Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Invest New Drugs ; 38(3): 785-799, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31257554

RESUMO

BackgroundWe investigated the role of reactive oxygen species (ROS) in the anticancer mechanism of N-benzyl-2-nitro-1-imidazole-acetamide (BZN), a drug used in Chagas' disease treatment. MethodsBALB/c mice, inoculated with Ehrlich ascites carcinoma (EAC), were treated with BZN or BZN + Nacylcysteine (NAC) or NAC for 9 days. Subsequently, the inhibition of tumor growth and angiogenesis as well as animal survival were evaluated. Apoptosis and the cell cycle were evaluated using fluorescence microscopy and flow cytometry, while oxidative stress was evaluated by measuring TBARS content, DNA damage, calcium influx and ROS generation and antioxidant defenses (CAT, SOD, GPx, GST and GR). Immunoblotting was used to evaluate key death and cell cycle proteins. Results BZN treatment inhibited tumor progression (79%), angiogenesis (2.8-fold) and increased animal survival (29%). Moreover, BZN increased ROS levels (42%), calcium influx (55%), TBARS contents (1.9-fold), SOD (4.4-fold), GPx (17.5-fold) and GST (3-fold) activities and GSH depletion (2.5-fold) also caused DNA fragmentation (7.6-fold), increased cleaved PARP and promoted the trapping of cells in the G1 phase, as corroborated by the reduction in cyclin A and increased CDK2 protein levels. In silico DNA and molecular dynamic simulations showed H-bonds and hydrophobic interactions that were confirmed by circular dichroism. Increased apoptosis (232%), induced by treatment with BZN, was demonstrated by apoptotic cell staining and p53 level. Conclusion The current findings indicate that BZN acts as a tumor growth inhibitor and anti-angiogenic agent by ROS overgeneration, which interact with DNA causing damage and triggering apoptosis.


Assuntos
Acetamidas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Imidazóis/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA