Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 12(9)2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37174705

RESUMO

Mast cells (MCs) are key effector cells in allergic and inflammatory diseases, and the SCF/KIT axis regulates most aspects of the cells' biology. Using terminally differentiated skin MCs, we recently reported on proteome-wide phosphorylation changes initiated by KIT dimerization. C1orf186/RHEX was revealed as one of the proteins to become heavily phosphorylated. Its function in MCs is undefined and only some information is available for erythroblasts. Using public databases and our own data, we now report that RHEX exhibits highly restricted expression with a clear dominance in MCs. While expression is most pronounced in mature MCs, RHEX is also abundant in immature/transformed MC cell lines (HMC-1, LAD2), suggesting early expression with further increase during differentiation. Using RHEX-selective RNA interference, we reveal that RHEX unexpectedly acts as a negative regulator of SCF-supported skin MC survival. This finding is substantiated by RHEX's interference with KIT signal transduction, whereby ERK1/2 and p38 both were more strongly activated when RHEX was attenuated. Comparing RHEX and capicua (a recently identified repressor) revealed that each protein preferentially suppresses other signaling modules elicited by KIT. Induction of immediate-early genes strictly requires ERK1/2 in SCF-triggered MCs; we now demonstrate that RHEX diminution translates to this downstream event, and thereby enhances NR4A2, JUNB, and EGR1 induction. Collectively, our study reveals RHEX as a repressor of KIT signaling and function in MCs. As an abundant and selective lineage marker, RHEX may have various roles in the lineage, and the provided framework will enable future work on its involvement in other crucial processes.


Assuntos
Mastócitos , Fator de Células-Tronco , Humanos , Mastócitos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais , Pele/metabolismo , Fator de Células-Tronco/metabolismo , Fator de Células-Tronco/farmacologia
2.
Transl Cancer Res ; 10(8): 3811-3828, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35116680

RESUMO

BACKGROUND: The therapeutic response and prognosis of patients with non-small cell lung carcinoma (NSCLC) are widely related to immunity. To improve the prognosis of patients and provide reliable information to guide appropriate personalized treatment strategies, it is necessary to identify reliable prognostic or predictive indicators closely related to tumor phenotype and immune traits in NSCLC. METHODS: Based on The Cancer Genome Atlas (TCGA)-NSCLC mRNA expression profile data, a novel approach combining differential gene expression analysis, single-sample gene set enrichment analysis (ssGSEA), and weighted gene co-expression network analysis (WGCNA) was used to screen hub genes. Subsequently, the regulator of hemoglobinization and erythroid cell expansion (RHEX) was identified as a key gene using the log-rank test and confirmed in the ArrayExpress database. The relationship between RHEX and clinicopathological parameters was analyzed using the Wilcoxon rank-sum test. More importantly, through gene set enrichment analysis (GSEA) and cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithms, and with reference to the Tumor IMmune Estimation Resource (TIMER) database, we explored the relevant pathways of RHEX and its relationship with tumor-infiltrating immune cells (TICs). Finally, we depicted the association between RHEX and immunomodulators in the TCGA and a web portal TISIDB. RESULTS: The RHEX mRNA expression levels in tumor tissues were lower than those in normal tissues and declined with the progression of NSCLC. Meanwhile, RHEX overexpression was associated with high immune infiltration levels and a favorable clinical prognosis. RHEX may participate in tumor microenvironment (TME) regulation through multiple tumor-immune related pathways, especially the JAK-STAT signaling pathway. Furthermore, RHEX expression affected the infiltrating abundance of multiple TICs and positively correlated with most of the immunomodulators in NSCLC. CONCLUSIONS: Our study is the first to propose that RHEX is an immune-related gene with prognostic value in NSCLC and reveals the underlying mechanism between RHEX and tumor-immune system interactions. These results ultimately provide guidance for prognosis and immunotherapy for NSCLC patients.

3.
Cell Signal ; 69: 109554, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32027948

RESUMO

The formation of erythroid progenitor cells depends sharply upon erythropoietin (EPO), its cell surface receptor (erythropoietin receptor, EPOR), and Janus kinase 2 (JAK2). Clinically, recombinant human EPO (rhEPO) additionally is an important anti-anemia agent for chronic kidney disease (CKD), myelodysplastic syndrome (MDS) and chemotherapy, but induces hypertension, and can exert certain pro-tumorigenic effects. Cellular signals transduced by EPOR/JAK2 complexes, and the nature of EPO-modulated signal transduction factors, therefore are of significant interest. By employing phospho-tyrosine post-translational modification (p-Y PTM) proteomics and human EPO- dependent UT7epo cells, we have identified 22 novel kinases and phosphatases as novel EPO targets, together with their specific sites of p-Y modification. New kinases modified due to EPO include membrane palmitoylated protein 1 (MPP1) and guanylate kinase 1 (GUK1) guanylate kinases, together with the cytoskeleton remodeling kinases, pseudopodium enriched atypical kinase 1 (PEAK1) and AP2 associated kinase 1 (AAK1). Novel EPO- modified phosphatases include protein tyrosine phosphatase receptor type A (PTPRA), phosphohistidine phosphatase 1 (PHPT1), tensin 2 (TENC1), ubiquitin associated and SH3 domain containing B (UBASH3B) and protein tyrosine phosphatase non-receptor type 18 (PTPN18). Based on PTPN18's high expression in hematopoietic progenitors, its novel connection to JAK kinase signaling, and a unique EPO- regulated PTPN18-pY389 motif which is modulated by JAK2 inhibitors, PTPN18's actions in UT7epo cells were investigated. Upon ectopic expression, wt-PTPN18 promoted EPO dose-dependent cell proliferation, and survival. Mechanistically, PTPN18 sustained the EPO- induced activation of not only mitogen-activated protein kinases 1 and 3 (ERK1/2), AKT serine/threonine kinase 1-3 (AKT), and signal transducer and activator of transcription 5A and 5B (STAT5), but also JAK2. Each effect further proved to depend upon PTPN18's EPO- modulated (p)Y389 site. In analyses of the EPOR and the associated adaptor protein RHEX (regulator of hemoglobinization and erythroid cell expansion), wt-PTPN18 increased high molecular weight EPOR forms, while sharply inhibiting the EPO-induced phosphorylation of RHEX-pY141. Each effect likewise depended upon PTPN18-Y389. PTPN18 thus promotes signals for EPO-dependent hematopoietic cell growth, and may represent a new druggable target for myeloproliferative neoplasms.


Assuntos
Eritropoese , Eritropoetina/metabolismo , Janus Quinase 2/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/fisiologia , Receptores da Eritropoetina/metabolismo , Linhagem Celular , Humanos , Proteômica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA