Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
RNA ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009379

RESUMO

CRISPR-Cas12a binds and processes a single pre-crRNA during maturation, providing a simple tool for genome editing applications. Here, we constructed a kinetic and thermodynamic framework for pre-crRNA processing by Cas12a in vitro, and we measured the contributions of distinct regions of the pre-crRNA to this reaction. We find that the pre-crRNA binds rapidly and extraordinarily tightly to Cas12a (Kd = 0.6 pM), such that pre-crRNA binding is fully rate limiting for processing and therefore determines the specificity of Cas12a for different pre-crRNAs. The guide sequence contributes 10-fold to the binding affinity of the pre-crRNA, while deletion of an upstream sequence has no significant effect. After processing, the mature crRNA remains very tightly bound to Cas12a with a comparable affinity. Strikingly, the affinity contribution of the guide region increases to 600-fold after processing, suggesting that additional contacts are formed and may pre-order the crRNA for efficient DNA target recognition. Using a direct competition assay, we find that pre-crRNA binding specificity is robust to changes in the guide sequence, addition of a 3' extension, and secondary structure within the guide region. However, stable secondary structure in the guide region can strongly inhibit DNA targeting, indicating that care should be taken in crRNA design. Together our results provide a quantitative framework for pre-crRNA binding and processing by Cas12a and suggest strategies for optimizing crRNA design in genome editing applications.

2.
J Biol Chem ; 300(8): 107488, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908752

RESUMO

Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.

3.
RNA ; 30(8): 992-1010, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38777381

RESUMO

Residing in the 5' untranslated region of the mRNA, the 2'-deoxyguanosine (2'-dG) riboswitch mRNA element adopts an alternative structure upon binding of the 2'-dG molecule, which terminates transcription. RNA conformations are generally strongly affected by positively charged metal ions (especially Mg2+). We have quantitatively explored the combined effect of ligand (2'-dG) and Mg2+ binding on the energy landscape of the aptamer domain of the 2'-dG riboswitch with both explicit solvent all-atom molecular dynamics simulations (99 µsec aggregate sampling for the study) and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) experiments. We show that both ligand and Mg2+ are required for the stabilization of the aptamer domain; however, the two factors act with different modalities. The addition of Mg2+ remodels the energy landscape and reduces its frustration by the formation of additional contacts. In contrast, the binding of 2'-dG eliminates the metastable states by nucleating a compact core for the aptamer domain. Mg2+ ions and ligand binding are required to stabilize the least stable helix, P1 (which needs to unfold to activate the transcription platform), and the riboswitch core formed by the backbone of the P2 and P3 helices. Mg2+ and ligand also facilitate a more compact structure in the three-way junction region.


Assuntos
Magnésio , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , RNA Mensageiro , Riboswitch , Magnésio/metabolismo , Magnésio/química , Magnésio/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ligantes , Regiões 5' não Traduzidas , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética
4.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585885

RESUMO

Riboswitches are ligand-responsive gene-regulatory RNA elements that perform key roles in maintaining cellular homeostasis. Understanding how riboswitch sensitivity is controlled is critical to understanding how highly conserved aptamer domains are deployed in a variety of contexts with different sensitivity demands. Here we uncover new roles by which RNA folding dynamics control riboswitch sensitivity in cells. By investigating the Clostridium beijerinckii pfl ZTP riboswitch, we identify multiple mechanistic routes of altering expression platform sequence and structure to slow RNA folding, all of which enhance riboswitch sensitivity. Applying these methods to riboswitches with diverse aptamer architectures that regulate transcription and translation with ON and OFF logic demonstrates the generality of our findings, indicating that any riboswitch that operates in a kinetic regime can be sensitized by slowing expression platform folding. Comparison of the most sensitized versions of these switches to equilibrium aptamer:ligand dissociation constants suggests a limit to the sensitivities achievable by kinetic RNA switches. Our results add to the growing suite of knowledge and approaches that can be used to rationally program cotranscriptional RNA folding for biotechnology applications, and suggest general RNA folding principles for understanding dynamic RNA systems in other areas of biology.

5.
Front Genet ; 15: 1382435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456016
6.
Virus Res ; 343: 199340, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387694

RESUMO

Flaviviral RNA genomes are composed of discrete RNA structural units arranged in an ordered fashion and grouped into complex folded domains that regulate essential viral functions, e.g. replication and translation. This is achieved by adjusting the overall structure of the RNA genome via the establishment of inter- and intramolecular interactions. Translation regulation is likely the main process controlling flaviviral gene expression. Although the genomic 3' UTR is a key player in this regulation, little is known about the molecular mechanisms underlying this role. The present work provides evidence for the specific recruitment of the 40S ribosomal subunit by the 3' UTR of the West Nile virus RNA genome, showing that the joint action of both genomic ends contributes the positioning of the 40S subunit at the 5' end. The combination of structural mapping techniques revealed specific conformational requirements at the 3' UTR for 40S binding, involving the highly conserved SL-III, 5'DB, 3'DB and 3'SL elements, all involved in the translation regulation. These results point to the 40S subunit as a bridge to ensure cross-talk between both genomic ends during viral translation and support a link between 40S recruitment by the 3' UTR and translation control.


Assuntos
Flavivirus , Vírus do Nilo Ocidental , Vírus do Nilo Ocidental/genética , Regiões 3' não Traduzidas , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Flavivirus/genética , Genômica , RNA Viral/metabolismo , Replicação Viral
7.
J Biol Chem ; 300(3): 105730, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336293

RESUMO

Riboswitches are broadly distributed regulatory elements most frequently found in the 5'-leader sequence of bacterial mRNAs that regulate gene expression in response to the binding of a small molecule effector. The occupancy status of the ligand-binding aptamer domain manipulates downstream information in the message that instructs the expression machinery. Currently, there are over 55 validated riboswitch classes, where each class is defined based on the identity of the ligand it binds and/or sequence and structure conservation patterns within the aptamer domain. This classification reflects an "aptamer-centric" perspective that dominates our understanding of riboswitches. In this review, we propose a conceptual framework that groups riboswitches based on the mechanism by which RNA manipulates information directly instructing the expression machinery. This scheme does not replace the established aptamer domain-based classification of riboswitches but rather serves to facilitate hypothesis-driven investigation of riboswitch regulatory mechanisms. Based on current bioinformatic, structural, and biochemical studies of a broad spectrum of riboswitches, we propose three major mechanistic groups: (1) "direct occlusion", (2) "interdomain docking", and (3) "strand exchange". We discuss the defining features of each group, present representative examples of riboswitches from each group, and illustrate how these RNAs couple small molecule binding to gene regulation. While mechanistic studies of the occlusion and docking groups have yielded compelling models for how these riboswitches function, much less is known about strand exchange processes. To conclude, we outline the limitations of our mechanism-based conceptual framework and discuss how critical information within riboswitch expression platforms can inform gene regulation.


Assuntos
Ligantes , RNA Mensageiro , Riboswitch , Bactérias/genética , Bactérias/metabolismo , Riboswitch/genética , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação Bacteriana da Expressão Gênica
8.
J Mol Biol ; 436(6): 168455, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38272438

RESUMO

Knots are very common in polymers, including DNA and protein molecules. Yet, no genuine knot has been identified in natural RNA molecules to date. Upon re-examining experimentally determined RNA 3D structures, we discovered a trefoil knot 31, the most basic non-trivial knot, in the RydC RNA. This knotted RNA is a member of a small family of short bacterial RNAs, whose secondary structure is characterized by an H-type pseudoknot. Molecular dynamics simulations suggest a folding pathway of the RydC RNA that starts with a native twisted loop. Based on sequence analyses and computational RNA 3D structure predictions, we postulate that this trefoil knot is a conserved feature of all RydC-related RNAs. The first discovery of a knot in a natural RNA molecule introduces a novel perspective on RNA 3D structure formation and on fundamental research on the relationship between function and spatial structure of biopolymers.


Assuntos
Dobramento de RNA , RNA , Simulação de Dinâmica Molecular , RNA/química , RNA/genética
9.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260533

RESUMO

The production of new ribosomes requires proper folding of the rRNA and the addition of more than 50 ribosomal proteins. The structures of some assembly intermediates have been determined by cryo-electron microscopy, yet these structures do not provide information on the folding dynamics of the rRNA. To visualize the changes in rRNA structure during ribosome assembly in E. coli cells, transcripts were pulse-labeled with 4-thiouridine and the structure of newly made rRNA probed at various times by dimethyl sulfate modification and mutational profiling sequencing (4U-DMS-MaPseq). The in-cell DMS modification patterns revealed that many long-range rRNA tertiary interactions and protein binding sites through the 16S and 23S rRNA remain partially unfolded 1.5 min after transcription. By contrast, the active sites were continually shielded from DMS modification, suggesting that these critical regions are guarded by cellular factors throughout assembly. Later, bases near the peptidyl tRNA site exhibited specific rearrangements consistent with the binding and release of assembly factors. Time-dependent structure-probing in cells suggests that many tertiary interactions throughout the new ribosomal subunits remain mobile or unfolded until the late stages of subunit maturation.

10.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203774

RESUMO

Baculoviruses are viral pathogens that infect different species of Lepidoptera, Diptera, and Hymenoptera, with a global distribution. Due to their biological characteristics and the biotechnological applications derived from these entities, the Baculoviridae family is an important subject of study and manipulation in the natural sciences. With the advent of RNA interference mechanisms, the presence of baculoviral genes that do not code for proteins but instead generate transcripts similar to microRNAs (miRNAs) has been described. These miRNAs are functionally associated with the regulation of gene expression, both in viral and host sequences. This article provides a comprehensive review of miRNA biogenesis, function, and characterization in general, with a specific focus on those identified in baculoviruses. Furthermore, it delves into the specific roles of baculoviral miRNAs in regulating viral and host genes and presents structural and thermodynamic stability studies that are useful for detecting shared characteristics with predictive utility. This review aims to expand our understanding of the baculoviral miRNAome, contributing to improvements in the production of baculovirus-based biopesticides, management of resistance phenomena in pests, enhancement of recombinant protein production systems, and development of diverse and improved BacMam vectors to meet biomedical demands.


Assuntos
MicroRNAs , MicroRNAs/genética , Baculoviridae/genética , Interferência de RNA , Agentes de Controle Biológico , Biotecnologia
11.
Chimia (Aarau) ; 77(4): 235-241, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38047803

RESUMO

RNA splicing, the removal of introns and ligation of exons, is a crucial process during mRNA maturation. Group II introns are large ribozymes that self-catalyze their splicing, as well as their transposition. They are living fossils of spliceosomal introns and eukaryotic retroelements. The yeast mitochondrial Sc.ai5γ is the first identified and best-studied self-splicing group II intron. A combination of biochemical, biophysical, and computational tools enables studying its catalytic properties, structure, and dynamics, while also serving to develop new therapeutic and biotechnological tools. We survey the history of group II intron studies paralleling the trends in RNA methodology with Sc.ai5γ in the spotlight.


Assuntos
Biotecnologia , Mitocôndrias , Íntrons , Biofísica , Catálise
12.
Trends Biotechnol ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38040620

RESUMO

RNA switches respond to specific ligands to control gene expression. They are widely used in synthetic biology applications and hold potential for future RNA-based therapeutic breakthroughs. However, the crux is their precise design. Here, we will discuss how inverse-RNA-folding could be utilized for the accurate design of RNA switches.

13.
Algorithms Mol Biol ; 18(1): 18, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041153

RESUMO

Although RNA secondary structure prediction is a textbook application of dynamic programming (DP) and routine task in RNA structure analysis, it remains challenging whenever pseudoknots come into play. Since the prediction of pseudoknotted structures by minimizing (realistically modelled) energy is NP-hard, specialized algorithms have been proposed for restricted conformation classes that capture the most frequently observed configurations. To achieve good performance, these methods rely on specific and carefully hand-crafted DP schemes. In contrast, we generalize and fully automatize the design of DP pseudoknot prediction algorithms. For this purpose, we formalize the problem of designing DP algorithms for an (infinite) class of conformations, modeled by (a finite number of) fatgraphs, and automatically build DP schemes minimizing their algorithmic complexity. We propose an algorithm for the problem, based on the tree-decomposition of a well-chosen representative structure, which we simplify and reinterpret as a DP scheme. The algorithm is fixed-parameter tractable for the treewidth tw of the fatgraph, and its output represents a [Formula: see text] algorithm (and even possibly [Formula: see text] in simple energy models) for predicting the MFE folding of an RNA of length n. We demonstrate, for the most common pseudoknot classes, that our automatically generated algorithms achieve the same complexities as reported in the literature for hand-crafted schemes. Our framework supports general energy models, partition function computations, recursive substructures and partial folding, and could pave the way for algebraic dynamic programming beyond the context-free case.

14.
J Virol ; 97(9): e0081823, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681957

RESUMO

HIV-1 uses heterogeneous transcription start sites (TSSs) to generate two RNA 5´ isoforms that adopt radically different structures and perform distinct replication functions. Although these RNAs differ in length by only two bases, exclusively, the shorter RNA is encapsidated while the longer RNA is excluded from virions and provides intracellular functions. The current study examined TSS usage and packaging selectivity for a broad range of retroviruses and found that heterogeneous TSS usage was a conserved feature of all tested HIV-1 strains, but all other retroviruses examined displayed unique TSSs. Phylogenetic comparisons and chimeric viruses' properties provided evidence that this mechanism of RNA fate determination was an innovation of the HIV-1 lineage, with determinants mapping to core promoter elements. Fine-tuning differences between HIV-1 and HIV-2, which uses a unique TSS, implicated purine residue positioning plus a specific TSS-adjacent dinucleotide in specifying multiplicity of TSS usage. Based on these findings, HIV-1 expression constructs were generated that differed from the parental strain by only two point mutations yet each expressed only one of HIV-1's two RNAs. Replication defects of the variant with only the presumptive founder TSS were less severe than those for the virus with only the secondary start site. IMPORTANCE Retroviruses use RNA both to encode their proteins and to serve in place of DNA as their genomes. A recent surprising discovery was that the genomic RNAs and messenger RNAs of HIV-1 are not identical but instead differ subtly on one of their ends. These differences enable the functional separation of HIV-1 RNAs into genome and messenger roles. In this report, we examined a broad collection of HIV-1-related viruses and discovered that each produced only one end class of RNA, and thus must differ from HIV-1 in how they specify RNA fates. By comparing regulatory signals, we generated virus variants that pinpointed the determinants of HIV-1 RNA fates, as well as HIV-1 variants that produced only one or the other functional class of RNA. Competition and replication assays confirmed that HIV-1 has evolved to rely on the coordinated actions of both its RNA forms.


Assuntos
HIV-1 , RNA Viral , Sítio de Iniciação de Transcrição , HIV-1/genética , Filogenia , Retroviridae/genética , Regiões Promotoras Genéticas , RNA Viral/genética
15.
Front Genet ; 14: 1254226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732325

RESUMO

Introduction: Prediction of RNA secondary structure from single sequences still needs substantial improvements. The application of machine learning (ML) to this problem has become increasingly popular. However, ML algorithms are prone to overfitting, limiting the ability to learn more about the inherent mechanisms governing RNA folding. It is natural to use high-capacity models when solving such a difficult task, but poor generalization is expected when too few examples are available. Methods: Here, we report the relation between capacity and performance on a fundamental related problem: determining whether two sequences are fully complementary. Our analysis focused on the impact of model architecture and capacity as well as dataset size and nature on classification accuracy. Results: We observed that low-capacity models are better suited for learning with mislabelled training examples, while large capacities improve the ability to generalize to structurally dissimilar data. It turns out that neural networks struggle to grasp the fundamental concept of base complementarity, especially in lengthwise extrapolation context. Discussion: Given a more complex task like RNA folding, it comes as no surprise that the scarcity of useable examples hurdles the applicability of machine learning techniques to this field.

16.
Front Mol Biosci ; 10: 1139919, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719267

RESUMO

The E. coli DEAD-Box helicase RhlB is responsible for ATP-dependent unwinding of structured mRNA to facilitate RNA degradation by the protein complex degradosome. The allosteric interaction with complex partner RNase E is necessary to stimulate both, RhlB's ATPase and RNA unwinding activity to levels comparable with other DEAD-Box helicases. However, the structural changes of the helicase RhlB induced by binding of RNase E have not been characterized and how those lead to increased reaction rates has remained unclear. We investigated the origin of this activation for RNA substrates with different topologies. Using NMR spectroscopy and an RNA centered approach, we could show that RNase E binding increases the affinity of RhlB towards a subset of RNA substrates, which leads to increased ATP turnover rates. Most strikingly, our studies revealed that in presence of RNase E (694-790) RhlB induces a conformational change in an RNA duplex with 5'- overhang even in absence of ATP, leading to partial duplex opening. Those results indicate a unique and novel activation mode of RhlB among DEAD-Box helicases, as ATP binding is thought to be an essential prerequisite for RNA unwinding.

17.
Proteins ; 91(12): 1800-1810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37622458

RESUMO

Ribonucleic acid (RNA) molecules serve as master regulators of cells by encoding their biological function in the ribonucleotide sequence, particularly their ability to interact with other molecules. To understand how RNA molecules perform their biological tasks and to design new sequences with specific functions, it is of great benefit to be able to computationally predict how RNA folds and interacts in the cellular environment. Our workflow for computational modeling of the 3D structures of RNA and its interactions with other molecules uses a set of methods developed in our laboratory, including MeSSPredRNA for predicting canonical and non-canonical base pairs, PARNASSUS for detecting remote homology based on comparisons of sequences and secondary structures, ModeRNA for comparative modeling, the SimRNA family of programs for modeling RNA 3D structure and its complexes with other molecules, and QRNAS for model refinement. In this study, we present the results of testing this workflow in predicting RNA 3D structures in the CASP15 experiment. The overall high score of the computational models predicted by our group demonstrates the robustness of our workflow and its individual components in terms of predicting RNA 3D structures of acceptable quality that are close to the target structures. However, the variance in prediction quality is still quite high, and the results are still too far from the level of protein 3D structure predictions. This exercise led us to consider several improvements, especially to better predict and enforce stacking interactions and non-canonical base pairs.


Assuntos
RNA , RNA/química , Conformação de Ácido Nucleico , Modelos Moleculares , Pareamento de Bases , Simulação por Computador
18.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546762

RESUMO

CRISPR-Cas12a binds and processes a single pre-crRNA during maturation, providing a simple tool for genome editing applications. Here, we constructed a kinetic and thermodynamic framework for pre-crRNA processing by Cas12a in vitro, and we measured the contributions of distinct regions of the pre-crRNA to this reaction. We find that the pre-crRNA binds rapidly and extraordinarily tightly to Cas12a (Kd = 0.6 pM), such that pre-crRNA binding is fully rate limiting for processing and therefore determines the specificity of Cas12a for different pre-crRNAs. The guide sequence contributes 10-fold to the affinities of both the precursor and mature forms of the crRNA, while deletion of an upstream sequence had no significant effect on affinity of the pre-crRNA. After processing, the mature crRNA remains very tightly bound to Cas12a, with a half-life of ~1 day and a Kd value of 60 pM. Addition of a 5'-phosphoryl group, which is normally lost during the processing reaction as the scissile phosphate, tightens binding of the mature crRNA by ~10-fold by accelerating binding and slowing dissociation. Using a direct competition assay, we found that pre-crRNA binding specificity is robust to other changes in RNA sequence, including tested changes in the guide sequence, addition of a 3' extension, and secondary structure within the guide region. Together our results provide a quantitative framework for pre-crRNA binding and processing by Cas12a and suggest strategies for optimizing crRNA design in some genome editing applications.

19.
Proteins ; 91(12): 1600-1615, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37466021

RESUMO

The first RNA category of the Critical Assessment of Techniques for Structure Prediction competition was only made possible because of the scientists who provided experimental structures to challenge the predictors. In this article, these scientists offer a unique and valuable analysis of both the successes and areas for improvement in the predicted models. All 10 RNA-only targets yielded predictions topologically similar to experimentally determined structures. For one target, experimentalists were able to phase their x-ray diffraction data by molecular replacement, showing a potential application of structure predictions for RNA structural biologists. Recommended areas for improvement include: enhancing the accuracy in local interaction predictions and increased consideration of the experimental conditions such as multimerization, structure determination method, and time along folding pathways. The prediction of RNA-protein complexes remains the most significant challenge. Finally, given the intrinsic flexibility of many RNAs, we propose the consideration of ensemble models.


Assuntos
Biologia Computacional , Proteínas , Conformação Proteica , Proteínas/química , Modelos Moleculares , Biologia Computacional/métodos , Difração de Raios X
20.
RNA ; 29(11): 1658-1672, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37419663

RESUMO

Riboswitches are cis-regulatory RNA elements that regulate gene expression in response to ligand binding through the coordinated action of a ligand-binding aptamer domain (AD) and a downstream expression platform (EP). Previous studies of transcriptional riboswitches have uncovered diverse examples that utilize structural intermediates that compete with the AD and EP folds to mediate the switching mechanism on the timescale of transcription. Here we investigate whether similar intermediates are important for riboswitches that control translation by studying the Escherichia coli thiB thiamin pyrophosphate (TPP) riboswitch. Using cellular gene expression assays, we first confirmed that the riboswitch acts at the level of translational regulation. Deletion mutagenesis showed the importance of the AD-EP linker sequence for riboswitch function. Sequence complementarity between the linker region and the AD P1 stem suggested the possibility of an intermediate nascent RNA structure called the antisequestering stem that could mediate the thiB switching mechanism. Experimentally informed secondary structure models of the thiB folding pathway generated from chemical probing of nascent thiB structures in stalled transcription elongation complexes confirmed the presence of the antisequestering stem, and showed it may form cotranscriptionally. Additional mutational analysis showed that mutations to the antisequestering stem break or bias thiB function according to whether the antisequestering stem or P1 is favored. This work provides an important example of intermediate structures that compete with AD and EP folds to implement riboswitch mechanisms.


Assuntos
Riboswitch , Riboswitch/genética , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo , Escherichia coli/metabolismo , Ligantes , RNA Bacteriano/metabolismo , Conformação de Ácido Nucleico , Dobramento de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA