Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.144
Filtrar
1.
bioRxiv ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39091740

RESUMO

Coronavirus relevancy for human health has surged over the past 20 years as they have a propensity for spillover into humans from animal reservoirs resulting in pandemics such as COVID-19. The diversity within the Coronavirinae subfamily and high infection frequency in animal species worldwide creates a looming threat that calls for research across all genera within the Coronavirinae subfamily. We sought to contribute to the limited structural knowledge within the Gammacoronavirus genera and determined the structure of the viral core replication-transcription complex (RTC) from Infectious Bronchitis Virus (IBV) using single-particle cryo-EM. Comparison between our IBV structure with published RTC structures from other Coronavirinae genera reveals structural differences across genera. Using in vitro biochemical assays, we characterized these differences and revealed their differing involvement in core RTC formation across different genera. Our findings highlight the value of cross-genera Coronavirinae studies, as they show genera specific features in coronavirus genome replication. A broader knowledge of coronavirus replication will better prepare us for future coronavirus spillovers.

2.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-39172545

RESUMO

BACKGROUND: The high-throughput sequencing technologies have revolutionized the identification of novel RNA viruses. Given that viruses are infectious agents, identifying hosts of these new viruses carries significant implications for public health and provides valuable insights into the dynamics of the microbiome. However, determining the hosts of these newly discovered viruses is not always straightforward, especially in the case of viruses detected in environmental samples. Even for host-associated samples, it is not always correct to assign the sample origin as the host of the identified viruses. The process of assigning hosts to RNA viruses remains challenging due to their high mutation rates and vast diversity. RESULTS: In this study, we introduce RNAVirHost, a machine learning-based tool that predicts the hosts of RNA viruses solely based on viral genomes. RNAVirHost is a hierarchical classification framework that predicts hosts at different taxonomic levels. We demonstrate the superior accuracy of RNAVirHost in predicting hosts of RNA viruses through comprehensive comparisons with various state-of-the-art techniques. When applying to viruses from novel genera, RNAVirHost achieved the highest accuracy of 84.3%, outperforming the alignment-based strategy by 12.1%. CONCLUSIONS: The application of machine learning models has proven beneficial in predicting hosts of RNA viruses. By integrating genomic traits and sequence homologies, RNAVirHost provides a cost-effective and efficient strategy for host prediction. We believe that RNAVirHost can greatly assist in RNA virus analyses and contribute to pandemic surveillance.


Assuntos
Genoma Viral , Aprendizado de Máquina , Vírus de RNA , Vírus de RNA/genética , Vírus de RNA/classificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Computacional/métodos , Software
3.
Virus Evol ; 10(1): veae058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39129834

RESUMO

Negative sense RNA viruses (NSV) include some of the most detrimental human pathogens, including the influenza, Ebola, and measles viruses. NSV genomes consist of one or multiple single-stranded RNA molecules that are encapsidated into one or more ribonucleoprotein (RNP) complexes. These RNPs consist of viral RNA, a viral RNA polymerase, and many copies of the viral nucleoprotein (NP). Current evolutionary relationships within the NSV phylum are based on the alignment of conserved RNA-dependent RNA polymerase (RdRp) domain amino acid sequences. However, the RdRp domain-based phylogeny does not address whether NP, the other core protein in the NSV genome, evolved along the same trajectory or whether several RdRp-NP pairs evolved through convergent evolution in the segmented and non-segmented NSV genome architectures. Addressing how NP and the RdRp domain evolved may help us better understand NSV diversity. Since NP sequences are too short to infer robust phylogenetic relationships, we here used experimentally obtained and AlphaFold 2.0-predicted NP structures to probe whether evolutionary relationships can be estimated using NSV NP sequences. Following flexible structure alignments of modeled structures, we find that the structural homology of the NSV NPs reveals phylogenetic clusters that are consistent with RdRp-based clustering. In addition, we were able to assign viruses for which RdRp sequences are currently missing to phylogenetic clusters based on the available NP sequence. Both our RdRp-based and NP-based relationships deviate from the current NSV classification of the segmented Naedrevirales, which cluster with the other segmented NSVs in our analysis. Overall, our results suggest that the NSV RdRp and NP genes largely evolved along similar trajectories and even short pieces of genetic, protein-coding information can be used to infer evolutionary relationships, potentially making metagenomic analyses more valuable.

