RESUMO
BACKGROUND: The ideal treatment for upper ureteric calculi is still debatable, particularly for patients with large, impacted ureteric calculi. Retroperitoneal laparoscopic ureterolithotomy (RLU) may be a worthwhile alternative to open surgery. In this study, we retrospectively evaluated our clinical experience associated with RLU performed for impacted upper ureteric calculi (>1.5 cm) help urologists in clinical practice and provide a reference for clinical work. METHODS: A total of 64 cases (38 males; 26 females) with impacted upper ureteric calculi between April 2018 and January 2020 were analyzed retrospectively. The basic information of the included research subjects are as follows: The mean age was 50.8±25.4 years. The largest stone diameter was 1.8±0.3 cm. The mean stone retention time was 42±11 days. The mean degree of hydronephrosis was 2.8±1.2 cm. RESULTS: The mean operative time was 85.4±18.3 minutes. The mean hospital duration was 7.5±1.8 days. The stone-free rate was 98.4%. Two patients required additional intervention. Post-operative fever developed in 3 patients. The decrease in hemoglobin levels was 7.8±3.6 g/L. The increase in procalcitonin (PCT) level was 3.7±1.8 ng/mL. No major complications, for example, sepsis, bleeding, bowel injury, or cardiopulmonary morbidities, were reported. CONCLUSIONS: RLU should be regarded as an excellent first line treatment modality for impacted upper ureteric calculi (>1.5 cm) owing to the high success rate, low complication rate, and the short length of operative time and hospital duration.
RESUMO
OBJECTIVE: Given the limitations of current anti-resorption agents for postmenopausal osteoporosis, there is a need for alternatives without impairing coupling crosstalk between bone resorption and bone formation ie. osteoclastogenesis. Puerarin, a unique C-glycoside isoflavonoid, was found to be able to prevent bone loss by inhibiting bone resorption, but the underlying mechanism was controversial. In this study, we investigated the effects of puerarin on osteoclastic differentiation, activation and bone resorption and its underlying molecular mechanism in vitro, and then evaluated the effects of puerarin on bone metabolism using an ovariectomized (OVX) rat model. METHODS: In vitro, the effect of puerarin on osteoclastic cytotoxicity, differentiation, apoptosis, activation and function were studied in raw 264.7 âcells and mouse BMMs. Mechanistically, osteoclast-related makers were determined by RT-PCR, western blot, immunofluorescence, and kinase activity assay. In vivo, Micro-CT, histology, serum bone biomarker, and mechanical testing were used to evaluate the effects of puerarin on preventing osteoporosis. RESULTS: Puerarin significantly inhibited osteoclast activation and bone resorption, without affecting osteoclastogenesis or apoptosis. In terms of mechanism, the expressions of protein of integrin-ß3 and phosphorylations of Src, Pyk2 and Cbl were lower in puerarin group than those in the control group. Oral administration of puerarin prevented OVX-induced trabecular bone loss and significantly improved bone strength in rats. Moreover, puerarin significantly decreased trap positive osteoclast numbers and serum TRAP-5b, CTx1, without affecting bone formation rate. CONCLUSIONS: Collectively, puerarin prevented the bone loss in OVX rat through suppression of osteoclast activation and bone resorption, by inhibiting integrin-ß3-Pyk2/Cbl/Src signaling pathway, without affecting osteoclasts formation or apoptosis. TRANSLATIONAL POTENTIAL OF THIS ARTICLE: These results demonstrate the unique mechanism of puerarin on bone metabolism and provide a novel agent for prevention of postmenopausal osteoporosis.
RESUMO
The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2) and S protein is considered an essential target for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. A full-length ACE2 protein could be a potential drug to block early entry of SARS-CoV-2 into host cells. In this study, a therapeutic strategy was developed by using extracellular vesicles (EVs) with decoy receptor ACE2 for neutralization of SARS-CoV-2. The EVs embedded with engineered ACE2 (EVs-ACE2) were prepared; the EVs-ACE2 were derived from an engineered cell line with stable ACE2 expression. The potential effect of the EVs-ACE2 on anti-SARS-CoV-2 was demonstrated by both in vitro and in vivo neutralization experiments using the pseudovirus with the S protein (S-pseudovirus). EVs-ACE2 can inhibit the infection of S-pseudovirus in various cells, and importantly, the mice treated with intranasal administration of EVs-ACE2 can suppress the entry of S-pseudovirus into the mucosal epithelium. Therefore, the intranasal EVs-ACE2 could be a preventive medicine to protect from SARS-CoV-2 infection. This EVs-based strategy offers a potential route to COVID-19 drug development.
RESUMO
Bitter taste perception is mediated by a family of G protein-coupled receptors (T2Rs) in vertebrates. Common carp (Cyprinus carpio), which has experienced an additional round of whole genome duplication during the course of evolution, has a small number of T2R genes similar to zebrafish, a closely related cyprinid fish species, and their expression pattern at the cellular level or their cognate ligands have not been elucidated yet. Here, we showed through in situ hybridization experiments, that three common carp T2R (ccT2R) genes encoding ccT2R200-1, ccT2R202-1, and ccT2R202-2, were specifically expressed in the subsets of taste receptor cells in the lips and gill rakers. ccT2R200-1 was co-expressed with genes encoding downstream signal transduction molecules, such as PLC-ß2 and Gαia. Heterologous expression system revealed that each ccT2R showed narrowly, intermediately, or broadly tuned ligand specificity, as in the case of zebrafish T2Rs. However, ccT2Rs showed different ligand profiles from their orthologous zebrafish T2Rs previously reported. Finally, we identified three ccT2Rs, namely ccT2R200-1, ccT2R200-2, and ccT2R203-1, to be activated by natural bitter compounds, andrographolide and/or picrotoxinin, which elicited no response to zebrafish T2Rs, in a dose-dependent manner. These results suggest that some ccT2Rs may have evolved to function in the oral cavity as taste receptors for natural bitter compounds found in the habitats in a species-specific manner.
RESUMO
Coffee brewed from capsule machines may contain estrogenic chemicals migrated from plastic, but the estrogenic activity of capsule coffee has not been evaluated. This study evaluated the estrogenic activity of capsule coffee using the VM7Luc4E2 estrogen receptor transcriptional activation assay. Estrogenic potentials of six capsule coffee samples were calculated using relative maximum amplitude response of E2 (>15%RME2 indicative of estrogenic activity) and estradiol equivalent factor (EEF). Estrogenic chemical content was determined using ultra-performance liquid chromatography with tandem mass spectrometry. All capsule coffee samples possessed estrogenic activity (48-56%RME2). EEFs were 6-7 orders of magnitude lower than that of E2, (1.2 × 10-7-1.7 × 10-6), indicating substantially weaker estrogenic potencies. Bisphenol A, bisphenol F, benzophenone, 4-nonylphenol, dibutyl phthalate, and dimethyl terephthalate were detected in capsule coffee. Capsule coffee exhibited estrogenic activity in vitro, and its estrogenic chemical content is likely driving its estrogenicity, warranting further investigations to fully understand the degree to which they are related and to predict the estrogenic potential based on the concentration of estrogenic chemicals.
RESUMO
INTRODUCTION: Currently, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can be induced to differentiate at the cellular level but not to form mature tissues or organs suitable for transplantation. ESCs/iPSCs form immature teratomas after injection into immunodeficient mice. In humans, immature teratomas often transform into fully differentiated mature teratomas after administration of anticancer agents. METHODS: We first investigated the ability of cisplatin to induce changes in mouse ESCs/iPSCs in vitro. Next, we designed experiments to analyze ESC/iPSC-derived immature teratoma tissue in vivo after treatment of cisplatin. Groups of six mice carrying ESC- or iPSC-derived teratomas were given either low or high dose intraperitoneal injection of cisplatin, while the control group received saline for 4 weeks. RESULTS: Treatment of ESC/iPSC cultures with cisplatin for 3 days caused a dose-related decrease in cell numbers without inducing any morphological changes to the cells. ESC/iPSC-derived teratomas showed lower growth rates with a significantly higher mature components ratio in a concentration dependent manner after cisplatin treatment (P < 0.05); however, immunohistochemical analyses demonstrated a significantly reduced PCNA labelling index and an increase in an apoptosis marker on immature neural components (P < 0.05) along with emergence of h-Caldesmon+ mature smooth muscle cells in treated mice. Moreover, newly differentiated components not found in the control group, such as mature adipose tissue, cartilage, and pancreas, as well as striated muscle, salivary glands, gastric mucosa with fundic glands, and hair follicles emerged. The identities of these components were confirmed by immunostaining for specific markers. CONCLUSIONS: Cisplatin has the ability to reduce immature components in ESC/iPSC-derived teratomas, presumably through apoptosis, and also to induce them to differentiate.
RESUMO
Introduction: Alzheimer's disease (AD) is a progressive brain disorder, and one of the most common causes of dementia and amnesia. Due to the complex pathogenesis of AD, the underlying mechanisms remain unclear. Although scientists have made increasing efforts to develop drugs for AD, no effective therapeutic agents have been found. Objectives: Natural products and their constituents have shown promise for treating neurodegenerative diseases, including AD. Thus, in-depth study of medical plants, and the main active ingredients thereof against AD, is necessary to devise therapeutic agents. Methods: In this study, N2a/APP cells and SAMP8 mice were employed as in vitro and in vivo models of AD. Multiple molecular biological methods were used to investigate the potential therapeutic actions of oxyphylla A, and the underlying mechanisms. Results: Results showed that oxyphylla A, a novel compound extracted from Alpinia oxyphylla, could reduce the expression levels of amyloid precursor protein (APP) and amyloid beta (Aß) proteins, and attenuate cognitive decline in SAMP8 mice. Further investigation of the underlying mechanisms showed that oxyphylla A exerted an antioxidative effect through the Akt-GSK3ß and Nrf2-Keap1-HO-1 pathways.Conclusions.Taken together, our results suggest a new horizon for the discovery of therapeutic agents for AD.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Caproatos , Cognição , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Cresóis , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-aktRESUMO
Histone lysine specific demethylase 1 (LSD1) has become a potential therapeutic target for the treatment of cancer. Discovery and develop novel and potent LSD1 inhibitors is a challenge, although several of them have already entered into clinical trials. Herein, for the first time, we reported the discovery of a series of 5-cyano-6-phenylpyrimidine derivatives as LSD1 inhibitors using flavin adenine dinucleotide (FAD) similarity-based designing strategy, of which compound 14q was finally identified to repress LSD1 with IC50 = 183 nmol/L. Docking analysis suggested that compound 14q fitted well into the FAD-binding pocket. Further mechanism studies showed that compound 14q may inhibit LSD1 activity competitively by occupying the FAD binding sites of LSD1 and inhibit cell migration and invasion by reversing epithelial to mesenchymal transition (EMT). Overall, these findings showed that compound 14q is a suitable candidate for further development of novel FAD similarity-based LSD1 inhibitors.
RESUMO
The formyl peptide receptor 2 (FPR2) belongs to the family of seven-transmembrane G protein-coupled receptors (GPCR) and are expressed by many different cells but mainly studied in immune cells. FPR2 is involved in host defense against bacterial infections and clearance of damaged cells through the oxidative burst and chemotaxis of neutrophils. In addition, FPR2 has also been implicated as an immunomodulator in sterile inflammations, e.g. inflammatory joint diseases. Here we present data regarding FPR2 expression in human articular chondrocytes, isolated from healthy individuals and osteoarthritic patients, on both mRNA and protein level using qPCR and Imagestream flow cytometry. We also present data after receptor stimulation and monitoring of production of nitric oxide, reactive oxygen species, IL-6, IL-8 and MMP-3. The presented data show that human articular chondrocytes from patients with osteoarthritis as well as from healthy individuals express FPR2 both at mRNA and protein level. The biological relevance of FPR2 expression in chondrocytes needs to be further investigated.
RESUMO
OBJECTIVES: Competitive immunoenyzmatic assays for estradiol (E2) and unconjugated estriol (uE3) on UniCel DxI 800 Access immunoassay systems (Beckman Coulter) utilize bovine alkaline phosphatase (ALP) for amplification. In these assays, rare 'IND' error flags indicate that a relative light unit (RLU) raw result is past the high or low end of the calibration curve but cannot be differentiated from an instrument error or analytical interference. The present studies were conducted to establish a protocol to identify analytical interference and to characterize its mechanism when present. DESIGN AND METHODS: Matrix and recovery studies were conducted to establish a protocol for interference identification. Spiking experiments with inactivated calf intestinal ALP were performed to determine whether interference could be blocked. Commercial anti-ALP antibodies (Abs) were spiked into human serum to model assay interference. Three E2 immunoassays which do not include ALP as a reagent component (cobas e602, Roche; Centaur XP, Siemens; ARCHITECT i2000SR, Abbott) were tested for comparative purposes. RESULTS: 1:2 dilution of specimen into Access Sample Diluent A (Beckman) differentiated IND error flags due to true low results (e.g. less than the analytical measurement range; AMR) from those due to assay interference. Interferences were reduced by pre-incubation with inactivated ALP and could be replicated by spiking with commercial anti-ALP Abs. CONCLUSIONS: Patient anti-bovine ALP Abs can cause interference on DxI 800 E2 and uE3 assays. This model can be used to investigate interference risk with other ALP-dependent assays.
RESUMO
OBJECTIVE: To investigate the development of a minimal traditional Chinese medicine (TCM) formula using selected TCM ingredients and evaluating their biological activity with bone-specific in vitro tests. Finally, determining if the minimal formula can maintain bone mineral density (BMD) in a low bone mass (LBM)/osteoporosis (OP) model system. METHODS AND RESULTS: Sixteen different TCM plant extracts were tested for estrogenic, osteogenic and osteoclastic activities. Despite robust activation of the full-length estrogen receptors α and ß by Psoralea corylifolia and Epimedium brevicornu, these extracts do not activate the isolated estrogen ligand binding domains (LBD) of either ERα or ERß; estrogen (17-ß estradiol) fully activates the LBD of ERα and ERß. E. brevicornu and Drynaria fortunei extracts activated cyclic AMP response elements (CRE) individually and when combined these ingredients stimulated the production of osteoblastic markers Runx2 and Bmp4 in MC3T3-E1 cells. E. brevicornu, Salvia miltiorrhiza, and Astragalus onobrychis extracts inhibited the Il-1ß mediated activation of NF-κß and an E. brevicornu/D. fortunei combination inhibited the development of osteoclasts from precursor cells. Further, a minimal formula containing the E. brevicornu/D. fortunei combination with or without a third ingredient (S. miltiorrhiza, Angelica sinensis, or Lycium barbarum) maintained bone mineral density (BMD) similar to an estradiol-treated control group in the ovariectomized rat; a model LBM/OP system. CONCLUSION: A minimal formula consisting of TCM plant extracts that activate CRE and inhibit of NF-κß activation, but do not behave like estrogen, maintain BMD in a LBM/OP model system.
RESUMO
INTRODUCTION: Biomedical applications of nanoparticles (NPs) as enzyme inhibitors have recently come to light. Oxides of metals native to the physiological environment (eg, Fe, Zn, Mg, etc.) are of particular interest-especially the functional consequences of their enzyme interaction. MATERIALS AND METHODS: Here, Fe2O3, zinc oxide (ZnO), magnesium oxide (MgO) and nickel oxide (NiO) NPs are compared to copper (Cu) and boron carbide (B4C) NPs. The functional impact of NP interaction to the model enzyme luciferase is determined by 2-dimensional fluorescence difference spectroscopy (2-D FDS) and 2-dimensional photoluminescence difference spectroscopy (2-D PLDS). By 2-D FDS analysis, the change in maximal intensity and in 2-D FDS area under the curve (AUC) is in the order Cu~B4C>ZnO>NiO>>Fe2O3>MgO. The induced changes in protein conformation are confirmed by tryptic digests and gel electrophoresis. RESULTS: Analysis of possible trypsin cleavage sites suggest that cleavage mostly occurs in the range of residues 112-155 and 372-439, giving a major 45 kDa band. By 2-D PLDS, it is found that B4C NPs completely ablate bioluminescence, while Cu and Fe2O3 NPs yield a unique bimodal negative decay rate, -7.67×103 and -3.50×101 relative light units respectively. Cu NPs, in particular, give a remarkable 271% change in enzyme activity. Molecular dynamics simulations in water predicted that the surfaces of metal oxide NPs become capped with metal hydroxide groups under physiological conditions, while the surface of B4C becomes populated with boronic acid or borinic acid groups. These predictions are supported by the experimentally determined zeta potential. Thin layer chromatography patterns further support this conception of the NP surfaces, where stabilizing interactions were in the order ionic>polar>non-polar for the series tested. CONCLUSION: Overall the results suggest that B4C and Cu NP functional dynamics on enzyme biochemistry are unique and should be examined further for potential ramifications on other model, physiological or disease-relevant enzymes.
Assuntos
Luciferases/metabolismo , Nanopartículas Metálicas/química , Células 3T3 , Animais , Área Sob a Curva , Compostos de Boro/química , Dicroísmo Circular , Cobre/química , Luciferina de Vaga-Lumes/metabolismo , Cinética , Nanopartículas Metálicas/ultraestrutura , Camundongos , Modelos Moleculares , Óxidos/química , Espectrometria de FluorescênciaRESUMO
BACKGROUND: Dipeptidyl peptidase-4 (DPP-4) may be a suitable biomarker to identify people with severe asthma who have greater activation of the interleukin-13 (IL-13) pathway and may therefore benefit from IL-13-targeted treatments. We report the analytical performance of an Investigational Use Only immunoassay and provide data on the biological range of DPP-4 concentrations. METHODS: We assessed assay performance, utilising analyses of precision, linearity and sensitivity; interference from common endogenous assay interferents, and from asthma and anti-diabetic medications, were also assessed. The assay was used to measure the range of serum DPP-4 concentrations in healthy volunteers and subjects with diabetes and severe, uncontrolled asthma. RESULTS: The total precision of DPP-4 concentration measurement (determined using percentage coefficient of variation) was ≤5% over 20 days. Dilution analysis yielded linear results from 30 to 1305 ng/mL; the limit of quantitation was 19.2 ng/mL. No notable endogenous or drug interferences were observed at the expected therapeutic concentration. Median DPP-4 concentrations in healthy volunteers and subjects with asthma or Type 1 diabetes were assessed, with concentrations remaining similar in subjects with diabetes and asthma across different demographics. CONCLUSION: These analyses indicate that the ARCHITECT DPP-4 Immunoassay is a reliable and robust method for measuring serum DPP-4 concentration.
RESUMO
Alzheimer's disease (AD) is a neurodegenerative disease that causes progressive loss of cognitive functions, leading to dementia. Two types of lesions are found in AD brains: neurofibrillary tangles and senile plaques. The latter are composed mainly of the ß-amyloid peptide (Aß) generated by amyloidogenic processing of the amyloid precursor protein (APP). Several studies have suggested that dimerization of APP is closely linked to Aß production. Nevertheless, the mechanisms controlling APP dimerization and their role in APP function are not known. Here we used a new luciferase complementation assay to analyze APP dimerization and unravel the involvement of its three major domains: the ectodomain, the transmembrane domain and the intracellular domain. Our results indicate that within cells full-length APP dimerizes more than its α and ß C-terminal fragments, confirming the pivotal role of the ectodomain in this process. Dimerization of the APP transmembrane (TM) domain has been reported to regulate processing at the γ-cleavage site. We show that both non-familial and familial AD mutations in the TM GXXXG motifs strongly modulate Aß production, but do not consistently change dimerization of the C-terminal fragments. Finally, we found for the first time that removal of intracellular domain strongly increases APP dimerization. Increased APP dimerization is linked to increased non-amyloidogenic processing.
RESUMO
A thermostable adenylate kinase (tAK) has been used as model protein contaminant on surfaces, so used because residual protein after high temperature wash steps can be detected at extremely low concentrations. This gives the potential for accurate, quantitative measurement of the effectiveness of different wash processes in removing protein contamination. Current methods utilise non-covalent (physisorbtion) of tAK to surfaces, but this can be relatively easily removed. In this study, the covalent binding of tAK to surfaces was studied to provide an alternative model for surface contamination. Kinetic analysis showed that the efficiency of the enzyme expressed as the catalytic rate over the Michaelis constant (kcat/KM) increased from 8.45±3.04 mM-1 s-1 in solution to 32.23±3.20 or 24.46±4.41 mM-1 s-1 when the enzyme was immobilised onto polypropylene or plasma activated polypropylene respectively. Maleic anhydride plasma activated polypropylene showed potential to provide a more robust challenge for washing processes as it retained significantly higher amounts of tAK enzyme than polypropylene in simple washing experiments. Inhibition of the coupled enzyme (luciferase/luciferin) system used for the detection of adenylate kinase activity, was observed for a secondary product of the reaction. This needs to be taken into consideration when using the assay to estimate cleaning efficacy.
RESUMO
MicroRNA (miRNA) genes generally share many features common to those of protein coding genes. Various transcription factors (TFs) and co-regulators are also known to regulate miRNA genes. Here we identify novel p53 and NFκB p65/RelA responsive miRNAs and demonstrate that these 2 TFs bind to the regulatory sequences of miR-100, -146a and -150 in both mouse striatal and human cervical carcinoma cells and regulate their expression. p53 represses the miRNAs while NFκB p65/RelA induces them. Further, we provide evidence that exogenous p53 inhibits NFκB p65/RelA activity by reducing its nuclear content and competing with it for CBP binding. This suggests for the existence of a functional cross-talk between the 2 TFs in regulating miRNA expression. Moreover, promoter occupancy assay reveals that exogenous p53 excludes NFκB p65/RelA from its binding site in the upstream sequence of miR-100 gene thereby causing its repression. Thus, our work identifies novel p53 and NFκB p65/RelA responsive miRNAs in human and mouse and uncovers possible mechanisms of co-regulation of miR-100. It is to be mentioned here that cross-talks between p53 and NFκB p65/RelA have been observed to define the outcome of several biological processes and that the pro-apoptotic effect of p53 and the pro-survival functions of NFκB can be largely mediated via the biological roles of the miRNAs these TFs regulate. Our observation with cell lines thus provides an important platform upon which further work is to be done to establish the biological significance of such co-regulation of miRNAs by p53 and NFκB p65/RelA.
Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Fator de Transcrição RelA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Células HeLa , Humanos , Camundongos , MicroRNAs/metabolismo , Regiões Promotoras GenéticasRESUMO
To assess immunogenicity and development of antibodies in the context of vaccination, it is critical to quantify titers of neutralizing antibodies. We have been employing the 293TT cell-based neutralization assay system to quantify anti-HPV neutralizing antibodies. In this system, human papillomavirus (HPV) pseudovirion (PsV) particles encapsidating secreted alkaline phosphatase (SEAP) gene are used to measure infection of 293TT cells in 72-hr cell-culture supernatants. SEAP has traditionally been measured by Great EscAPe™ SEAP Chemiluminescence Kit 2.0 (GE). To reduce the cost, and to potentially increase efficiency, we sought a cheaper kit with better detection capability. Performance characteristics of the newer chemiluminescence kit, ZiVa® Ultra SEAP Plus Assay (Ziva) and GE were compared using the 293TT system. Dose titration of HPV PsV 16 or 18 showed that signal-to-noise ratios at 48 and 72 hr post-infection were higher for ZiVa at nearly all doses. ZiVa was superior to GE as it was able to detect SEAP at 48 hr, as well as when lower numbers of 293TT cells were used. The ability of ZiVa to quantitate HPV-16 and -18 neutralizing antibody titers was tested using sera from Cervarix® immunized individuals. Spearman rank correlational analyses showed excellent correlations between the titers obtained with ZiVa and GE for anti-HPV16 (r = 0.9822, p < 0.0001) and anti-HPV18 (r = 0.9832, p < 0.0001) antibodies. We concluded that ZiVa is superior to GE in detecting SEAP, and the antibody titers in sera of vaccinated individuals were similar to those obtained with GE. Thus, Ziva is a suitable alternative to GE.
Assuntos
Fosfatase Alcalina/análise , Anticorpos Neutralizantes/sangue , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 18/imunologia , Testes de Neutralização/métodos , Vacinas contra Papillomavirus/imunologia , Criança , Feminino , Humanos , Vacinas contra Papillomavirus/administração & dosagem , Virossomos/imunologiaRESUMO
Hydrodynamics-based gene delivery (HGD) is a widely recognized technique for delivering exogenous DNA with high efficiency to murine hepatocytes. In this study, we investigated stimulation of exogenous DNA uptake and expression using a commercially available reagent for HGD. We also examined which mouse strain and mouse liver lobe would achieve the best gene delivery performance. Mice were injected with a solution containing reporter plasmid DNA or DNA and a gene delivery reagent. One day after the HGD procedure, liver samples were isolated and subjected to biochemical and histochemical analyses. The reporter plasmid DNA showed the strongest signal when the DNA was dissolved in TransIT-EE Hydrodynamic Delivery Solution (Takara Bio Inc., Shiga, Japan). Evaluation of transgene expression in each hepatic lobe in ICR, C57BL/6N, Balb/cA, and B6C3F1 mice showed that ICR mice exhibited the best gene transfer and that the right median lobe had the highest level of transgene expression. These findings suggest the importance of choice in mouse strains and liver lobes when performing gene-based manipulations of the liver.
Assuntos
Técnicas de Transferência de Genes , Fígado/fisiologia , Animais , Expressão Gênica , Fígado/química , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Especificidade da EspécieRESUMO
Autophagy has been implicated in the progression and chemoresistance of various cancers. In this study, we have shown that osteosarcoma Saos-2 cells lacking ATG4B, a cysteine proteinase that activates LC3B, are defective in autophagy and fail to form tumors in mouse models. By combining in silico docking with in vitro and cell-based assays, we identified small compounds that suppressed starvation-induced protein degradation, LC3B lipidation, and formation of autophagic vacuoles. NSC185058 effectively inhibited ATG4B activity in vitro and in cells while having no effect on MTOR and PtdIns3K activities. In addition, this ATG4B antagonist had a negative impact on the development of Saos-2 osteosarcoma tumors in vivo. We concluded that tumor suppression was due to a reduction in ATG4B activity, since we found autophagy suppressed within treated tumors and the compound had no effects on oncogenic protein kinases. Our findings demonstrate that ATG4B is a suitable anti-autophagy target and a promising therapeutic target to treat osteosarcoma.
Assuntos
Aminopiridinas/farmacologia , Autofagia , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Regulação Neoplásica da Expressão Gênica , Osteossarcoma/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Domínio Catalítico , Linhagem Celular Tumoral , Simulação por Computador , Feminino , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Lipídeos/química , Camundongos , Camundongos Nus , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismoRESUMO
Defects in the regulation of apoptosis are one main cause of cancer development and may result from overexpression of anti-apoptotic proteins such as the X-linked inhibitor of apoptosis protein (XIAP). XIAP is frequently overexpressed in human leukemia and prostate and breast tumors. Inhibition of apoptosis by XIAP is mainly coordinated through direct binding to the initiator caspase-9 via its baculovirus-IAP-repeat-3 (BIR3) domain. XIAP inhibits caspases directly making it to an attractive target for anti-cancer therapy. In the search for novel, non-peptidic XIAP inhibitors in this study we focused on the chemical constituents of sang bái pí (mulberry root bark). Most promising candidates of this plant were tested biochemically in vitro by a fluorescence polarization (FP) assay and in vivo via protein fragment complementation analysis (PCA). We identified the Diels Alder adduct Sanggenon G (SG1) as a novel, small-molecular weight inhibitor of XIAP. As shown by FP and PCA analyses, SG1 binds specifically to the BIR3 domain of XIAP with a binding affinity of 34.26 µM. Treatment of the transgenic leukemia cell line Molt3/XIAP with SG1 enhances caspase-8, -3 and -9 cleavage, displaces caspase-9 from XIAP as determined by immunoprecipitation experiments and sensitizes these cells to etoposide-induced apoptosis. SG1 not only sensitizes the XIAP-overexpressing leukemia cell line Molt3/XIAP to etoposide treatment but also different neuroblastoma cell lines endogenously expressing high XIAP levels. Taken together, Sanggenon G (SG1) is a novel, natural, non-peptidic, small-molecular inhibitor of XIAP that can serve as a starting point to develop a new class of improved XIAP inhibitors.