination and booster vaccination. Neither owners nor clinicians detected any physical abnormalities in relationship to the vaccine protocol. Hematological and clinical biochemistry testing showed some changes although median values were within species specific reference intervals. A significant increase in antibody levels was observed at day 21 (post-initial vaccination) and day 49 (post-booster vaccination) versus that present at baseline (p < 0.0001). However, variability in study rabbits was noted with some individuals showing low antibody levels as well as a lower overall response in older rabbits (r = -0.56, p = 0.006). A second cohort of rabbits was assessed at 11-12 months post-initial vaccination. In this second group, antibody levels were not significantly different from baseline levels (p = 0.21). Additional studies should be conducted to further define the variability in seroconversion and the term of protection in pet rabbits as the industry moves forward in the optimization of RHDV2 vaccines.
RESUMO
Surveillance of wildlife virus impacts can be passive or active. Both approaches have their strengths and weaknesses, especially regarding cost and knowledge that can be gained. Monitoring of rabbit haemorrhagic disease virus (GI.1 and GI.2) in South Australia has utilised both strategies and their methods and gained insights are discussed. Active strategies to monitor the continuing impact of rabbit haemorrhagic disease virus 2 (GI.2) on susceptible lagomorphs in countries such as the USA, Mexico, South Africa, Spain, France and Portugal are encouraged to gain critical insights into the evolution, spread and impact of this virus. Furthermore, there are lessons here for the international monitoring of diseases in wildlife, particularly where there is a risk of them becoming zoonotic.
Assuntos
Animais Selvagens , Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Animais , Vírus da Doença Hemorrágica de Coelhos/genética , Vírus da Doença Hemorrágica de Coelhos/isolamento & purificação , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Animais Selvagens/virologia , Austrália do Sul , Monitoramento Epidemiológico/veterinária , CoelhosRESUMO
Rabbit hemorrhagic disease virus (RHDV) poses a significant threat to rabbits, causing substantial economic losses in rabbit farming. The virus also endangers wild populations of rabbit species and the predatory animals that rely on rabbits as a food source, thereby disturbing the ecological balance. However, the structural understanding of RHDV has been limited due to the lack of high-resolution structures. Here, we present the first high-resolution cryo-EM structures of the mature virion and virus-like particles (VLPs) derived from both full-length and N-terminal arm (NTA)-truncated VP60. These structures reveal intricate structural details of the icosahedral capsid and crucial NTA-mediated interactions essential for capsid assembly. In addition, dramatic conformational differences are unexpectedly observed between the mature virion and VLP. The protruding spikes of the A-B dimers adopt a "raised" state in the mature virion and a "resting" state in the VLP. These findings enhance our understanding of the structure, assembly, and conformational dynamics of the RHDV capsid, laying the essential groundwork for further virological research and therapeutic advancements.IMPORTANCERHDV is a pathogen with significant economic and ecological impact. By presenting the first high-resolution cryo-EM structures of RHDV, we have uncovered detailed interactions among neighboring VP60 subunits of the icosahedral capsid. The NTA of VP60 is uniquely clustered around the threefold axis of the capsid, probably play a critical role in dragging the six VP60 dimers around the threefold axis during capsid assembly. Additionally, we observed dramatic conformational differences between the mature virion and VLPs. VLPs are commonly used for vaccine development, under the assumption that their structure closely resembles that of the mature virion. Our findings significantly advance the understanding of the RHDV capsid structure, which may be used for developing potential therapeutic strategies against RHDV.
RESUMO
MicroRNAs (miR) are a group of small, non-coding RNAs of 17-25 nucleotides that regulate gene expression at the post-transcriptional level. Dysregulation of miRNA expression or function may contribute to abnormal gene expression and signaling pathways, leading to disease pathology. Lagovirus europaeus (L. europaeus) causes severe disease in rabbits called rabbit hemorrhagic disease (RHD). The symptoms of liver, lung, kidney, and spleen degeneration observed during RHD are similar to those of acute liver failure (ALF) and multi-organ failure (MOF) in humans. In this study, we assessed the expression of miRs and their target genes involved in the innate immune and inflammatory response. Also, we assessed their potential impact on pathways in L. europaeus infection-two genotypes (GI.1 and GI.2)-in the liver, lungs, kidneys, and spleen. The expression of miRs and target genes was determined using quantitative real-time PCR (qPCR). We assessed the expression of miR-155 (MyD88, TAB2, p65, NLRP3), miR-146a (IRAK1, TRAF6), miR-223 (TLR4, IKKα, NLRP3), and miR-125b (MyD88). We also examined biomarkers of inflammation: IL-1ß, IL-6, TNF-α, and IL-18 in four tissues at the mRNA level. Our study shows that the main regulators of the innate immune and inflammatory response in L. europaeus/GI.1 and GI.2 infection, as well as RHD, are miR-155, miR-223, and miR-146a. During infection with L. europaeus/RHD, miR-155 has both pro- and anti-inflammatory effects in the liver and anti-inflammatory effects in the kidneys and spleen; miR-146a has anti-inflammatory effects in the liver, lungs and kidneys; miR-223 has anti-inflammatory effects in all tissues; however, miR-125b has anti-inflammatory effects only in the liver. In each case, such an effect may be a determinant of the pathogenesis of RHD. Our research shows that miRs may regulate three innate immune and inflammatory response pathways in L. europaeus infection. However, the result of this regulation may be influenced by the tissue microenvironment. Our research shows that infection of rabbits with L. europaeus/GI.1 and GI.2 genotypes causes an overexpression of two critical acute phase cytokines: IL-6 in all examined tissues and TNF-α (in the liver, lungs, and spleen). IL-1ß was highly expressed only in the lungs after L. europaeus infection. These facts indicate a strong and rapid involvement of the local innate immune and inflammatory response in L. europaeus infection-two genotypes (GI.1 and GI.2)-and in the pathogenesis of RHD. Profile of biomarkers of inflammation in rabbits infected with L. europaeus/GI.1 and GI.2 genotypes are similar regarding the nature of changes but are different for individual tissues. Therefore, we propose three inflammation profiles for L. europaeus infection for both GI.1 and GI.2 genotypes (pulmonary, renal, liver, and spleen).
Assuntos
Infecções por Caliciviridae , Genótipo , Vírus da Doença Hemorrágica de Coelhos , Imunidade Inata , MicroRNAs , Animais , MicroRNAs/genética , Imunidade Inata/genética , Coelhos , Infecções por Caliciviridae/genética , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Vírus da Doença Hemorrágica de Coelhos/genética , Vírus da Doença Hemorrágica de Coelhos/imunologia , Inflamação/genética , Inflamação/imunologia , Regulação da Expressão Gênica , Fígado/metabolismo , Fígado/patologia , Fígado/virologiaRESUMO
BACKGROUND: Rabbit hemorrhagic disease (RHD) is an acute infectious disease that damages the rabbit industry by producing significant mortality rates in young and adult rabbits. RHD is better controlled by vaccination. OBJECTIVE: The current study's goal was to prepare and evaluate the immuno-enhancing effect of montanide ISA70 and aluminum hydroxide (Al(OH)3) gel incorporated within the inactivated RHDV2 vaccine and assess the vaccine's protective efficacy against the homologous and heterologous local RHDV2 strains in rabbits. METHODS: Inactivated RHDV vaccines were prepared using Montanide ISA70 oil or Al(OH)3 gel adjuvants and submitted to sterility, safety, and potency tests. 200 rabbits were equally divided into 4 groups: G1 (control), G2 (vaccinated with gel-incorporated vaccine), G3 (vaccinated with montanide-incorporated vaccine), and G4 (vaccinated with gel- and montanide-incorporated vaccines). Individual blood samples were collected from one week to six months from all groups. The vaccine's potency was measured by the HI test and protection percentage post challenge. RESULTS: Data revealed slightly increasing HI titer means reaching the 1st peak at 4 weeks post-vaccination (7.33, 7.67, and 7.33 log2 in the 2nd, 3rd, and 4th groups, respectively), then slightly decreasing and peaked again, giving 9.33 log2 for the2nd group at 3 months post-vaccination (MPV), 10.67 log2 for 3rd the group, and 10.33 log2 for the 4th group at 5 months post-vaccination. Titer gradually decreased but remained protective. The protection rate ranged from 80-100% and 80-90% for homologous and heterologous local RHDV2 vaccines, respectively, within 3 weeks and 6 months post-challenge. The montanide oil RHDV2 vaccine induced better protection than the aluminum gel RHDV2 vaccine. CONCLUSION: The results demonstrated evidence of cross-protection between RHDV2 strains. The oil emulsion vaccine induced higher and longer-lasting antibody titers than those obtained with the RHDV2 aluminum gel vaccine.
Assuntos
Hidróxido de Alumínio , Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Vacinas Virais , Animais , Coelhos , Hidróxido de Alumínio/farmacologia , Hidróxido de Alumínio/administração & dosagem , Vírus da Doença Hemorrágica de Coelhos/imunologia , Vacinas Virais/imunologia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/prevenção & controle , Géis , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Ácidos Oleicos/farmacologia , Ácidos Oleicos/administração & dosagemRESUMO
A new form of the rabbit haemorrhagic disease virus, RHDV2, first observed in European rabbits, has spread widely among different species of hares in Europe, jackrabbits and cottontails in North America, and hares in southern Africa. However, only limited surveillance studies have been undertaken so far. It is suggested that methods developed for controlling the disease in farmed rabbits in Europe and studying the efficacy of RHDV as a biological control agent in Australia could facilitate epidemiological research on those recently affected lagomorph species. This would enable the assessment of the risk of RHDV2 to native lagomorphs, including endangered species, and the determination of the main host species of RHDV2. Because RHDV2 has not spread equally through all lagomorph species, epidemiological studies could give insights into factors important for determining host susceptibility.
Assuntos
Infecções por Caliciviridae , Espécies em Perigo de Extinção , Vírus da Doença Hemorrágica de Coelhos , Animais , Vírus da Doença Hemorrágica de Coelhos/genética , África Austral/epidemiologia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , América do Norte/epidemiologia , Lagomorpha/virologia , Coelhos , Lebres/virologiaRESUMO
Mexico is home to 14 species of lagomorphs, 6 of which are endemic. Studies on diseases affecting native lagomorphs are scarce, and in most cases, the impact on their populations remains largely unknown. Rabbit hemorrhagic disease virus (RHDV), especially the RHDV2 variant, causes a serious and extremely contagious disease, resulting in high mortality rates and major declines in wild lagomorph populations. The objectives of this study were to identify disease hotspots and critical biodiversity regions in Mexico through the combined use of disease information and lagomorph distribution maps and to determine the areas of greatest concern. In total, 19 states of Mexico recorded RHDV2 from April 2020 to August 2021, and 12 of them reported the wild species Sylvilagus audubonii, Lepus californicus, and unidentified Leporidae species. The distribution of RHDV2 in Mexico can be closely predicted from climatic variables. RHDV2 hotspots are located in the central-southern area of the Mexican Highlands and the Trans-Mexican Volcanic Belt, where the virus affects multiple species. This knowledge is essential for proposing specific actions to manage and preserve lagomorph populations at risk and address these issues as soon as possible.
Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Lagomorpha , Animais , México/epidemiologia , Vírus da Doença Hemorrágica de Coelhos/genética , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Infecções por Caliciviridae/veterinária , Lagomorpha/virologia , Clima , Coelhos , Animais Selvagens/virologia , BiodiversidadeRESUMO
Rabbit hemorrhagic disease virus 2 (RHDV2) is a highly infectious, often fatal viral disease that affects both domestic and wild lagomorph species. In the United States (U.S.), the virus first was detected in wild lagomorph populations in the southwest in March 2020 and has continued to be detected in native North American lagomorph species over several years. The susceptibility of host species and exact mechanisms of environmental transmission across the U.S. landscape remain poorly understood. Our study aims to increase the understanding of RHDV2 in wild lagomorph populations by providing a history of detection. We present and summarize results from all RHDV2-suspect wild lagomorph morbidity and mortality samples submitted for diagnostic testing in the U.S. from March 2020 to March 2024. Samples were submitted from 916 wild lagomorphs across eight native North American species in 14 western states, of which 313 (34.2%) tested positive by RHDV2 RT-qPCR. Detections of RHDV2 in pygmy rabbits (Brachylagus idahoensis) and riparian brush rabbits (Sylvilagus bachmani riparius) suggest that the risk to threatened and endangered species warrants more attention. Continuing to investigate wild lagomorph morbidity and mortality events and tracking RHDV2 detections over time can help inform on disease epidemiology and wild lagomorph population trends.
Assuntos
Animais Selvagens , Infecções por Caliciviridae , Surtos de Doenças , Vírus da Doença Hemorrágica de Coelhos , Lagomorpha , Animais , Vírus da Doença Hemorrágica de Coelhos/genética , Vírus da Doença Hemorrágica de Coelhos/classificação , Vírus da Doença Hemorrágica de Coelhos/isolamento & purificação , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/virologia , Lagomorpha/virologia , Estados Unidos/epidemiologia , Animais Selvagens/virologia , Surtos de Doenças/veterinária , Coelhos/virologiaRESUMO
Dendritic cells (DCs) present an ideal target for delivering immunogenic cargo due to their potent antigen-presenting capabilities. This targeting approach holds promise in vaccine development by enhancing the efficiency of antigen recognition and capture by DCs. To identify a high-affinity targeting peptide binding to rabbit DCs, rabbit monocyte-derived DCs (raMoDCs) were isolated and cultured, and a novel peptide, HS (HSLRHDYGYPGH), was identified using a phage-displayed peptide library. Alongside HS, two other DC-targeting peptides, KC1 and MY, previously validated in our laboratory, were employed to construct recombinant Lactgobacillus reuteri fusion-expressed rabbit hemorrhagic disease virus (RHDV) capsid protein VP60. These recombinant Lactobacillus strains were named HS-VP60/L. reuteri, KC1-VP60/L. reuteri, and MY-VP60/L. reuteri. The ability of these recombinant Lactobacillus to bind rabbit DCs was evaluated both in vivo and in vitro. Results demonstrated that the DC-targeting peptide KC1 significantly enhanced the capture efficiency of recombinant Lactobacillus by raMoDCs, promoted DC maturation, and increased cytokine secretion. Furthermore, oral administration of KC1-VP60/L. reuteri effectively induced SIgA and IgG production in rabbits, prolonged rabbit survival post-challenge, and reduced RHDV copies in organs. In summary, the DC-targeting peptide KC1 exhibited robust binding to raMoDCs, and recombinant Lactobacillus expressing KC1-VP60 protein antigens efficiently induced systemic and mucosal immune responses in rabbits, conferring protective efficacy against RHDV. This study offers valuable insights for the development of novel RHDV vaccines.
Assuntos
Células Dendríticas , Vírus da Doença Hemorrágica de Coelhos , Limosilactobacillus reuteri , Peptídeos , Animais , Células Dendríticas/imunologia , Coelhos , Vírus da Doença Hemorrágica de Coelhos/imunologia , Vírus da Doença Hemorrágica de Coelhos/genética , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/imunologia , Peptídeos/imunologia , Peptídeos/genética , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/imunologia , Infecções por Reoviridae/prevenção & controle , Infecções por Reoviridae/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Vacinas Virais/imunologia , Vacinas Virais/genética , Lactobacillus/genética , Lactobacillus/imunologiaRESUMO
Rabbit haemorrhagic disease viruses (RHDV) belong to the family Caliciviridae, genus Lagovirus europaeus, genogroup GI, comprising four genotypes GI.1-GI.4, of which the genotypes GI.1 and GI.2 are pathogenic RHD viruses, while the genotypes GI.3 and GI.4 are non-pathogenic RCV (Rabbit calicivirus) viruses. Among the pathogenic genotypes GI.1 and GI.2 of RHD viruses, an antigenic variant of RHDV, named RHDVa-now GI.1a-RHDVa, was distinguished in 1996; and in 2010, a variant of RHDV-named RHDVb, later RHDV2 and now GI.2-RHDV2/b-was described; and recombinants of these viruses were registered. Pathogenic viruses of the genotype GI.1 were the cause of a disease described in 1984 in China in domestic (Oryctolagus (O.) cuniculus domesticus) and wild (O. cuniculus) rabbits, characterised by a very rapid course and a mortality rate of 90-100%, which spread in countries all over the world and which has been defined since 1989 as rabbit haemorrhagic disease. It is now accepted that GI.1-RHDV, including GI.1a-RHDVa, cause the predetermined primary haemorrhagic disease in domestic and wild rabbits, while GI.2-RHDV2/b cause it not only in rabbits, including domestic rabbits' young up to 4 weeks and rabbits immunised with rabbit haemorrhagic disease vaccine, but also in five various species of wild rabbits and seven different species of hares, as well as wild ruminants: mountain muskoxen and European badger. Among these viruses, haemagglutination-positive, doubtful and harmful viruses have been recorded and described and have been shown to form phylogenogroups, immunotypes, haematotypes and pathotypes, which, together with traits that alter and expand their infectious spectrum (rabbit, hare, wild ruminant, badger and various rabbit and hare species), are the determinants of their pathogenicity (infectivity) and immunogenicity and thus shape their virulence. These relationships are the aim of our consideration in this article.
Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Animais , Vírus da Doença Hemorrágica de Coelhos/genética , Vírus da Doença Hemorrágica de Coelhos/patogenicidade , Vírus da Doença Hemorrágica de Coelhos/imunologia , Infecções por Caliciviridae/virologia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/imunologia , Coelhos , Genótipo , Virulência , FilogeniaRESUMO
Rabbit hemorrhagic disease (RHD) is an acute fatal disease caused by the rabbit hemorrhagic disease virus (RHDV). Since the first outbreaks of type 2 RHDV (RHDV2) in April 2020 in China, the persistence of this virus in the rabbit population has caused substantial economic losses in rabbit husbandry. Previous failures in preventing RHDV2 prompted us to further investigate the immune mechanisms underlying the virus's pathogenicity, particularly concerning the spleen, a vital component of the mononuclear phagocyte system (MPS). For this, a previous RHDV2 isolate, CHN/SC2020, was utilized to challenge naive adult rabbits. Then, the splenic transcriptome was determined by RNA-Seq. This study showed that the infected adult rabbits had 3148 differentially expressed genes (DEGs), which were associated with disease, signal transduction, cellular processes, and cytokine signaling categories. Of these, 100 upregulated DEGs were involved in inflammatory factors such as IL1α, IL-6, and IL-8. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these DEGs were significantly enriched in the cytokine-cytokine receptor interaction signaling pathway, which may play a vital role in CHN/SC2020 infection. At the same time, proinflammatory cytokines and chemokines were significantly increased in the spleen at the late stages of infection. These findings suggested that RHDV2 (CHN/SC2020) might induce dysregulation of the cytokine network and compromise splenic immunity against viral infection, which expanded our understanding of RHDV2 pathogenicity.
Assuntos
Infecções por Caliciviridae , Citocinas , Vírus da Doença Hemorrágica de Coelhos , Baço , Transcriptoma , Animais , Vírus da Doença Hemorrágica de Coelhos/genética , Vírus da Doença Hemorrágica de Coelhos/imunologia , Baço/virologia , Baço/imunologia , Coelhos , Infecções por Caliciviridae/virologia , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/genética , Citocinas/metabolismo , Citocinas/genética , Perfilação da Expressão Gênica , Inflamação/virologia , Inflamação/genéticaRESUMO
Rabbit haemorrhage disease virus 2 (RHDV2) is a highly pathogenic lagovirus that causes lethal disease in rabbits and hares (lagomorphs). Since its first detection in Europe in 2010, RHDV2 has spread worldwide and has been detected in over 35 countries so far. Here, we provide the first detailed report of the detection and subsequent circulation of RHDV2 in New Zealand. RHDV2 was first detected in New Zealand in 2018, with positive samples retrospectively identified in December 2017. Subsequent time-resolved phylogenetic analysis suggested a single introduction into the North Island between March and November 2016. Genetic analysis identified a GI.3P-GI.2 variant supporting a non-Australian origin for the incursion; however, more accurate identification of the source of the incursion remains challenging due to the wide global distribution of the GI.3P-GI.2 variant. Furthermore, our analysis suggests the spread of the virus between the North and South Islands of New Zealand at least twice, dated to mid-2017 and around 2018. Further phylogenetic analysis also revealed a strong phylogeographic pattern. So far, no recombination events with endemic benign New Zealand rabbit caliciviruses have been identified. This study highlights the need for further research and surveillance to monitor the distribution and diversity of lagoviruses in New Zealand and to detect incursions of novel variants.
Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Filogenia , Nova Zelândia/epidemiologia , Animais , Vírus da Doença Hemorrágica de Coelhos/genética , Vírus da Doença Hemorrágica de Coelhos/isolamento & purificação , Vírus da Doença Hemorrágica de Coelhos/classificação , Coelhos/virologia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Filogeografia , Lebres/virologia , Estudos Retrospectivos , Genoma ViralRESUMO
Rabbit hemorrhagic disease virus 2 (RHDV2) emerged in the United States in 2018 and has spread in both domestic and wild rabbits nationwide. The virus has a high mortality rate and can spread rapidly once introduced in a rabbit population. Vaccination against RHDV2 provides the best protection against disease and should be considered by all rabbit owners. Here, we investigate the duration of immunity provided by vaccination with the Medgene Platform conditionally licensed commercial vaccine 6 months following the initial series. Rabbits received either the vaccination or a placebo and were challenged with RHDV2 6 months later. All vaccinated rabbits survived challenge whereas 18/19 non-vaccinated controls succumbed to infection within 10 or fewer days post-challenge. These results demonstrate lasting immunity following vaccination with the Medgene RHDV2 vaccine.
Assuntos
Baculoviridae , Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Vacinação , Vacinas Sintéticas , Vacinas Virais , Animais , Vírus da Doença Hemorrágica de Coelhos/imunologia , Vírus da Doença Hemorrágica de Coelhos/genética , Coelhos , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Infecções por Caliciviridae/veterinária , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Baculoviridae/genética , Baculoviridae/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologiaRESUMO
Pathogenic lagoviruses (Rabbit hemorrhagic disease virus, RHDV) are widely spread across the world and are used in Australia and New Zealand to control populations of feral European rabbits. The spread of the non-pathogenic lagoviruses, e.g., rabbit calicivirus (RCV), is less well studied as the infection results in no clinical signs. Nonetheless, RCV has important implications for the spread of RHDV and rabbit biocontrol as it can provide varying levels of cross-protection against fatal infection with pathogenic lagoviruses. In Chile, where European rabbits are also an introduced species, myxoma virus was used for localised biocontrol of rabbits in the 1950s. To date, there have been no studies investigating the presence of lagoviruses in the Chilean feral rabbit population. In this study, liver and duodenum rabbit samples from central Chile were tested for the presence of lagoviruses and positive samples were subject to whole RNA sequencing and subsequent data analysis. Phylogenetic analysis revealed a novel RCV variant in duodenal samples that likely originated from European RCVs. Sequencing analysis also detected the presence of a rabbit astrovirus in one of the lagovirus-positive samples.
Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Lagovirus , Animais , Coelhos , Filogenia , Chile , Infecções por Caliciviridae/epidemiologia , Vírus da Doença Hemorrágica de Coelhos/genéticaRESUMO
Introduction: Since lagoviruses cannot be cultivated in vitro, using expression systems is an alternative and promising way of producing diagnostic viral antigens. It opens up their use as active immunogens for vaccine production. Material and Methods: Virus-like particles (VLPs) were produced in a baculovirus expression system in Spodoptera frugiperda 9 (Sf9) insect cells based on wild-type and mutated variants of the virus capsid VP60 protein from a Polish strain of European brown hare syndrome virus (EBHSV) and wild-type and mutated versions of this protein from a Polish strain of rabbit haemorrhagic disease virus 2 (RHDV2). The mutations were the substitution of an arginylglycylaspartic acid (Arg-Gly-Asp/RGD) motif in the P2 subdomain and, in the S or P2 domain, the substitution of three lysines. The VLPs were purified with sucrose gradient ultracentrifugation. Results: Protein production was confirmed by Western blot analysis using rabbit or hare sera and ELISA tests with different types of monoclonal antibody. The haemagglutination properties of some VLPs were also evaluated. Electron microscopy of wild-type EBHSV, wild-type RHDV2 and the four VP60 variants produced in this experiment revealed the formation of characteristic VLP structures. Conclusion: For the first time, mutated VLPs of RHDV2 with an RGD motif in the VP60 sequence were obtained, which could potentially be used to deliver cargo to eukaryotic cells. Virus-like particles based on the VP60 proteins of EBHSV and RHDV with a three-lysine substitution in the S or P2 domains were also obtained. Potential exists for VLPs of EBHSV and RHDV2 as vaccine candidates.
RESUMO
Three rabbit hemorrhagic disease virus type 2 (RHDV2) coding-complete genome sequences were obtained from domestic and wild rabbits in Washington State in June and July 2023. These three RHDV2 sequences are <82% identical to previous RHDV2 sequences in North America and likely indicate a discrete incursion.
RESUMO
MicroRNAs (miRs) are a group of small, 17-25 nucleotide, non-coding RNA that regulate gene expression at the post-transcriptional level. To date, little is known about the molecular signatures of regulatory interactions between miRs and apoptosis and oxidative stress in viral diseases. Lagovirus europaeus is a virus that causes severe disease in rabbits (Oryctolagus cuniculus) called Rabbit Hemorrhagic Disease (RHD) and belongs to the Caliciviridae family, Lagovirus genus. Within Lagovirus europaeus associated with RHD, two genotypes (GI.1 and GI.2) have been distinguished, and the GI.1 genotype includes four variants (GI.1a, GI.1b, GI.1c, and GI.1d). The study aimed to assess the expression of miRs and their target genes involved in apoptosis and oxidative stress, as well as their potential impact on the pathways during Lagovirus europaeus-two genotypes (GI.1 and GI.2) infection of different virulences in four tissues (liver, lung, kidneys, and spleen). The expression of miRs and target genes related to apoptosis and oxidative stress was determined using quantitative real-time PCR (qPCR). In this study, we evaluated the expression of miR-21 (PTEN, PDCD4), miR-16b (Bcl-2, CXCL10), miR-34a (p53, SIRT1), and miRs-related to oxidative stress-miR-122 (Bach1) and miR-132 (Nfr-2). We also examined the biomarkers of both processes (Bax, Bax/Bcl-2 ratio, Caspase-3, PARP) and HO-I as biomarkers of oxidative stress. Our report is the first to present the regulatory effects of miRs on apoptosis and oxidative stress genes in rabbit infection with Lagovirus europaeus-two genotypes (GI.1 and GI.2) in four tissues (liver, lungs, kidneys, and spleen). The regulatory effect of miRs indicates that, on the one hand, miRs can intensify apoptosis (miR-16b, miR-34a) in the examined organs in response to a viral stimulus and, on the other hand, inhibit (miR-21), which in both cases may be a determinant of the pathogenesis of RHD and tissue damage. Biomarkers of the Bax and Bax/Bcl-2 ratio promote more intense apoptosis after infection with the Lagovirus europaeus GI.2 genotype. Our findings demonstrate that miR-122 and miR-132 regulate oxidative stress in the pathogenesis of RHD, which is associated with tissue damage. The HO-1 biomarker in the course of rabbit hemorrhagic disease indicates oxidative tissue damage. Our findings show that miR-21, miR-16b, and miR-34a regulate three apoptosis pathways. Meanwhile, miR-122 and miR-132 are involved in two oxidative stress pathways.
RESUMO
The genus Lagovirus, belonging to the family Caliciviridae, emerged around the 1980s. It includes highly pathogenic species, rabbit hemorrhagic disease virus (RHDV/GI.1) and European brown hare syndrome virus (EBHSV/GII.1), which cause fatal hepatitis, and nonpathogenic viruses with enteric tropism, rabbit calicivirus (RCV/GI.3,4) and hare calicivirus (HaCV/GII.2). Lagoviruses have evolved along two independent genetic lineages: GI (RHDV and RCV) in rabbits and GII (EBHSV and HaCV) in hares. To be emphasized is that genomes of lagoviruses, like other caliciviruses, are highly conserved at RdRp-VP60 junctions, favoring intergenotypic recombination events at this point. The recombination between an RCV (genotype GI.3), donor of non-structural (NS) genes, and an unknown virus, donor of structural (S) genes, likely led to the emergence of a new lagovirus in the European rabbit, called RHDV type 2 (GI.2), identified in Europe in 2010. New RHDV2 intergenotypic recombinants isolated in rabbits in Europe and Australia originated from similar events between RHDV2 (GI.2) and RHDV (GI.1) or RCV (GI.3,4). RHDV2 (GI.2) rapidly spread worldwide, replacing RHDV and showing several lagomorph species as secondary hosts. The recombination events in RHDV2 viruses have led to a number of viruses with very different combinations of NS and S genes. Recombinant RHDV2 with NS genes from hare lineage (GII) was recently identified in the European hare. This study investigated the first RHDV2 (GI.2) identified in Italy in European hare (RHDV2_Bg12), demonstrating that it was a new virus that originated from the recombination between RHDV2, as an S-gene donor and a hare lagovirus, not yet identified but presumably nonpathogenic, as an NS gene donor. When rabbits were inoculated with RHDV2_Bg12, neither deaths nor seroconversions were recorded, demonstrating that RHDV2_Bg12 cannot infect the rabbit. Furthermore, despite intensive and continuous field surveillance, RHDV2_Bg12 has never again been identified in either hares or rabbits in Italy or elsewhere. This result showed that the host specificity of lagoviruses can depend not only on S genes, as expected until today, but potentially also on some species-specific NS gene sequences. Therefore, because RHDV2 (GI.2) infects several lagomorphs, which in turn probably harbor several specific nonpathogenic lagoviruses, the possibility of new speciation, especially in those other than rabbits, is real. RHDV2 Bg_12 demonstrated this, although the attempt apparently failed.
Assuntos
Infecções por Caliciviridae , Lebres , Vírus da Doença Hemorrágica de Coelhos , Animais , Coelhos , Filogenia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/epidemiologia , Evolução Biológica , Vírus da Doença Hemorrágica de Coelhos/genética , Recombinação GenéticaRESUMO
Australia has multiple lagoviruses with differing pathogenicity. The circulation of these viruses was traditionally determined through opportunistic sampling events. In the lead up to the nationwide release of RHDVa-K5 (GI.1aP-GI.1a) in 2017, an existing citizen science program, RabbitScan, was augmented to allow members of the public to submit samples collected from dead leporids for lagovirus testing. This study describes the information obtained from the increased number of leporid samples received between 2015 and 2022 and focuses on the recent epidemiological interactions and evolutionary trajectory of circulating lagoviruses in Australia between October 2020 and December 2022. A total of 2771 samples were tested from January 2015 to December 2022, of which 1643 were lagovirus-positive. Notable changes in the distribution of lagovirus variants were observed, predominantly in Western Australia, where RHDV2-4c (GI.4cP-GI.2) was detected again in 2021 after initially being reported to be present in 2018. Interestingly, we found evidence that the deliberately released RHDVa-K5 was able to establish and circulate in wild rabbit populations in WA. Overall, the incorporation of citizen science approaches proved to be a cost-efficient method to increase the sampling area and enable an in-depth analysis of lagovirus distribution, genetic diversity, and interactions. The maintenance of such programs is essential to enable continued investigations of the critical parameters affecting the biocontrol of feral rabbit populations in Australia, as well as to enable the detection of any potential future incursions.
Assuntos
Infecções por Caliciviridae , Ciência do Cidadão , Vírus da Doença Hemorrágica de Coelhos , Lagovirus , Animais , Coelhos , Vírus da Doença Hemorrágica de Coelhos/genética , Epidemiologia Molecular , Lagovirus/genética , Filogenia , Austrália/epidemiologiaRESUMO
Rabbit hemorrhagic disease virus 2 (RHDV2) is a fatal, highly contagious pathogen that infects wild and domestic lagomorphs (rabbits and hares). RHDV2 is an important cause of disease in pet and companion rabbits, has resulted in economic losses for the commercial rabbit industry, and has caused declines of wild lagomorph populations. It is essential for domestic rabbit owners to engage in appropriate actions (e.g., using effective disinfectants, creating secure barriers between domestic and wild rabbits) to protect the health and welfare of their rabbits and reduce the risk of human-mediated spread of RHDV2. Thus, we investigated rabbit owners' stated willingness to engage in nine commonly recommended biosecurity practices and their support for seven potential government-implemented management actions. We administered an online survey to 1790 rabbit owners in the United States between April and August 2021. Respondents were likely to engage in all biosecurity measures and were supportive of most management actions that could be implemented by government agencies. Respondents' willingness to engage in and support biosecurity measures was positively correlated with their perceptions of the importance of biosecurity, risk perceptions pertaining to the impact of RHDV2 on lagomorphs and rabbit-related industries, knowledge of RHDV2, and trust in government to manage RHDV2. Respondents' motivations for owning rabbits, husbandry behaviors, and demographic characteristics also influenced their willingness to engage in or support biosecurity measures. Engaging domestic rabbit owners in collaborative biosecurity measures is critical for protecting domestic rabbit health and preventing potential spillover between domestic and free-roaming lagomorphs, as there are still many uncertainties about how RHDV2 is spreading across the United States and the world. Implementing outreach strategies that communicate the importance and effectiveness of biosecurity practices in protecting rabbit welfare, rabbit-related activities, and wild lagomorph populations may increase the likelihood of rabbit owners adopting biosecurity measures.