4.
Microbiol Spectr ; : e0082924, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166862

RESUMO

The heterogeneous nuclear ribonucleoprotein (hnRNP A2B1) is a key component of the hnRNP complex involving RNA modulation in eukaryotic cells and it has also been reported to be involved in the replication of the hepatitis E virus, influenza A virus, and hepatitis B virus. However, it is not clear whether the role of the hnRNP A2B1 in viral replication is conserved among RNA viruses and what is the mechanism of hnRNP A2B1 in RNA virus replication. In this study, we first used severe fever with thrombocytopenia syndrome virus (SFTSV), a tick-borne RNA virus that causes a severe viral hemorrhagic fever as well as other RNA viruses including VSV-GFP, SeV, EV71, and ZIKV to demonstrate that knockout hnRNPA2B1 gene inhibited viral RNA replication and overexpression of hnRNP A2B1 could restore the RNA levels of all tested RNA viruses. These results suggest that hnRNPA2B1 upregulation of viral replication is conserved among RNA viruses. Next, we demonstrated that hnRNP A2B1 was translocated from the nucleus to the cytoplasm under RNA virus infection including SFTSV, VSV-GFP, SeV, EV71, and ZIKV, suggesting translocation of hnRNP A2B1 from the nucleus to the cytoplasm is crucial for RNA virus replication. We then used SFTSV as a model to demonstrate the mechanism of hnRNP A2B1 in the promotion of RNA virus replication. We found that overexpression of SFTSV nucleoprotein can also cause hnRNP A2B1 translocation from the nucleus to the cytoplasm and that the SFTSV NP interacted with the RNA recognition motif 1 domain of hnRNP A2B1. We further demonstrated that the hnRNP A2B1 interacted with the 5' UTR of SFTSV RNA. In conclusion, we revealed that the hnRNP A2B1 upregulation of viral RNA replication is conserved among RNA viruses; the mechanism of hnRNP A2B1 in promotion of SFTSV viral RNA replication is that SFTSV NP interacted with the hnRNPA2B1 to retain it in the cytoplasm where the hnRNP A2B1 interacted with the 5' UTR of SFTSV RNA to promote the viral RNA replication.IMPORTANCESevere fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne RNA virus with a high mortality rate of up to 30%. In this study, we first used SFTSV as a model to demonstrate that the role of hnRNPA2B1 in viral replication is conserved in SFTSV. Then we used other RNA viruses, including VSV-GFP, SeV, EV71, and ZIKV, to repeat the experiment and demonstrated the same results as SFTSV in all tested RNA viruses. By knocking out the hnRNPA2B1 gene, SFTSV RNA replication was inhibited, and overexpression of hnRNPA2B1 restored RNA levels of SFTSV and other tested RNA viruses. We revealed a novel mechanism where the SFTSV nucleoprotein interacts with hnRNPA2B1, retaining it in the cytoplasm. This interaction promotes viral RNA replication by binding to the 5' UTR of SFTSV RNA. The findings suggest that targeting hnRNPA2B1 could be a potential strategy for developing broad-spectrum antiviral therapies, given its conserved role across different RNA viruses. This research provides significant insights into the replication mechanisms of RNA viruses and highlights potential targets for antiviral interventions.

5.
Viruses ; 16(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39066276

RESUMO

Swine acute diarrhoea syndrome coronavirus (SADS-CoV; Coronaviridae, Rhinacovirus) was detected in 2017 in Guangdong Province (China), where it caused high mortality rates in piglets. According to previous studies, SADS-CoV evolved from horseshoe bat reservoirs. Here, we report the first five Rhinacovirus genomes sequenced in horseshoe bats from Vietnam and their comparisons with data published in China. Our phylogenetic analyses provided evidence for four groups: rhinacoviruses from Rhinolphus pusillus bats, including one from Vietnam; bat rhinacoviruses from Hainan; bat rhinacoviruses from Yunnan showing a divergent synonymous nucleotide composition; and SADS-CoV and related bat viruses, including four rhinacoviruses from Vietnam sampled in Rhinolophus affinis and Rhinolophus thomasi. Our phylogeographic analyses showed that bat rhinacoviruses from Dien Bien (Vietnam) share more affinities with those from Yunnan (China) and that the ancestor of SADS-CoVs arose in Rhinolophus affinis circulating in Guangdong. We detected sequencing errors and artificial chimeric genomes in published data. The two SADS-CoV genomes previously identified as recombinant could also be problematic. The reliable data currently available, therefore, suggests that all SADS-CoV strains originate from a single bat source and that the virus has been spreading in pig farms in several provinces of China for at least seven years since the first outbreak in August 2016.


Assuntos
Alphacoronavirus , Quirópteros , Infecções por Coronavirus , Genoma Viral , Filogenia , Doenças dos Suínos , Animais , Quirópteros/virologia , Vietnã/epidemiologia , China/epidemiologia , Suínos , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia , Alphacoronavirus/genética , Alphacoronavirus/classificação , Alphacoronavirus/isolamento & purificação , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/epidemiologia , Evolução Molecular , Filogeografia
6.
Viruses ; 16(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39066314

RESUMO

Rice sheath blight, caused by the soil-borne fungus Rhizoctonia solani (teleomorph: Thanatephorus cucumeris, Basidiomycota), is one of the most devastating phytopathogenic fungal diseases and causes yield loss. Here, we report on a very high prevalence (100%) of potential virus-associated double-stranded RNA (dsRNA) elements for a collection of 39 fungal strains of R. solani from the rice sheath blight samples from at least four major rice-growing areas in the Philippines and a reference isolate from the International Rice Research Institute, showing different colony phenotypes. Their dsRNA profiles suggested the presence of multiple viral infections among these Philippine R. solani populations. Using next-generation sequencing, the viral sequences of the three representative R. solani strains (Ilo-Rs-6, Tar-Rs-3, and Tar-Rs-5) from different rice-growing areas revealed the presence of at least 36 viruses or virus-like agents, with the Tar-Rs-3 strain harboring the largest number of viruses (at least 20 in total). These mycoviruses or their candidates are believed to have single-stranded RNA or dsRNA genomes and they belong to or are associated with the orders Martellivirales, Hepelivirales, Durnavirales, Cryppavirales, Ourlivirales, and Ghabrivirales based on their coding-complete RNA-dependent RNA polymerase sequences. The complete genome sequences of two novel RNA viruses belonging to the proposed family Phlegiviridae and family Mitoviridae were determined.


Assuntos
Oryza , Filogenia , Doenças das Plantas , Vírus de RNA , Rhizoctonia , Rhizoctonia/virologia , Rhizoctonia/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Oryza/microbiologia , Oryza/virologia , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/classificação , Genoma Viral , RNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA de Cadeia Dupla/genética , Micovírus/genética , Micovírus/classificação , Micovírus/isolamento & purificação , Filipinas , Transcriptoma
7.
mSphere ; : e0034524, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072615

RESUMO

Rhizopus microsporus is a species in the order Mucorales that is known to cause mucormycosis, but it is poorly understood as a host of viruses. Here, we examined 25 clinical strains of R. microsporus for viral infection with a conventional double-stranded RNA (dsRNA) assay using agarose gel electrophoresis (AGE) and the recently established fragmented and primer-ligated dsRNA sequencing (FLDS) protocol. By AGE, five virus-infected strains were detected. Then, full-length genomic sequences of 12 novel RNA viruses were revealed by FLDS, which were related to the families Mitoviridae, Narnaviridae, and Endornaviridae, ill-defined groups of single-stranded RNA (ssRNA) viruses with similarity to the established families Virgaviridae and Phasmaviridae, and the proposed family "Ambiguiviridae." All the characterized viruses, except a potential phasmavirid with a negative-sense RNA genome, had positive-sense RNA genomes. One virus belonged to a previously established species within the family Mitoviridae, whereas the other 11 viruses represented new species or even new genera. These results show that the fungal pathogen R. microsporus harbors diverse RNA viruses and extend our understanding of the diversity of RNA viruses in the fungal order Mucorales, division Mucoromycota. Identifying RNA viruses from clinical isolates of R. microsporus may expand the repertoire of natural therapeutic agents for mucormycosis in the future.IMPORTANCEThe diversity of mycoviruses in fungal hosts in the division Mucoromycota has been underestimated, mainly within the species Rhizopus microsporus. Only five positive-sense RNA genomes had previously been discovered in this species. Because current sequencing methods poorly complete the termini of genomes, we used fragmented and primer-ligated double-stranded RNA sequencing to acquire the full-length genomes. Eleven novel mycoviruses were detected in this study, including the first negative-sense RNA genome reported in R. microsporus. Our findings extend the understanding of the viral diversity in clinical strains of Mucoromycota, may provide insights into the pathogenesis and ecology of this fungus, and may offer therapeutic options.

8.
Insect Mol Biol ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39072811

RESUMO

Iflavirus aladeformis (Picornavirales: Iflaviridae), commonly known as deformed wing virus(DWV), in association with Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae), is a leading factor associated with honey bee (Apis mellifera L. [Hymenoptera: Apidae]) deaths. The virus and mite have a near global distribution, making it difficult to separate the effect of one from the other. The prevalence of two main DWV genotypes (DWV-A and DWV-B) has changed over time, leading to the possibility that the two strains elicit a different immune response by the host. Here, we use a honey bee population naïve to both the mite and the virus to investigate if honey bees show a different immunological response to DWV genotypes. We examined the expression of 19 immune genes by reverse transcription quantitative PCR (RT-qPCR) and analysed small RNA after experimental injection with DWV-A and DWV-B. We found no evidence that DWV-A and DWV-B elicit different immune responses in honey bees. RNA interference genes were up-regulated during DWV infection, and small interfering RNA (siRNA) responses were proportional to viral loads yet did not inhibit DWV accumulation. The siRNA response towards DWV was weaker than the response to another honey bee pathogen, Triatovirus nigereginacellulae (Picornavirales: Dicistroviridae; black queen cell virus), suggesting that DWV is comparatively better at evading host antiviral defences. There was no evidence for the production of virus-derived Piwi-interacting RNAs (piRNAs) in response to DWV. In contrast to previous studies, and in the absence of V. destructor, we found no evidence that DWV has an immunosuppressive effect. Overall, our results advance our understanding of the immunological effect that DWV in isolation elicits in honey bees.

9.
Vet Sci ; 11(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39058005

RESUMO

Three genera of viruses of the family Totiviridae establish endosymbiotic associations with flagellated protozoa responsible for parasitic diseases of great impact in the context of One Health. Giardiavirus, Trichomonasvirus, and Leishmaniavirus infect the protozoa Giardia sp., Trichomonas vaginalis, and Leishmania sp., respectively. In the present work, we review the characteristics of the endosymbiotic relationships established, the advantages, and the consequences caused in mammalian hosts. Among the common characteristics of these double-stranded RNA viruses are that they do not integrate into the host genome, do not follow a lytic cycle, and do not cause cytopathic effects. However, in cases of endosymbiosis between Leishmaniavirus and Leishmania species from the Americas, and between Trichomonasvirus and Trichomonas vaginalis, it seems that it can alter their virulence (degree of pathogenicity). In a mammalian host, due to TLR3 activation of immune cells upon the recognition of viral RNA, uncontrolled inflammatory signaling responses are triggered, increasing pathological damage and the risk of failure of conventional standard treatment. Endosymbiosis with Giardiavirus can cause the loss of intestinal adherence of the protozoan, resulting in a benign disease. The current knowledge about viruses infecting flagellated protozoans is still fragmentary, and more research is required to unravel the intricacies of this three-way relationship. We need to develop early and effective diagnostic methods for further development in the field of translational medicine. Taking advantage of promising biotechnological advances, the aim is to develop ad hoc therapeutic strategies that focus not only on the disease-causing protozoan but also on the virus.

10.
Methods Mol Biol ; 2824: 67-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039406

RESUMO

RT-qPCR allows the detection of viruses and the monitoring of viral replication. This technique was extensively employed during the SARS-CoV-2 pandemic, where it demonstrated its efficiency and robustness. Here we describe the analysis of Rift Valley fever and Toscana virus infections over time, achieved through the RT-qPCR quantification of the viral genome. We further elaborate on the method to discriminate between genomic and antigenomic viral RNAs by using primers specific for each strand during the reverse transcription step.


Assuntos
RNA Viral , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vírus da Febre do Vale do Rift/genética , RNA Viral/genética , Febre do Vale de Rift/virologia , Febre do Vale de Rift/diagnóstico , Humanos , Genoma Viral , Reação em Cadeia da Polimerase em Tempo Real/métodos , Replicação Viral/genética , Animais
11.
J Virol ; 98(8): e0061824, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39023323

RESUMO

Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus that has been associated with congenital neurological defects in fetuses born to infected mothers. At present, no vaccine or antiviral therapy is available to combat this devastating disease. Repurposing drugs that target essential host factors exploited by viruses is an attractive therapeutic approach. Here, we screened a panel of clinically approved small-molecule kinase inhibitors for their antiviral effects against a clinical isolate of ZIKV and thoroughly characterized their mechanisms of action. We found that the Raf kinase inhibitors Dabrafenib and Regorafenib potently impair the replication of ZIKV, but not that of its close relative dengue virus. Time-of-addition experiments showed that both inhibitors target ZIKV infection at post-entry steps. We found that Dabrafenib, but not Regorafenib, interfered with ZIKV genome replication by impairing both negative- and positive-strand RNA synthesis. Regorafenib, on the other hand, altered steady-state viral protein levels, viral egress, and blocked NS1 secretion. We also observed Regorafenib-induced ER fragmentation in ZIKV-infected cells, which might contribute to its antiviral effects. Because these inhibitors target different steps of the ZIKV infection cycle, their use in combination therapy may amplify their antiviral effects which could be further explored for future therapeutic strategies against ZIKV and possibly other flaviviruses. IMPORTANCE: There is an urgent need to develop effective therapeutics against re-emerging arboviruses associated with neurological disorders like Zika virus (ZIKV). We identified two FDA-approved kinase inhibitors, Dabrafenib and Regorafenib, as potent inhibitors of contemporary ZIKV strains at distinct stages of infection despite overlapping host targets. Both inhibitors reduced viral titers by ~1 to 2 log10 (~10-fold to 100-fold) with minimal cytotoxicity. Furthermore, we show that Dabrafenib inhibits ZIKV RNA replication whereas Regorafenib inhibits ZIKV translation and egress. Regorafenib has the added benefit of limiting NS1 secretion, which contributes to the pathogenesis and disease progression of several flaviviruses. Because these inhibitors affect distinct post-entry steps of ZIKV infection, their therapeutic potential may be amplified by combination therapy and likely does not require prophylactic administration. This study provides further insight into ZIKV-host interactions and has implications for the development of novel antivirals against ZIKV and possibly other flaviviruses.


Assuntos
Antivirais , Imidazóis , Oximas , Compostos de Fenilureia , Inibidores de Proteínas Quinases , Piridinas , Replicação Viral , Infecção por Zika virus , Zika virus , Replicação Viral/efeitos dos fármacos , Oximas/farmacologia , Zika virus/efeitos dos fármacos , Piridinas/farmacologia , Humanos , Imidazóis/farmacologia , Infecção por Zika virus/virologia , Infecção por Zika virus/tratamento farmacológico , Chlorocebus aethiops , Animais , Compostos de Fenilureia/farmacologia , Células Vero , Antivirais/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular , Vírus da Dengue/efeitos dos fármacos
12.
Arch Virol ; 169(7): 144, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864951

RESUMO

A novel waikavirus, tentatively named "Pittosporum tobira waikavirus" (PtWV), was identified in Pittosporum tobira plants exhibiting mosaic and ringspot symptoms on foliage in Yunnan, China. The full-length genomic sequence was determined by high-throughput sequencing and rapid amplification of cDNA ends. The genome of PtWV is 12,709 nt in length and has a large open reading frame (ORF) of 11,010 nt, encoding a polyprotein, and a small ORF that encodes a 13.2-kDa bellflower vein chlorosis virus (BVCV)-like protein. Phylogenetic analysis and sequence alignment revealed that PtWV is closely related to actinidia yellowing virus 1 (AcYV1), which shares the highest amino acid (aa) sequence similarity (50.1% identity) in the Pro-RdRp region. To the best of our knowledge, this is the first report of a novel waikavirus in P. tobira.


Assuntos
Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , Waikavirus , China , Doenças das Plantas/virologia , Genoma Viral/genética , Waikavirus/genética , Waikavirus/isolamento & purificação , Waikavirus/classificação , Proteínas Virais/genética , RNA Viral/genética , Sequência de Aminoácidos , Sequenciamento de Nucleotídeos em Larga Escala
13.
Microbiol Resour Announc ; 13(7): e0014624, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38917449

RESUMO

Complete genome data for the globally distributed Aedes flavivirus (AEFV) is scarce. We analyzed a new Italian AEFV strain isolated from Aedes albopictus. The results demonstrated genetic diversity among Italian AEFVs. The high similarity between AEFV genomes across geographically distant regions suggests long distance spreading via invasive host mosquito species.

14.
Front Plant Sci ; 15: 1385169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895613

RESUMO

Plant viruses cause substantial losses in crop yield and quality; therefore, devising new, robust strategies to counter viral infections has important implications for agriculture. Virus inhibitory protein endoplasmic reticulum-associated interferon-inducible (Viperin) proteins are conserved antiviral proteins. Here, we identified a set of Viperin and Viperin-like proteins from multiple species and tested whether they could interfere with RNA viruses in planta. Our data from transient and stable overexpression of these proteins in Nicotiana benthamiana reveal varying levels of interference against the RNA viruses tobacco mosaic virus (TMV), turnip mosaic virus (TuMV), and potato virus x (PVX). Harnessing the potential of these proteins represents a novel avenue in plant antiviral approaches, offering a broader and more effective spectrum for application in plant biotechnology and agriculture. Identifying these proteins opens new avenues for engineering a broad range of resistance to protect crop plants against viral pathogens.

15.
Adv Virus Res ; 119: 39-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38897708

RESUMO

RNA viruses are some of the most successful biological entities due their ability to adapt and evolve. Despite their small genome and parasitic nature, RNA viruses have evolved many mechanisms to ensure their survival and maintenance in the host population. We propose that one of these mechanisms of survival is the generation of nonstandard viral genomes (nsVGs) that accumulate during viral replication. NsVGs are often considered to be accidental defective byproducts of the RNA virus replication, but their ubiquity and the plethora of roles they have during infection indicate that they are an integral part of the virus life cycle. Here we review the different types of nsVGs and discuss how their multiple roles during infection could be beneficial for RNA viruses to be maintained in nature. By shifting our perspectives on what makes a virus successful, we posit that nsVG generation is a conserved phenomenon that arose during RNA virus evolution as an essential component of a healthy virus community.


Assuntos
Evolução Molecular , Genoma Viral , Vírus de RNA , Replicação Viral , Vírus de RNA/genética , Vírus de RNA/fisiologia , Replicação Viral/genética , Humanos , Animais , RNA Viral/genética , Infecções por Vírus de RNA/virologia
16.
Methods Mol Biol ; 2822: 39-50, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907910

RESUMO

RT-LAMP is an effective alternative to RT-PCR-based diagnostics, offering high specificity, sensitivity, and rapid results. One notable advantage is the robustness of its enzymes, allowing for direct amplification from crude samples without the need for prior isolation of RNA. Colorimetric LAMP is particularly attractive as it eliminates the need for complex instrumentation, making it suitable for point-of-care applications. Here, we present a comprehensive step-by-step protocol for establishing an RT-LAMP-based test for direct detection of SARS-CoV-2 genomic RNA in saliva samples using different colorimetric detection methods. Importantly, this versatile test can be easily adapted to detect emerging pathogens.


Assuntos
COVID-19 , Colorimetria , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , RNA Viral , SARS-CoV-2 , Saliva , Saliva/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Colorimetria/métodos , RNA Viral/genética , RNA Viral/isolamento & purificação , RNA Viral/análise , Humanos , COVID-19/diagnóstico , COVID-19/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Teste de Ácido Nucleico para COVID-19/métodos , Sensibilidade e Especificidade
17.
Heliyon ; 10(11): e31727, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845920

RESUMO

Viral double-stranded RNA (dsRNA) is sensed by toll-like receptor 3 (TLR3) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), including melanoma differentiation-associated gene 5 (MDA5). MDA5 recognizes the genome of dsRNA viruses and replication intermediates of single-stranded RNA viruses. MDA5 also plays an important role in the development of autoimmune diseases, such as Aicardi-Goutieres syndrome and type I diabetes. Patients with dermatomyositis with serum MDA5 autoantibodies (anti-CADM-140) are known to have a high risk of developing rapidly progressive interstitial lung disease and poor prognosis. However, there have been no reports on the soluble form of MDA5 in human serum. In the present study, we generated in-house monoclonal antibodies (mAbs) against human MDA5. We then performed immunohistochemical analysis and sensitive sandwich immunoassays to detect the MDA5 protein using two different mAbs (clones H27 and H46). As per the immunohistochemical analysis, the MDA5 protein was moderately expressed in the alveolar epithelia of normal lungs and was strongly expressed in the cytoplasm of lymphoid cells in the tonsils and acinar cells of the pancreas. Interestingly, soluble MDA5 protein was detectable in the serum, but not in the urine, of healthy donors. Soluble MDA5 protein was also detectable in the serum of patients with dermatomyositis. Immunoblot analysis showed that human cells expressed a 120 kDa MDA5 protein, while the 60 kDa MDA5 protein increased in the supernatant of peripheral mononuclear cells within 15 min after MDA5 agonist/double-strand RNA stimulation. Hydrogen deuterium exchange mass spectrometry revealed that an anti-MDA5 mAb (clone H46) bound to the epitope (415QILENSLLNL424) derived from the helicase domain of MDA5. These results indicate that a soluble MDA5 protein containing the helicase domain of MDA5 could be rapidly released from the cytoplasm of tissues after RNA stimulation.

18.
Front Microbiol ; 15: 1411537, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832113

RESUMO

Lassa fever (LF), caused by Lassa virus (LASV), is one of the most dangerous diseases to public health. Homologous recombination (HR) is a basic genetic power driving biological evolution. However, as a negative-stranded RNA virus, it is unknown whether HR occurs between LASVs and its influence on the outbreak of LF. In this study, after analyzing 575 S and 433 L segments of LASV collected in Africa, we found that LASV can achieve HR in both of its segments. Interestingly, although the length of S segment is less than half of the L segment, the proportion of LASVs with S recombinants is significantly higher than that with L recombinants. These results suggest that HR may be a feature of LASV, which can be set by natural selection to produce beneficial or eliminate harmful mutations for the virus, so it plays a role in LASV evolution during the outbreak of LF.

19.
Virus Evol ; 10(1): veae024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827419

RESUMO

Venom is known as the source of natural antimicrobial products. Previous studies have largely focused on the expression of venom-related genes and the biochemical components of venom. With the advent of metagenomic sequencing, many more microorganisms, especially viruses, have been identified in highly diverse environments. Herein, we investigated the RNA virome in the venom-related microenvironment through analysis of a large volume of venom-related RNA-sequencing data mined from public databases. From this, we identified viral sequences belonging to thirty-six different viruses, of which twenty-two were classified as 'novel' as they exhibited less than 90 per cent amino acid identity to known viruses in the RNA-dependent RNA polymerase. Most of these novel viruses possessed genome structures similar to their closest relatives, with specific alterations in some cases. Phylogenetic analyses revealed that these viruses belonged to at least twenty-two viral families or unclassified groups, some of which were highly divergent from known taxa. Although further analysis failed to find venom-specific viruses, some viruses seemingly had much higher abundance in the venom-related microenvironment than in other tissues. In sum, our study provides insights into the RNA virome of the venom-related microenvironment from diverse animal phyla.

20.
Viruses ; 16(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38932114

RESUMO

When designing live-attenuated respiratory syncytial virus (RSV) vaccine candidates, attenuating mutations can be developed through biologic selection or reverse-genetic manipulation and may include point mutations, codon and gene deletions, and genome rearrangements. Attenuation typically involves the reduction in virus replication, due to direct effects on viral structural and replicative machinery or viral factors that antagonize host defense or cause disease. However, attenuation must balance reduced replication and immunogenic antigen expression. In the present study, we explored a new approach in order to discover attenuating mutations. Specifically, we used protein structure modeling and computational methods to identify amino acid substitutions in the RSV nonstructural protein 1 (NS1) predicted to cause various levels of structural perturbation. Twelve different mutations predicted to alter the NS1 protein structure were introduced into infectious virus and analyzed in cell culture for effects on viral mRNA and protein expression, interferon and cytokine expression, and caspase activation. We found the use of structure-based machine learning to predict amino acid substitutions that reduce the thermodynamic stability of NS1 resulted in various levels of loss of NS1 function, exemplified by effects including reduced multi-cycle viral replication in cells competent for type I interferon, reduced expression of viral mRNAs and proteins, and increased interferon and apoptosis responses.


Assuntos
Aprendizado de Máquina , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Proteínas não Estruturais Virais , Replicação Viral , Humanos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/genética , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/virologia , Infecções por Vírus Respiratório Sincicial/imunologia , Substituição de Aminoácidos , Mutação , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA