Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Genes Brain Behav ; 23(4): e12911, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39171374

RESUMO

Neutral sphingomyelinase-2 (nSMase2), gene name sphingomyelin phosphodiesterase-3 (Smpd3), is a key regulatory enzyme responsible for generating the sphingolipid ceramide. The function of nSMase2 in the brain is still controversial. To better understand the functional roles of nSMase2 in the aging mouse brain, we applied RNA-seq analysis, which identified a total of 1462 differentially abundant mRNAs between +/fro and fro/fro, of which 891 were increased and 571 were decreased in nSMase2-deficient mouse brains. The most strongly enriched GO and KEGG annotation terms among transcripts increased in fro/fro mice included synaptogenesis, synapse development, synaptic signaling, axon development, and axonogenesis. Among decreased transcripts, enriched annotations included ribosome assembly and mitochondrial protein complex functions. KEGG analysis of decreased transcripts also revealed overrepresentation of annotations for Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington disease (HD). Ingenuity Pathway Analysis (IPA) tools predicted lower susceptibility to these neurodegenerative disorders, as well as predictions agreeing with stronger synaptic function, learning, and memory in fro/fro mice. The IPA tools identified signaling proteins, epigenetic regulators, and microRNAs as likely upstream regulators of the broader set of genes encoding the affected transcripts. It also revealed 16 gene networks, each linked to biological processes identified as overrepresented annotations among the affected transcripts by multiple analysis methods. Therefore, the analysis of these RNA-seq data indicates that nSMase2 impacts synaptic function and neural development, and may contribute to the onset and development of neurodegenerative diseases in middle-aged mice.


Assuntos
Encéfalo , Esfingomielina Fosfodiesterase , Animais , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Camundongos , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Transcriptoma , Envelhecimento/genética , Envelhecimento/metabolismo , Camundongos Endogâmicos C57BL , Masculino
2.
Pest Manag Sci ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162030

RESUMO

BACKGROUND: Plant chemical defense can be elicited by signaling chemicals. As yet, the elicitation is mainly known from volatile aboveground signals. Root-secreted belowground signals and their underlying mechanisms are largely unknown. This study examined a root-secreted signaling (-)-loliolide to trigger chemical defense in rice and wheat against pests by means of cocultivation and incubation experiments. RESULTS: Wild-type Arabidopsis (WT) and its root exudates with (-)-loliolide induced the production of defensive metabolites of rice and wheat and reduced the performance of weeds, pathogens and herbivores, while a carotenoid-deficient mutant (szl1-1) and its root exudates without (-)-loliolide had no similar effects. However, the induction and reduction occurred in the szl1-1 root exudates by (-)-loliolide supplementation with the level equal to that of WT. RNA-sequencing analysis revealed a significant change in the transcript level of defense-related genes in rice exposure to (-)-loliolide. Furthermore, (-)-loliolide enhanced rice resistance against Rhizoctonia solani through changing reactive oxygen species (ROS) system, and mediating jasmonic acid, salicylic acid and abscisic acid biosynthesis. CONCLUSION: Root-secreted signaling (-)-loliolide can trigger chemical defense in rice and wheat against their pests. Such perception-dependent chemical defenses provide an intriguing possibility for ecological pest management to increase crop productivity and sustainability. © 2024 Society of Chemical Industry.

3.
Front Immunol ; 15: 1397629, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161760

RESUMO

Introduction: The acute respiratory distress syndrome (ARDS) is a common complication of severe COVID-19 and contributes to patient morbidity and mortality. ARDS is a heterogeneous syndrome caused by various insults, and results in acute hypoxemic respiratory failure. Patients with ARDS from COVID-19 may represent a subgroup of ARDS patients with distinct molecular profiles that drive disease outcomes. Here, we hypothesized that longitudinal transcriptomic analysis may identify distinct dynamic pathobiological pathways during COVID-19 ARDS. Methods: We identified a patient cohort from an existing ICU biorepository and established three groups for comparison: 1) patients with COVID-19 ARDS that survived hospitalization (COVID survivors, n = 4), 2) patients with COVID-19 ARDS that did not survive hospitalization (COVID non-survivors, n = 5), and 3) patients with ARDS from other causes as a control group (ARDS controls, n = 4). RNA was isolated from peripheral blood mononuclear cells (PBMCs) at 4 time points (Days 1, 3, 7, and 10 following ICU admission) and analyzed by bulk RNA sequencing. Results: We first compared transcriptomes between groups at individual timepoints and observed significant heterogeneity in differentially expressed genes (DEGs). Next, we utilized the likelihood ratio test to identify genes that exhibit different patterns of change over time between the 3 groups and identified 341 DEGs across time, including hemoglobin subunit alpha 2 (HBA1, HBA2), hemoglobin subunit beta (HBB), von Willebrand factor C and EGF domains (VWCE), and carbonic anhydrase 1 (CA1), which all demonstrated persistent upregulation in the COVID non-survivors compared to COVID survivors. Of the 341 DEGs, 314 demonstrated a similar pattern of persistent increased gene expression in COVID non-survivors compared to survivors, associated with canonical pathways of iron homeostasis signaling, erythrocyte interaction with oxygen and carbon dioxide, erythropoietin signaling, heme biosynthesis, metabolism of porphyrins, and iron uptake and transport. Discussion: These findings describe significant differences in gene regulation during patient ICU course between survivors and non-survivors of COVID-19 ARDS. We identified multiple pathways that suggest heme and red blood cell metabolism contribute to disease outcomes. This approach is generalizable to larger cohorts and supports an approach of longitudinal sampling in ARDS molecular profiling studies, which may identify novel targetable pathways of injury and resolution.


Assuntos
COVID-19 , Eritrócitos , Perfilação da Expressão Gênica , Homeostase , Ferro , Síndrome do Desconforto Respiratório , SARS-CoV-2 , Transcriptoma , Humanos , COVID-19/genética , COVID-19/sangue , Masculino , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/sangue , Pessoa de Meia-Idade , SARS-CoV-2/fisiologia , Feminino , Ferro/metabolismo , Eritrócitos/metabolismo , Idoso , Estudos Longitudinais
4.
Plant J ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145419

RESUMO

Accurate quantification of gene and transcript-specific expression, with the underlying knowledge of precise transcript isoforms, is crucial to understanding many biological processes. Analysis of RNA sequencing data has benefited from the development of alignment-free algorithms which enhance the precision and speed of expression analysis. However, such algorithms require a reference transcriptome. Here we generate a reference transcript dataset (LsRTDv1) for lettuce (cv. Saladin), combining long- and short-read sequencing with publicly available transcriptome annotations, and filtering to keep only transcripts with high-confidence splice junctions and transcriptional start and end sites. LsRTDv1 identifies novel genes (mostly long non-coding RNAs) and increases the number of transcript isoforms per gene in the lettuce genome from 1.4 to 2.7. We show that LsRTDv1 significantly increases the mapping rate of RNA-seq data from a lettuce time-series experiment (mock- and Botrytis cinerea-inoculated) and enables detection of genes that are differentially alternatively spliced in response to infection as well as transcript-specific expression changes. LsRTDv1 is a valuable resource for investigation of transcriptional and alternative splicing regulation in lettuce.

5.
Front Cell Dev Biol ; 12: 1399005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114569

RESUMO

Introduction: Many survivors of preterm birth (<37 weeks gestation) have lifelong respiratory deficits, the drivers of which remain unknown. Influencers of pathophysiological outcomes are often detectable at the gene level and pinpointing these differences can help guide targeted research and interventions. This study provides the first transcriptomic analysis of primary nasal airway epithelial cells in survivors of preterm birth at approximately 1 year of age. Methods: Nasal airway epithelial brushings were collected, and primary cell cultures established from term (>37 weeks gestation) and very preterm participants (≤32 weeks gestation). Ex vivo RNA was collected from brushings with sufficient cell numbers and in vitro RNA was extracted from cultured cells, with bulk RNA sequencing performed on both the sample types. Differential gene expression was assessed using the limma-trend pipeline and pathway enrichment identified using Reactome and GO analysis. To corroborate gene expression data, cytokine concentrations were measured in cell culture supernatant. Results: Transcriptomic analysis to compare term and preterm cells revealed 2,321 genes differentially expressed in ex vivo samples and 865 genes differentially expressed in cultured basal cell samples. Over one third of differentially expressed genes were related to host immunity, with interferon signalling pathways dominating the pathway enrichment analysis and IRF1 identified as a hub gene. Corroboration of disrupted interferon release showed that concentrations of IFN-α2 were below measurable limits in term samples but elevated in preterm samples [19.4 (76.7) pg/ml/µg protein, p = 0.03]. IFN-γ production was significantly higher in preterm samples [3.3 (1.5) vs. 9.4 (17.7) pg/ml/µg protein; p = 0.01] as was IFN-ß [7.8 (2.5) vs. 13.6 (19.5) pg/ml/µg protein, p = 0.01]. Conclusion: Host immunity may be compromised in the preterm nasal airway epithelium in early life. Altered immune responses may lead to cycles of repeated infections, causing persistent inflammation and tissue damage which can have significant impacts on long-term respiratory function.

6.
Curr Med Chem ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39129168

RESUMO

BACKGROUND: The inflammation phenotypes are often closely related to oxidative stress and autophagy pathway activation, which could be developed as a treatment target. AIMS: The aim of this study was to explore the underlying mechanism of inflammation in chronic obstructive pulmonary disease (COPD). METHODS: The lung tissue single-cell RNA-seq (scRNA-seq) dataset of GSE171541 was downloaded from the Gene Expression Omnibus (GEO) database. The marker genes were obtained from the CellMarker database. "Seurat" and "harmony" R packages were used for single-cell profiling analysis. Then, the "AUCell" R package was employed to calculate the reactive oxygen species (ROS) and autophagy pathway scores. Gene regulation network analysis was performed by applying the "SCENIC" package, followed by conducting correlation analysis with Spearman's rank correlation method. The cigarettes were used to develop a traumatic model in mice, and the expression of relevant genes was measured by qRT-PCR. RESULTS: The scRNA-seq analysis classified 12 cell subgroups in which the contractility of myofibroblasts was closely associated with the progression of COPD. Further analysis showed that ROS and autophagy pathways were significantly activated in myofibroblasts and that the nuclear factor erythroid 2-related factor 2 (NRF2) and its mediated oxidative stress pathway were inhibited in myofibroblasts. In addition, the downregulated NRF2 gene was negatively correlated with the expression of autophagy and ROS activation. In the traumatic mice model, NRF2 was downregulated in COPD mice but further elevated in the COPD+NRF2 mice group. Interestingly, the mRNA levels of Kelchlike ECH-associated protein 1 (Keap1), NADPH oxidase (NOX), and Cathepsin B (CTSB) were upregulated in COPD group in comparison to the control group but they were downregulated by NRF2. These results suggested that low-expressed NFR2 promoted autophagy and ROS pathway activation in myofibroblasts for COPD progression. CONCLUSION: We identified a cell myofibroblast cluster closely associated with COPD progression using the scRNA-seq analysis. The downregulated NFR2, as a key risk factor, mediated myofibroblast death by activating the oxidative stress and autophagy pathway for COPD progression.

7.
Cell Biol Int ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961533

RESUMO

The senescence-associated protein p16INK4A acts as a limiter element in cell-cycle progression. The loss of p16INK4A function is causally related to cellular immortalization. The increase in p16INK4A levels with advancing age was demonstrated in melanocytes. However, the characteristic difference between young and senescent melanocytes affecting immortalization of melanocytes remains unclear. In this study, we generated 10 different cell lines in total from newborn (NB) and adult (AD) primary normal human epidermal melanocytes (NHEM) using four different methods, transduction of CDK4R24C and cyclin D1 (K4D), K4D with TERT (K4DT), SV40 T-antigen (SV40T), and HPV16 E6 and E7 (E6/E7) and performed whole transcriptome sequencing analysis (RNA-Seq) to elucidate the differences of genome-wide expression profiles among cell lines. The analysis data revealed distinct differences in expression pattern between cell lines from NB and AD although no distinct biological differences were detected in analyses such as comparison of cell morphology, evaluation of cell proliferation, and cell cycle profiles. This study may provide useful in vitro models to benefit the understanding of skin-related diseases.

8.
Front Genet ; 15: 1377237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978875

RESUMO

Several studies have compared the transcriptome across various brain regions in Huntington's disease (HD) gene-positive and neurologically normal individuals to identify potential differentially expressed genes (DEGs) that could be pharmaceutical or prognostic targets for HD. Despite adhering to technical recommendations for optimal RNA-Seq analysis, none of the genes identified as upregulated in these studies have yet demonstrated success as prognostic or therapeutic targets for HD. Earlier studies included samples from neurologically normal individuals older than the HD gene-positive group. Considering the gradual transcriptional changes induced by aging in the brain, we posited that utilizing samples from older controls could result in the misidentification of DEGs. To validate our hypothesis, we reanalyzed 146 samples from this study, accessible on the SRA database, and employed Propensity Score Matching (PSM) to create a "virtual" control group with a statistically comparable age distribution to the HD gene-positive group. Our study underscores the adverse impact of using neurologically normal individuals over 75 as controls in gene differential expression analysis, resulting in false positives and negatives. We conclusively demonstrate that using such old controls leads to the misidentification of DEGs, detrimentally affecting the discovery of potential pharmaceutical and prognostic markers. This underscores the pivotal role of considering the age of control samples in RNA-Seq analysis and emphasizes its inclusion in evaluating best practices for such investigations. Although our primary focus is HD, our findings suggest that judiciously selecting age-appropriate control samples can significantly improve best practices in differential expression analysis.

9.
Vet Parasitol ; 331: 110245, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39018905

RESUMO

Live anticoccidial vaccines, either formulated with unattenuated or attenuated Eimeria parasites, are powerful stimulators of chicken intestinal immunity. Little is known about the dynamics of gene expression and the corresponding biological processes of chicken responses against infection with precocious line (PL) of Eimeria parasites. In the present study, we performed a time-series transcriptomic analysis of chicken duodenum across 15 time points from 6 to 156 hours post-infection (p.i.) with PL of E. acervulina. A high-quality profile showing two distinct changes in chicken duodenum mRNA expression was generated during the infection of Eimeria. Early response revealed that activation of the chicken immune response was detectable from 6 h.p.i., prominent genes triggered during the initiation of asexual and sexual parasite growth encompass immune regulatory effects, such as interferon gamma (IFN-γ), interferon regulatory factor 1 (IRF1), and interleukin-10 (IL10). The late response was identified significantly associating with maintaining cellular structure and activating lipid metabolic pathways. These analyses provide a detailed depiction of the biological response landscape in chickens infected by the PL of E. acervulina, contributing significant insights for the investigation of the host-parasite interactions and the management of parasitic diseases.

10.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39063210

RESUMO

The common bean (Phaseolus vulgaris L.) is an economically important food crop grown worldwide; however, its production is affected by various environmental stresses, including cold, heat, and drought stress. The plant U-box (PUB) protein family participates in various biological processes and stress responses, but the gene function and expression patterns of its members in the common bean remain unclear. Here, we systematically identified 63 U-box genes, including 8 tandem genes and 55 non-tandem genes, in the common bean. These PvPUB genes were unevenly distributed across 11 chromosomes, with chromosome 2 holding the most members of the PUB family, containing 10 PUB genes. The analysis of the phylogenetic tree classified the 63 PUB genes into three groups. Moreover, transcriptome analysis based on cold-tolerant and cold-sensitive varieties identified 4 differentially expressed PvPUB genes, suggesting their roles in cold tolerance. Taken together, this study serves as a valuable resource for exploring the functional aspects of the common bean U-box gene family and offers crucial theoretical support for the development of new cold-tolerant common bean varieties.


Assuntos
Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Família Multigênica , Phaseolus , Filogenia , Proteínas de Plantas , Phaseolus/genética , Resposta ao Choque Frio/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica/métodos , Genoma de Planta , Cromossomos de Plantas/genética , Temperatura Baixa
11.
FASEB J ; 38(14): e23793, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39003634

RESUMO

Sevoflurane, as a commonly used inhaled anesthetic for pediatric patients, has been reported that multiple sevoflurane exposures are associated with a greater risk of developing neurocognitive disorder. N6-Methyladenosine (m6A), as the most common mRNA modification in eukaryotes, has emerged as a crucial regulator of brain function in processes involving synaptic plasticity, learning and memory, and neurodevelopment. Nevertheless, the relevance of m6A RNA methylation in the multiple sevoflurane exposure-induced developmental neurotoxicity remains mostly elusive. Herein, we evaluated the genome-wide m6A RNA modification and gene expression in hippocampus of mice that received with multiple sevoflurane exposures using m6A-sequencing (m6A-seq) and RNA-sequencing (RNA-seq). We discovered 19 genes with differences in the m6A methylated modification and differential expression in the hippocampus. Among these genes, we determined that a total of nine differential expressed genes may be closely associated with the occurrence of developmental neurotoxicity induced by multiple sevoflurane exposures. We further found that the alkB homolog 5 (ALKBH5), but not methyltransferase-like 3 (METTL3) and Wilms tumor 1-associated protein (WTAP), were increased in the hippocampus of mice that received with multiple sevoflurane exposures. And the IOX1, as an inhibitor of ALKBH5, significantly improved the learning and memory defects and reduced neuronal damage in the hippocampus of mice induced by multiple sevoflurane exposures. The current study revealed the role of m6A methylated modification and m6A-related regulators in sevoflurane-induced cognitive impairment, which might provide a novel insight into identifying biomarkers and therapeutic strategies for inhaled anesthetic-induced developmental neurotoxicity.


Assuntos
Adenosina , Homólogo AlkB 5 da RNA Desmetilase , Hipocampo , Síndromes Neurotóxicas , Sevoflurano , Sevoflurano/toxicidade , Animais , Camundongos , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle , Adenosina/análogos & derivados , Adenosina/metabolismo , Anestésicos Inalatórios/toxicidade , Camundongos Endogâmicos C57BL , Metilação/efeitos dos fármacos , Metiltransferases/metabolismo , Metiltransferases/genética
12.
Noncoding RNA ; 10(4)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39051373

RESUMO

BACKGROUND: Transposable elements (TEs) are major components of eukaryotic genomes. The extensive body of evidence suggests that although they were once considered "genomic parasites", transposons and their transcripts perform specific functions, such as regulation of early embryo development. Understanding the role of TEs in such parasites as trematodes is becoming critically important. Fasciola hepatica, a parasite affecting humans and livestock, undergoes a complex life cycle in diverse environments and hosts, and knowledge about its life cycle regulation is scarce so far. METHODS: We summarized the data regarding the repetitive elements in F. hepatica and conducted bulk RNA-seq analysis across its life cycle stages. TE expression profiles were analyzed, focusing on differential expression and potential homology with previously described long non-coding RNAs (lncRNAs). RESULTS: Differential expression analysis revealed stage-specific TE transcription patterns, notably peaking during egg and metacercariae stages. Some TEs showed homology with known lncRNAs and contained putative transcription factor binding sites. Interestingly, TE transcription levels were highest in eggs and metacercariae compared to adults, suggesting regulatory roles in trematode life cycle transitions. CONCLUSIONS: These findings suggest that TEs may play roles in regulating trematode life cycle transitions. Moreover, TE homology with lncRNAs underscores their significance in gene regulation.

13.
Front Genet ; 15: 1397502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045328

RESUMO

Excessive reactive oxygen species stress due to salinity poses a significant threat to the growth of Glycyrrhiza uralensis Fisch. To adapt to salt stress, G. uralensis engages in alternative splicing (AS) to generate a variety of proteins that help it withstand the effects of salt stress. While several studies have investigated the impact of alternative splicing on plants stress responses, the mechanisms by which AS interacts with transcriptional regulation to modulate the salt stress response in G. uralensis remain poorly understood. In this study, we utilized high-throughput RNA sequencing data to perform a comprehensive analysis of AS events at various time points in G. uralensis under salt stress, with exon skipping (SE) being the predominant AS type. KEGG enrichment analysis was performed on the different splicing genes (DSG), and pathways associated with AS were significantly enriched, including RNA transport, mRNA surveillance, and spliceosome. This indicated splicing regulation of genes, resulting in AS events under salt stress conditions. Moreover, plant response to salt stress pathways were also enriched, such as mitogen-activated protein kinase signaling pathway - plant, flavonoid biosynthesis, and oxidative phosphorylation. We focused on four differentially significant genes in the MAPK pathway by AS and qRT-PCR analysis. The alternative splicing type of MPK4 and SnRK2 was skipped exon (SE). ETR2 and RbohD were retained intron (RI) and alternative 5'splice site (A5SS), respectively. The expression levels of isoform1 of these four genes displayed different but significant increases in different tissue sites and salt stress treatment times. These findings suggest that MPK4, SnRK2, ETR2, and RbohD in G. uralensis activate the expression of isoform1, leading to the production of more isoform1 protein and thereby enhancing resistance to salt stress. These findings suggest that salt-responsive AS directly and indirectly governs G. uralensis salt response. Further investigations into AS function and mechanism during abiotic stresses may offer novel references for bolstering plant stress tolerance.

14.
Brief Funct Genomics ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832682

RESUMO

Sesame (Sesamum indicum L.) is a globally cultivated oilseed crop renowned for its historical significance and widespread growth in tropical and subtropical regions. With notable nutritional and medicinal attributes, sesame has shown promising effects in combating malnutrition cancer, diabetes, and other diseases like cardiovascular problems. However, sesame production faces significant challenges from environmental threats such as charcoal rot, drought, salinity, and waterlogging stress, resulting in economic losses for farmers. The scarcity of information on stress-resistance genes and pathways exacerbates these challenges. Despite its immense importance, there is currently no platform available to provide comprehensive information on sesame, which significantly hinders the mining of various stress-associated genes and the molecular breeding of sesame. To address this gap, here a free, web-accessible, and user-friendly genomic web resource (SesameGWR, http://backlin.cabgrid.res.in/sesameGWR/) has been developed This platform provides key insights into differentially expressed genes, transcription factors, miRNAs, and molecular markers like simple sequence repeats, single nucleotide polymorphisms, and insertions and deletions associated with both biotic and abiotic stresses.. The functional genomics information and annotations embedded in this web resource were predicted through RNA-seq data analysis. Considering the impact of climate change and the nutritional and medicinal importance of sesame, this study is of utmost importance in understanding stress responses. SesameGWR will serve as a valuable tool for developing climate-resilient sesame varieties, thereby enhancing the productivity of this ancient oilseed crop.

15.
Sci Rep ; 14(1): 12602, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824202

RESUMO

Mitochondrial RNA modification (MRM) plays a crucial role in regulating the expression of key mitochondrial genes and promoting tumor metastasis. Despite its significance, comprehensive studies on MRM in lower grade gliomas (LGGs) remain unknown. Single-cell RNA-seq data (GSE89567) was used to evaluate the distribution functional status, and correlation of MRM-related genes in different cell types of LGG microenvironment. We developed an MRM scoring system by selecting potential MRM-related genes using LASSO regression analysis and the Random Survival Forest algorithm, based on multiple bulk RNA-seq datasets from TCGA, CGGA, GSE16011, and E-MTAB-3892. Analysis was performed on prognostic and immunological features, signaling pathways, metabolism, somatic mutations and copy number variations (CNVs), treatment responses, and forecasting of potential small-molecule agents. A total of 35 MRM-related genes were selected from the literature. Differential expression analysis of 1120 normal brain tissues and 529 LGGs revealed that 22 and 10 genes were upregulated and downregulated, respectively. Most genes were associated with prognosis of LGG. METLL8, METLL2A, TRMT112, and METTL2B were extensively expressed in all cell types and different cell cycle of each cell type. Almost all cell types had clusters related to mitochondrial RNA processing, ribosome biogenesis, or oxidative phosphorylation. Cell-cell communication and Pearson correlation analyses indicated that MRM may promoting the development of microenvironment beneficial to malignant progression via modulating NCMA signaling pathway and ICP expression. A total of 11 and 9 MRM-related genes were observed by LASSO and the RSF algorithm, respectively, and finally 6 MRM-related genes were used to establish MRM scoring system (TRMT2B, TRMT11, METTL6, METTL8, TRMT6, and TRUB2). The six MRM-related genes were then validated by qPCR in glioma and normal tissues. MRM score can predict the malignant clinical characteristics, abundance of immune infiltration, gene variation, clinical outcome, the enrichment of signaling pathways and metabolism. In vitro experiments demonstrated that silencing METTL8 significantly curbs glioma cell proliferation and enhances apoptosis. Patients with a high MRM score showed a better response to immunotherapies and small-molecule agents such as arachidonyl trifluoromethyl ketone, MS.275, AH.6809, tacrolimus, and TTNPB. These novel insights into the biological impacts of MRM within the glioma microenvironment underscore its potential as a target for developing precise therapies, including immunotherapeutic approaches.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patologia , Prognóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética , Processamento Pós-Transcricional do RNA , Gradação de Tumores , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Multiômica
16.
J Cell Mol Med ; 28(11): e18405, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842134

RESUMO

Prostate cancer (PCa), a prevalent malignancy among elderly males, exhibits a notable rate of advancement, even when subjected to conventional androgen deprivation therapy or chemotherapy. An effective progression prediction model would prove invaluable in identifying patients with a higher progression risk. Using bioinformatics strategies, we integrated diverse data sets of PCa to construct a novel risk model predicated on gene expression and progression-free survival (PFS). The accuracy of the model was assessed through validation using an independent data set. Eight genes were discerned as independent prognostic factors and included in the prediction model. Patients assigned to the high-risk cohort demonstrated a diminished PFS, and the areas under the curve of our model in the validation set for 1-year, 3-year, and 5-year PFS were 0.9325, 0.9041 and 0.9070, respectively. Additionally, through the application of single-cell RNA sequencing to two castration-related prostate cancer (CRPC) samples and two hormone-related prostate cancer (HSPC) samples, we discovered that luminal cells within CRPC exhibited an elevated risk score. Subsequent molecular biology experiments corroborated our findings, illustrating heightened SYK expression levels within tumour tissues and its contribution to cancer cell migration. We found that the knockdown of SYK could inhibit migration in PCa cells. Our progression-related risk model demonstrated the potential prognostic value of SYK and indicated its potential as a target for future diagnosis and treatment strategies in PCa management.


Assuntos
Biologia Computacional , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata , Masculino , Humanos , Biologia Computacional/métodos , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/diagnóstico , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética , Fatores de Risco , Linhagem Celular Tumoral
17.
Microorganisms ; 12(6)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38930594

RESUMO

Plant biostimulants have received attention as sustainable alternatives to chemical fertilizers. Extracellular polymeric substances (EPSs), among the compounds secreted by plant growth-promoting rhizobacteria (PGPRs), are assumed to alleviate abiotic stress. This study aims to investigate the effect of purified EPSs on rice under abiotic stress and analyze their mechanisms. A pot experiment was conducted to elucidate the effects of inoculating EPSs purified from PGPRs that increase biofilm production in the presence of sugar on rice growth in heat-stress conditions. Since all EPSs showed improvement in SPAD after the stress, Enterobacter ludwigii, which was not characterized as showing higher PGP bioactivities such as phytohormone production, nitrogen fixation, and phosphorus solubilization, was selected for further analysis. RNA extracted from the embryos of germinating seeds at 24 h post-treatment with EPSs or water was used for transcriptome analysis. The RNA-seq analysis revealed 215 differentially expressed genes (DEGs) identified in rice seeds, including 139 up-regulated and 76 down-regulated genes. A gene ontology (GO) enrichment analysis showed that the enriched GO terms are mainly associated with the ROS scavenging processes, detoxification pathways, and response to oxidative stress. For example, the expression of the gene encoding OsAAO5, which is known to function in detoxifying oxidative stress, was two times increased by EPS treatment. Moreover, EPS application improved SPAD and dry weights of shoot and root by 90%, 14%, and 27%, respectively, under drought stress and increased SPAD by 59% under salt stress. It indicates that bacterial EPSs improved plant growth under abiotic stresses. Based on our results, we consider that EPSs purified from Enterobacter ludwigii can be used to develop biostimulants for rice.

18.
J Exp Bot ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869971

RESUMO

Optimising plant nitrogen (N) usage and inhibiting N leaching loss in the soil-crop system is crucial to maintaining crop yield and reducing environmental pollution. This study aimed at identifying quantitative trait loci (QTLs) and differentially expressed genes (DEGs) between two N treatments in order to list candidate genes related to nitrogen-related contrasting traits in tomato varieties. We characterised a genetic diversity core-collection (CC) and a multi-parental advanced generation intercross (MAGIC) tomato population grown in greenhouse under two nitrogen levels and assessed several N-related traits and mapped QTLs. Transcriptome response under the two N conditions was also investigated through RNA sequencing of fruit and leaves in four parents of the MAGIC population. Significant differences in response to N input reduction were observed at the phenotypic level for biomass and N-related traits. Twenty-seven (27) QTLs were detected for three target traits (Leaf N content, leaf Nitrogen Balance Index and petiole NO3- content), ten and six at low and high N condition, respectively; while 19 QTLs were identified for plasticity traits. At the transcriptome level, 4,752 and 2,405 DEGs were detected between the two N conditions in leaves and fruits, respectively, among which 3,628 (50.6%) in leaves and 1,717 (71.4%) in fruit were genotype specific. When considering all the genotypes, 1,677 DEGs were shared between organs or tissues. Finally, we integrated DEGs and QTLs analyses to identify the most promising candidate genes. The results highlighted a complex genetic architecture of N homeostasis in tomato and novel putative genes useful for breeding tomato varieties requiring less N input.

19.
Microbiol Spectr ; 12(8): e0377423, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38916358

RESUMO

Stripe rust of wheat is caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst). Breeding durably resistant wheat varieties by disrupting the susceptibility (S) gene has an important impact on the control of wheat stripe rust. Mingxian169 (MX169) showed strong stripe rust susceptibility to all the races of Pst. However, molecular mechanisms and responsive genes underlying susceptibility of the wheat variety MX169 to Pst have not been elucidated. Here, we utilized next-generation sequencing technology to analyze transcriptomics data of "MX169" and high-resistance wheat "Zhong4" at 24, 48, and 120 h post-inoculation (hpi) with Pst. Comparative transcriptome analysis revealed 3,494, 2,831, and 2,700 differentially expressed genes (DEGs) at different time points. We observed an upregulation of DEGs involved in photosynthesis, flavonoid biosynthesis, pyruvate metabolism, thiamine metabolism, and other biological processes, suggesting their involvement in MX169's response to Pst. DEGs encoding transcription factors were also identified. Our study suggested the potential susceptibility gene resources in MX169 related to stripe rust response could be valuable for understanding the mechanisms involved in stripe rust susceptibility and for improving wheat resistance to Pst. IMPORTANCE: Our study suggests the potential susceptibility gene resources in MX169 related to stripe rust response could be valuable for understanding the mechanisms involved in stripe rust susceptibility and for improving wheat resistance to Pst.


Assuntos
Resistência à Doença , Doenças das Plantas , Puccinia , Transcriptoma , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Basidiomycota/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Front Pharmacol ; 15: 1405163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799158

RESUMO

Introduction: Sepsis is a clinical syndrome characterized by dysregulation of the host immune response due to infection, resulting in life-threatening organ damage. Despite active promotion and implementation of early preventative measures and bundle treatments, sepsis continues to exhibit high morbidity and mortality rates with no optimal pharmacological intervention available. Lobetyolin (LBT), the crucial component of polyacetylenes found in Codonopsis pilosula, has been scientifically proven to possess potent antioxidant and antitumor properties. However, its therapeutic potential for sepsis remains unknown. Methods: The mice received pretreatment with intraperitoneal injections of LBT, followed by injection with lipopolysaccharide (LPS) to induce sepsis. Peripheral blood samples were collected to detect TNF-α, IL-1ß, and IL-6 levels. The survival status of different groups was recorded at various time intervals. RNA-Seq was utilized for the analysis of gene expression in peritoneal macrophages treated with LBT or LPS. Results: In this study, we observed a significant increase in the survival rate of mice pretreated with LBT in LPS induced sepsis mouse model. LBT demonstrated a remarkable reduction in the production of IL-6, TNF-α, and IL-1ß in the serum, along with mitigated lung and liver tissue damage characterized by reduced inflammatory cell infiltration. Additionally, through RNA-seq analysis coupled with GO and KEGG analysis, it was revealed that LBT effectively suppressed genes associated with bacterium presence, cellular response to lipopolysaccharide stimulation, as well as cytokine-cytokine receptor interaction involving Cxcl10, Tgtp1, Gbp5, Tnf, Il1b and IRF7 specifically within macrophages. We also confirmed that LBT significantly downregulates the expression of IL-6, TNF-α, and IL-1ß in macrophage activation induced by LPS. Discussion: Therefore, our findings demonstrated that LBT effectively inhibits the production of inflammatory cytokines (IL-6, TNF-α, and IL-1ß) and mitigates sepsis induced by LPS through modulating macrophages' ability to generate these cytokines. These results suggest that LBT holds promise as a potential therapeutic agent for sepsis treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA