Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plants (Basel) ; 12(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37631136

RESUMO

The chaperone R2TP has multiple subunits that assist in the proper folding, assembly, and stabilization of various protein complexes in cells and its study can offer valuable insights into the regulation and maintenance of protein assemblies in plant systems. The 'T' component of R2TP is Tah1 in yeast, consisting of 111 residues, while its counterpart in humans is RPAP3, with 665 residues. RPAP3 acts as a co-chaperone of Hsp90 and facilitates interactions between RUVBL proteins and other complex components, enhancing the recruitment of client proteins by the R2TP complex. These facts further underscore the relevance of studying this complex in different organisms. The putative gene corresponding to the RPAP3 in Sorghum bicolor, a monocotyledon plant, was cloned, and the protein (396 residues) purified for biochemical characterization. SbRPAP3 exists as a folded monomer and has a RPAP3 domain, which is present in human RPAP3 but absent in yeast Tah1. SbRPAP3 retains its functional capabilities, including binding with RUVBLs, Hsp90, and Hsp70. By elucidating the role of RPAP3 in plant R2TP complex, we can further comprehend the molecular mechanisms underlying plant-specific protein assembly and contribute to advancements in plant biology and biotechnological applications.

2.
J Proteome Res ; 21(4): 1073-1082, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129352

RESUMO

The PAQosome (particle for arrangement of quaternary structure) is a 12-subunit HSP90 co-chaperone involved in the biogenesis of several human protein complexes. Two mechanisms of client selection have previously been identified, namely, the selective recruitment of specific adaptors and the differential use of homologous core subunits. Here, we describe a third client selection mechanism by showing that RPAP3, one of the core PAQosome subunits, is phosphorylated at several Ser residues in HEK293 cells. Affinity purification coupled with mass spectrometry (AP-MS) using the expression of tagged RPAP3 with single phospho-null mutations at Ser116, Ser119, or Ser121 reveals binding of the unphosphorylated form to several proteins involved in ribosome biogenesis. In vitro phosphorylation assays indicate that the kinase CK2 phosphorylates these RPAP3 residues. This finding is supported by data showing that pharmacological inhibition of CK2 enhances the binding of RPAP3 to ribosome preassembly factors in AP-MS experiments. Moreover, the silencing of PAQosome subunits interferes with ribosomal assembly factors' interactome. Altogether, these results indicate that RPAP3 phosphate group addition/removal at specific residues modulates binding to subunits of preribosomal complexes and allows speculating that PAQosome posttranslational modification is a mechanism of client selection.


Assuntos
Proteínas de Choque Térmico HSP90 , Chaperonas Moleculares , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Chaperonas Moleculares/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Ribossomos/metabolismo
3.
Cells ; 9(5)2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384603

RESUMO

The Rvb1-Rvb2-Tah1-Pih1 (R2TP) complex is a co-chaperone complex that works together with HSP90 in the activation and assembly of several macromolecular complexes, including RNA polymerase II (Pol II) and complexes of the phosphatidylinositol-3-kinase-like family of kinases (PIKKs), such as mTORC1 and ATR/ATRIP. R2TP is made of four subunits: RuvB-like protein 1 (RUVBL1) and RuvB-like 2 (RUVBL2) AAA-type ATPases, RNA polymerase II-associated protein 3 (RPAP3), and the Protein interacting with Hsp90 1 (PIH1) domain-containing protein 1 (PIH1D1). R2TP associates with other proteins as part of a complex co-chaperone machinery involved in the assembly and maturation of a growing list of macromolecular complexes. Recent progress in the structural characterization of R2TP has revealed an alpha-helical domain at the C-terminus of RPAP3 that is essential to bring the RUVBL1 and RUVBL2 ATPases to R2TP. The RPAP3 C-terminal domain interacts directly with RUVBL2 and it is also known as RUVBL2-binding domain (RBD). Several human proteins contain a region homologous to the RPAP3 C-terminal domain, and some are capable of assembling R2TP-like complexes, which could have specialized functions. Only the RUVBL1-RUVBL2 ATPase complex and a protein containing an RPAP3 C-terminal-like domain are found in all R2TP and R2TP-like complexes. Therefore, the RPAP3 C-terminal domain is one of few components essential for the formation of all R2TP and R2TP-like co-chaperone complexes.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Sequência Conservada , Humanos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Domínios Proteicos
4.
Adv Exp Med Biol ; 1106: 73-83, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30484153

RESUMO

Cellular stability, assembly and activation of a growing list of macromolecular complexes require the action of HSP90 working in concert with the R2TP/Prefoldin-like (R2TP/PFDL) co-chaperone. RNA polymerase II, snoRNPs and complexes of PI3-kinase-like kinases, a family that includes the ATM, ATR, DNA-PKcs, TRAPP, SMG1 and mTOR proteins, are among the clients of the HSP90-R2TP system. Evidence links the R2TP/PFDL pathway with cancer, most likely because of the essential role in pathways commonly deregulated in cancer. R2TP forms the core of the co-cochaperone and orchestrates the recruitment of HSP90 and clients, whereas prefoldin and additional prefoldin-like proteins, including URI, associate with R2TP, but their function is still unclear. The mechanism by which R2TP/PFLD facilitates assembly and activation of such a variety of macromolecular complexes is poorly understood. Recent efforts in the structural characterization of R2TP have started to provide some mechanistic insights. We summarize recent structural findings, particularly how cryo-electron microscopy (cryo-EM) is contributing to our understanding of the architecture of the R2TP core complex. Structural differences discovered between yeast and human R2TP reveal unanticipated complexities of the metazoan R2TP complex, and opens new and interesting questions about how R2TP/PFLD works.


Assuntos
Chaperonas Moleculares/química , Animais , Microscopia Crioeletrônica , Proteínas de Choque Térmico HSP90/química , Humanos , Neoplasias , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae
5.
Structure ; 26(9): 1196-1209.e8, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30033218

RESUMO

RPAP3 and PIH1D1 are part of the HSP90 co-chaperone R2TP complex involved in the assembly process of many molecular machines. In this study, we performed a deep structural investigation of the HSP binding abilities of the two TPR domains of RPAP3. We combined 3D NMR, non-denaturing MS, and ITC techniques with Y2H, IP-LUMIER, FRET, and ATPase activity assays and explain the fundamental role played by the second TPR domain of RPAP3 in the specific recruitment of HSP90. We also established the 3D structure of an RPAP3:PIH1D1 sub-complex demonstrating the need for a 34-residue insertion, specific of RPAP3 isoform 1, for the tight binding of PIH1D1. We also confirm the existence of a complex lacking PIH1D1 in human cells (R2T), which shows differential binding to certain clients. These results highlight similarities and differences between the yeast and human R2TP complexes, and document the diversification of this family of co-chaperone complexes in human.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Sítios de Ligação , Linhagem Celular , Proteínas de Choque Térmico HSP72/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerização Proteica
6.
mBio ; 8(6)2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29114028

RESUMO

The cellular response to viral infection is usually studied at the level of cell populations. Currently, it remains an open question whether and to what extent cell-to-cell variability impacts the course of infection. Here we address this by dynamic proteomics-imaging and tracking 400 yellow fluorescent protein (YFP)-tagged host proteins in individual cells infected by herpes simplex virus 1. By quantifying time-lapse fluorescence imaging, we analyze how cell-to-cell variability impacts gene expression from the viral genome. We identify two proteins, RFX7 and geminin, whose levels at the time of infection correlate with successful initiation of gene expression. These proteins are cell cycle markers, and we find that the position in the cell cycle at the time of infection (along with the cell motility and local cell density) can reasonably predict in which individual cells gene expression from the viral genome will commence. We find that the onset of cell division dramatically impacts the progress of infection, with 70% of dividing cells showing no additional gene expression after mitosis. Last, we identify four host proteins that are specifically modulated in infected cells, of which only one has been previously recognized. SUMO2 and RPAP3 levels are rapidly reduced, while SLTM and YTHDC1 are redistributed to form nuclear foci. These modulations are dependent on the expression of ICP0, as shown by infection with two mutant viruses that lack ICP0. Taken together, our results provide experimental validation for the long-held notion that the success of infection is dependent on the state of the host cell at the time of infection.IMPORTANCE High-throughput assays have revolutionized many fields in biology, both by allowing a more global understanding of biological processes and by deciphering rare events in subpopulations. Here we use such an assay, dynamic proteomics, to study viral infection at the single-cell level. We follow tens of thousands of individual cells infected by herpes simplex virus using fluorescence live imaging. Our results link the state of a cell at the time of virus infection with its probability to successfully initiate gene expression from the viral genome. Further, we identified three cellular proteins that were previously unknown to respond to viral infection. We conclude that dynamic proteomics provides a powerful tool to study single-cell differences during viral infection.


Assuntos
Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , Proteômica , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Geminina/genética , Geminina/metabolismo , Regulação da Expressão Gênica , Genoma Viral , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Mitose , Mutação , Imagem Óptica , Análise de Célula Única/métodos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Biologia de Sistemas , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
7.
J Mol Biol ; 427(17): 2816-39, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26210662

RESUMO

In eukaryotes, nucleotide post-transcriptional modifications in RNAs play an essential role in cell proliferation by contributing to pre-ribosomal RNA processing, ribosome assembly and activity. Box C/D small nucleolar ribonucleoparticles catalyze site-specific 2'-O-methylation of riboses, one of the most prevalent RNA modifications. They contain one guide RNA and four core proteins and their in vivo assembly requires numerous factors including (HUMAN/Yeast) BCD1/Bcd1p, NUFIP1/Rsa1p, ZNHIT3/Hit1p, the R2TP complex composed of protein PIH1D1/Pih1p and RPAP3/Tah1p that bridges the R2TP complex to the HSP90/Hsp82 chaperone and two AAA+ ATPases. We show that Tah1p can stabilize Pih1p in the absence of Hsp82 activity during the stationary phase of growth and consequently that the Tah1p:Pih1p interaction is sufficient for Pih1p stability. This prompted us to establish the solution structure of the Tah1p:Pih1p complex by NMR. The C-terminal tail S93-S111 of Tah1p snakes along Pih1p264-344 folded in a CS domain to form two intermolecular ß-sheets and one covering loop. However, a thorough inspection of the NMR and crystal structures revealed structural differences that may be of functional importance. In addition, our NMR and isothermal titration calorimetry data revealed the formation of direct contacts between Pih1p257-344 and the Hsp82MC domain in the presence of Tah1p. By co-expression in Escherichia coli, we demonstrate that Pih1p has two other direct partners, the Rsa1p assembly factor and the Nop58p core protein, and in vivo and in vitro experiments mapped the required binding domains. Our data suggest that these two interactions are mutually exclusive. The implication of this finding for box C/D small nucleolar ribonucleoparticle assembly is discussed.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Escherichia coli/genética , Proteínas de Choque Térmico HSP90/genética , Interações Hidrofóbicas e Hidrofílicas , Metilação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Dobramento de Proteína , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , RNA Ribossômico/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
8.
J Biol Chem ; 289(9): 6236-47, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24394412

RESUMO

The R2TP is a recently identified Hsp90 co-chaperone, composed of four proteins as follows: Pih1D1, RPAP3, and the AAA(+)-ATPases RUVBL1 and RUVBL2. In mammals, the R2TP is involved in the biogenesis of cellular machineries such as RNA polymerases, small nucleolar ribonucleoparticles and phosphatidylinositol 3-kinase-related kinases. Here, we characterize the spaghetti (spag) gene of Drosophila, the homolog of human RPAP3. This gene plays an essential function during Drosophila development. We show that Spag protein binds Drosophila orthologs of R2TP components and Hsp90, like its yeast counterpart. Unexpectedly, Spag also interacts and stimulates the chaperone activity of Hsp70. Using null mutants and flies with inducible RNAi, we show that spaghetti is necessary for the stabilization of snoRNP core proteins and target of rapamycin activity and likely the assembly of RNA polymerase II. This work highlights the strong conservation of both the HSP90/R2TP system and its clients and further shows that Spag, unlike Saccharomyces cerevisiae Tah1, performs essential functions in metazoans. Interaction of Spag with both Hsp70 and Hsp90 suggests a model whereby R2TP would accompany clients from Hsp70 to Hsp90 to facilitate their assembly into macromolecular complexes.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Animais , Antibacterianos/farmacologia , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimo/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA