Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Syst Biol ; 20(7): 767-798, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38755290

RESUMO

Static gene expression programs have been extensively characterized in stem cells and mature human cells. However, the dynamics of RNA isoform changes upon cell-state-transitions during cell differentiation, the determinants and functional consequences have largely remained unclear. Here, we established an improved model for human neurogenesis in vitro that is amenable for systems-wide analyses of gene expression. Our multi-omics analysis reveals that the pronounced alterations in cell morphology correlate strongly with widespread changes in RNA isoform expression. Our approach identifies thousands of new RNA isoforms that are expressed at distinct differentiation stages. RNA isoforms mainly arise from exon skipping and the alternative usage of transcription start and polyadenylation sites during human neurogenesis. The transcript isoform changes can remodel the identity and functions of protein isoforms. Finally, our study identifies a set of RNA binding proteins as a potential determinant of differentiation stage-specific global isoform changes. This work supports the view of regulated isoform changes that underlie state-transitions during neurogenesis.


Assuntos
Diferenciação Celular , Neurogênese , Neurônios , Isoformas de RNA , Humanos , Neurogênese/genética , Diferenciação Celular/genética , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Neurônios/metabolismo , Neurônios/citologia , Processamento Alternativo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Éxons/genética
2.
bioRxiv ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37609156

RESUMO

Due to alternative splicing, human protein-coding genes average over eight RNA isoforms, resulting in nearly four distinct protein coding sequences per gene. Long-read RNAseq (IsoSeq) enables more accurate quantification of isoforms, shedding light on their specific roles. To assess the medical relevance of measuring RNA isoform expression, we sequenced 12 aged human frontal cortices (6 Alzheimer's disease cases and 6 controls; 50% female) using one Oxford Nanopore PromethION flow cell per sample. Our study uncovered 53 new high-confidence RNA isoforms in medically relevant genes, including several where the new isoform was one of the most highly expressed for that gene. Specific examples include WDR4 (61%; microcephaly), MYL3 (44%; hypertrophic cardiomyopathy), and MTHFS (25%; major depression, schizophrenia, bipolar disorder). Other notable genes with new high-confidence isoforms include CPLX2 (10%; schizophrenia, epilepsy) and MAOB (9%; targeted for Parkinson's disease treatment). We identified 1,917 medically relevant genes expressing multiple isoforms in human frontal cortex, where 1,018 had multiple isoforms with different protein coding sequences, demonstrating the need to better understand how individual isoforms from a single gene body are involved in human health and disease, if at all. Exactly 98 of the 1,917 genes are implicated in brain-related diseases, including Alzheimer's disease genes such as APP (Aß precursor protein; five), MAPT (tau protein; four), and BIN1 (eight). As proof of concept, we also found 99 differentially expressed RNA isoforms between Alzheimer's cases and controls, despite the genes themselves not exhibiting differential expression. Our findings highlight the significant knowledge gaps in RNA isoform diversity and their medical relevance. Deep long-read RNA sequencing will be necessary going forward to fully comprehend the medical relevance of individual isoforms for a "single" gene.

3.
Cell Insight ; 2(2): 100089, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37193066

RESUMO

SRSF3 (SRp20) is the smallest member of the serine/arginine (SR)-rich protein family. We found the annotated human SRSF3 and mouse Srsf3 RefSeq sequences are much larger than the detected SRSF3/Srsf3 RNA size by Northern blot. Mapping of RNA-seq reads from various human and mouse cell lines to the annotated SRSF3/Srsf3 gene illustrated only a partial coverage of its terminal exon 7. By 5' RACE and 3' RACE, we determined that SRSF3 gene spanning over 8422 bases and Srsf3 gene spanning over 9423 bases. SRSF3/Srsf3 gene has seven exons with exon 7 bearing two alternative polyadenylation signals (PAS). Through alternative PAS selection and exon 4 exclusion/inclusion by alternative RNA splicing, SRSF3/Srsf3 gene expresses four RNA isoforms. The major SRSF3 mRNA isoform with exon 4 exclusion by using a favorable distal PAS to encode a full-length protein is 1411 nt long (not annotated 4228 nt) and the same major mouse Srsf3 mRNA isoform is only 1295 nt (not annotated 2585 nt). The difference from the redefined RNA size of SRSF3/Srsf3 to the corresponding RefSeq sequence is at the 3' UTR region. Collectively, the redefined SRSF3/Srsf3 gene structure and expression will allow better understanding of SRSF3 functions and its regulations in health and diseases.

4.
Noncoding RNA ; 8(5)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36287120

RESUMO

Long noncoding RNAs (lncRNAs) undergo splicing and have multiple transcribed isoforms. Nevertheless, for lncRNAs, as well as for mRNA, measurements of expression are routinely performed only at the gene level. Metformin is the first-line oral therapy for type 2 diabetes mellitus and other metabolic diseases. However, its mechanism of action remains not thoroughly explained. Transcriptomic analyses using metformin in different cell types reveal that only protein-coding genes are considered. We aimed to characterize lncRNA isoforms that were differentially affected by metformin treatment on multiple human cell types (three cancer, two non-cancer) and to provide insights into the lncRNA regulation by this drug. We selected six series to perform a differential expression (DE) isoform analysis. We also inferred the biological roles for lncRNA DE isoforms using in silico tools. We found the same isoform of an lncRNA (AC016831.6-205) highly expressed in all six metformin series, which has a second exon putatively coding for a peptide with relevance to the drug action. Moreover, the other two lncRNA isoforms (ZBED5-AS1-207 and AC125807.2-201) may also behave as cis-regulatory elements to the expression of transcripts in their vicinity. Our results strongly reinforce the importance of considering DE isoforms of lncRNA for understanding metformin mechanisms at the molecular level.

5.
Methods Mol Biol ; 2537: 81-95, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35895260

RESUMO

In Metazoa, the diversity of transcripts produced by the RNA Polymerase II is generated essentially through post-transcriptional processing of the nascent transcripts. The regulation of exon inclusion by alternative splicing is one of the main sources of this diversity, which leads to the expansion of the proteome. The portfolio of alternative transcripts remains largely underestimated. Improvement of the sequencing technologies has enhanced the characterization of RNA isoforms and led to the perpetual incrementation of gene expression diversity. Here, we describe a high throughput approach to assess in-depth the splicing regulation of target gene(s) using the third-generation sequencing (TGS) technologies.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Splicing de RNA , Processamento Alternativo , Isoformas de RNA/genética , Análise de Sequência de DNA , Análise de Sequência de RNA
6.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163195

RESUMO

Concern about rising rates of obesity has prompted searches for obesity-related single nucleotide polymorphisms (SNPs) in genome-wide association studies (GWAS). Identifying plausible regulatory SNPs is very difficult partially because of linkage disequilibrium. We used an unusual epigenomic and transcriptomic analysis of obesity GWAS-derived SNPs in adipose versus heterologous tissues. From 50 GWAS and 121,064 expanded SNPs, we prioritized 47 potential causal regulatory SNPs (Tier-1 SNPs) for 14 gene loci. A detailed examination of seven loci revealed that four (CABLES1, PC, PEMT, and FAM13A) had Tier-1 SNPs positioned so that they could regulate use of alternative transcription start sites, resulting in different polypeptides being generated or different amounts of an intronic microRNA gene being expressed. HOXA11 and long noncoding RNA gene RP11-392O17.1 had Tier-1 SNPs in their 3' or promoter region, respectively, and strong preferences for expression in subcutaneous versus visceral adipose tissue. ZBED3-AS1 had two intragenic Tier-1 SNPs, each of which could contribute to mediating obesity risk through modulating long-distance chromatin interactions. Our approach not only revealed especially credible novel regulatory SNPs, but also helped evaluate previously highlighted obesity GWAS SNPs that were candidates for transcription regulation.


Assuntos
Biologia Computacional/métodos , Estudo de Associação Genômica Ampla/métodos , Obesidade/genética , Polimorfismo de Nucleotídeo Único/genética , Cromatina/genética , Epigênese Genética/genética , Epigenômica/métodos , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença/genética , Humanos , Desequilíbrio de Ligação/genética , Obesidade/metabolismo , Locos de Características Quantitativas/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
7.
RNA ; 28(2): 162-176, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728536

RESUMO

Nanopore sequencing devices read individual RNA strands directly. This facilitates identification of exon linkages and nucleotide modifications; however, using conventional direct RNA nanopore sequencing, the 5' and 3' ends of poly(A) RNA cannot be identified unambiguously. This is due in part to RNA degradation in vivo and in vitro that can obscure transcription start and end sites. In this study, we aimed to identify individual full-length human RNA isoforms among ∼4 million nanopore poly(A)-selected RNA reads. First, to identify RNA strands bearing 5' m7G caps, we exchanged the biological cap for a modified cap attached to a 45-nt oligomer. This oligomer adaptation method improved 5' end sequencing and ensured correct identification of the 5' m7G capped ends. Second, among these 5'-capped nanopore reads, we screened for features consistent with a 3' polyadenylation site. Combining these two steps, we identified 294,107 individual high-confidence full-length RNA scaffolds from human GM12878 cells, most of which (257,721) aligned to protein-coding genes. Of these, 4876 scaffolds indicated unannotated isoforms that were often internal to longer, previously identified RNA isoforms. Orthogonal data for m7G caps and open chromatin, such as CAGE and DNase-HS seq, confirmed the validity of these high-confidence RNA scaffolds.


Assuntos
Isoformas de RNA/química , RNA Mensageiro/química , Linhagem Celular Tumoral , Humanos , Sequenciamento por Nanoporos/métodos , Sinais de Poliadenilação na Ponta 3' do RNA , Isoformas de RNA/genética , RNA Mensageiro/genética , Transcriptoma
8.
Front Genet ; 12: 770359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956324

RESUMO

Down syndrome (DS) is caused by trisomy of chromosome 21 and it is the most common genetic cause of intellectual disability (ID) in humans. Subjects with DS show a typical phenotype marked by facial dysmorphisms and ID. Partial trisomy 21 (PT21) is a rare genotype characterized by the duplication of a delimited chromosome 21 (Hsa21) portion and it may or may not be associated with DS diagnosis. The highly restricted Down syndrome critical region (HR-DSCR) is a region of Hsa21 present in three copies in all individuals with PT21 and a diagnosis of DS. This region, located on distal 21q22.13, is 34 kbp long and does not include characterized genes. The HR-DSCR is annotated as an intergenic region between KCNJ6-201 transcript encoding for potassium inwardly rectifying channel subfamily J member 6 and DSCR4-201 transcript encoding Down syndrome critical region 4. Two transcripts recently identified by massive RNA-sequencing (RNA-Seq) and automatically annotated on Ensembl database reveal that the HR-DSCR seems to be partially crossed by KCNJ6-202 and DSCR4-202 isoforms. KCNJ6-202 shares the coding sequence with KCNJ6-201 which is involved in many physiological processes, including heart rate in cardiac cells and circuit activity in neuronal cells. DSCR4-202 transcript has the first two exons in common with DSCR4-201, the only experimentally verified gene uniquely present in Hominidae. In this study, we performed in silico and in vitro analyses of the HR-DSCR. Bioinformatic data, obtained using Sequence Read Archive (SRA) and SRA-BLAST software, were confirmed by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Sanger sequencing on a panel of human tissues. Our data demonstrate that the HR-DSCR cannot be defined as an intergenic region. Further studies are needed to investigate the functional role of the new transcripts, likely involved in DS phenotypes.

9.
Breast Cancer Res Treat ; 174(2): 543-550, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30552643

RESUMO

PURPOSE: Disruption of splicing motifs by genetic variants can affect the correct generation of mature mRNA molecules leading to aberrant transcripts. In some cases, variants may alter the physiological transcription profile composed of several transcripts, and an accurate in vitro evaluation is crucial to establish their pathogenicity. In this study, we have characterized a novel PALB2 variant c.3201+5G>T identified in a breast cancer family. METHODS: Peripheral blood RNA was analyzed in two carriers and ten controls by RT-PCR and Sanger sequencing. The splicing profile was also characterized by semi-quantitative capillary electrophoresis and quantitative PCR. RAD51 foci formation and PALB2 LOH status were evaluated in primary breast tumor samples from the carriers. RESULTS: PALB2 c.3201+5G>T disrupts intron 11 donor splice site and modifies the abundance of several alternative transcripts (∆11, ∆12, and ∆11,12), also present in control samples. All transcripts are predicted to encode for non-functional proteins. Semi-quantitative and quantitative analysis of PALB2 full-length transcript indicated haploinsufficiency in carriers. One tumor exhibited PALB2 LOH and RAD51 assay indicated homologous recombination deficiency in both tumors. CONCLUSIONS: Our results support a pathogenic classification for PALB2 c.3201+5G>T, highlighting the impact of variants causing an imbalanced expression of natural RNA isoforms in cancer susceptibility.


Assuntos
Processamento Alternativo , Neoplasias da Mama/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Mutação em Linhagem Germinativa , Polimorfismo de Nucleotídeo Único , Feminino , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Perda de Heterozigosidade , Pessoa de Meia-Idade , Linhagem , Análise de Sequência de RNA
10.
Front Mol Neurosci ; 11: 304, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210293

RESUMO

Neurons are morphologically complex cells that rely on the compartmentalization of protein expression to develop and maintain their extraordinary cytoarchitecture. This formidable task is achieved, at least in part, by targeting mRNA to subcellular compartments where they are rapidly translated. mRNA transcripts are the conveyor of genetic information from DNA to the translational machinery, however, they are also endowed with additional functions linked to both the coding sequence (open reading frame, or ORF) and the flanking 5' and 3' untranslated regions (UTRs), that may harbor coding-independent functions. In this review, we will highlight recent evidences supporting new coding-dependent and -independent functions of mRNA and discuss how nuclear and cytoplasmic post-transcriptional modifications of mRNA contribute to localization and translation in mammalian cells with specific emphasis on neurons. We also describe recently developed techniques that can be employed to study RNA dynamics at subcellular level in eukaryotic cells in developing and regenerating neurons.

11.
Circ Res ; 122(9): 1200-1220, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29700068

RESUMO

Whole-genome transcriptional profiling has become a standard genomic approach to investigate biological processes. RNA sequencing (RNAseq) in particular has witnessed myriad applications in genetics and various biomedical fields. RNAseq involves a relatively simple experimental protocol of RNA extraction and cDNA library preparation and, because of decreasing next-generation sequencing cost and lower computational burden for data processing, has obtained a central role in the modern biology. The recent application of RNAseq methodology to single-cell transcriptional profiling has enabled the more precise characterization of cell lineage and cell state genetic profiles. The development of bioinformatic and statistical tools has provided for differential gene expression analysis, RNA isoform analysis, haplotype-specific analysis of gene expression (allele-specific expression), and analysis of expression quantitative trait loci. We give an overview of these and recent developments in RNAseq methodology with emphasis on quality control, read mapping, feature counting, differential gene expression, allele-specific expression and expression quantitative trait loci analysis, and fusion transcript detection. We describe utilization of RNAseq as a diagnostic tool in Mendelian diseases, complex phenotypes, and cancer and give an overview of long read RNAseq technology. Furthermore, we discuss in detail the recent revolution in single-cell transcriptomics that is reshaping modern biology.


Assuntos
Doenças Cardiovasculares/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA , Transcriptoma , Alelos , Animais , Linhagem da Célula , DNA Complementar/genética , Regulação da Expressão Gênica , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Técnicas de Diagnóstico Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Locos de Características Quantitativas , Análise de Célula Única/métodos
12.
Artigo em Inglês | MEDLINE | ID: mdl-29456968

RESUMO

Eukaryotic proteome diversity exceeds that encoded within individual genes, and results in part from alternative splicing events of pre-messenger RNA. The diversity of these splicing events can shape the outcome in development and differentiation of normal tissues, and is important in pathogenic circumstances such as cancer and some heritable conditions. A role for alternative splicing of eukaryotic genes in response to viral and intracellular bacterial infections has only recently been recognized, and plays an important role in providing fitness for microbial survival, while potentially enhancing pathogenicity. Anaplasma phagocytophilum survives within mammalian neutrophils by reshaping transcriptional programs that govern cellular functions. We applied next generation RNAseq to ATRA-differentiated HL-60 cells established to possess transcriptional and functional responses similar to A. phagocytophilum-infected human neutrophils. This demonstrated an increase in transcripts with infection and high proportion of alternatively spliced transcript events (ASEs) for which predicted gene ontology processes were in part distinct from those identified by evaluation of single transcripts or gene-level analyses alone. The alternative isoforms are not on average shorter, and no alternative splicing in genes encoding spliceosome components is noted. Although not evident at gene-level analyses, individual spliceosome transcripts that impact nearly all spliceosome components were significantly upregulated. How the distinct GO processes predicted by ASEs are regulated by infection and whether they are relevant to fitness or pathogenicity of A. phagocytophilum should be addressed in more detailed studies.


Assuntos
Processamento Alternativo , Anaplasma phagocytophilum/fisiologia , Ehrlichiose/genética , Ehrlichiose/microbiologia , Células Mieloides/metabolismo , Transcriptoma , Diferenciação Celular/genética , Biologia Computacional/métodos , Ehrlichiose/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Células HL-60 , Humanos , Células Mieloides/citologia , Spliceossomos/metabolismo , Ativação Transcricional
13.
Cancer Lett ; 371(2): 214-24, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26683771

RESUMO

The molecular mechanisms underlying the aggressive behavior of MYCN driven neuroblastoma (NBL) is under intense investigation; however, little is known about the impact of this family of transcription factors on the splicing program. Here we used high-throughput RNA sequencing to systematically study the expression of RNA isoforms in stage 4 MYCN-amplified NBL, an aggressive subtype of metastatic NBL. We show that MYCN-amplified NBL tumors display a distinct gene splicing pattern affecting multiple cancer hallmark functions. Six splicing factors displayed unique differential expression patterns in MYCN-amplified tumors and cell lines, and the binding motifs for some of these splicing factors are significantly enriched in differentially-spliced genes. Direct binding of MYCN to promoter regions of the splicing factors PTBP1 and HNRNPA1 detected by ChIP-seq demonstrates that MYCN controls the splicing pattern by direct regulation of the expression of these key splicing factors. Furthermore, high expression of PTBP1 and HNRNPA1 was significantly associated with poor overall survival of stage4 NBL patients (p ≤ 0.05). Knocking down PTBP1, HNRNPA1 and their downstream target PKM2, an isoform of pro-tumor-growth, result in repressed growth of NBL cells. Therefore, our study reveals a novel role of MYCN in controlling global splicing program through regulation of splicing factors in addition to its well-known role in the transcription program. These findings suggest a therapeutically potential to target the key splicing factors or gene isoforms in high-risk NBL with MYCN-amplification.


Assuntos
Processamento Alternativo , Biomarcadores Tumorais/genética , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , RNA Neoplásico/genética , Sítios de Ligação , Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Imunoprecipitação da Cromatina , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteína Proto-Oncogênica N-Myc , Estadiamento de Neoplasias , Neuroblastoma/metabolismo , Neuroblastoma/mortalidade , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , RNA Neoplásico/metabolismo , Fatores de Risco , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Transcrição Gênica , Transfecção , Proteínas de Ligação a Hormônio da Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA