Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(1): 116-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37752622

RESUMO

Arabidopsis RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) is an important tool for engineering broad-spectrum disease resistance against multiple pathogens. Ectopic expression of RPW8.1 leads to enhanced disease resistance with cell death at leaves and compromised plant growth, implying a regulatory mechanism balancing RPW8.1-mediated resistance and growth. Here, we show that RPW8.1 constitutively enhances the expression of transcription factor WRKY51 and activates salicylic acid and ethylene signalling pathways; WRKY51 in turn suppresses RPW8.1 expression, forming a feedback regulation loop. RPW8.1 and WRKY51 are both induced by pathogen infection and pathogen-/microbe-associated molecular patterns. In ectopic expression of RPW8.1 background (R1Y4), overexpression of WRKY51 not only rescues the growth suppression and cell death caused by RPW8.1, but also suppresses RPW8.1-mediated broad-spectrum disease resistance and pattern-triggered immunity. Mechanistically, WRKY51 directly binds to and represses RPW8.1 promoter, thus limiting the expression amplitude of RPW8.1. Moreover, WRKY6, WRKY28 and WRKY41 play a role redundant to WRKY51 in the suppression of RPW8.1 expression and are constitutively upregulated in R1Y4 plants with WRKY51 being knocked out (wrky51 R1Y4) plants. Notably, WRKY51 has no significant effects on disease resistance or plant growth in wild type without RPW8.1, indicating a specific role in RPW8.1-mediated disease resistance. Altogether, our results reveal a regulatory circuit controlling the accumulation of RPW8.1 to an appropriate level to precisely balance growth and disease resistance during pathogen invasion.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Retroalimentação , Arabidopsis/metabolismo , Morte Celular , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas/genética
2.
J Integr Plant Biol ; 63(2): 378-392, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33073904

RESUMO

Study on the regulation of broad-spectrum resistance is an active area in plant biology. RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) is one of a few broad-spectrum resistance genes triggering the hypersensitive response (HR) to restrict multiple pathogenic infections. To address the question how RPW8.1 signaling is regulated, we performed a genetic screen and tried to identify mutations enhancing RPW8.1-mediated HR. Here, we provided evidence to connect an annexin protein with RPW8.1-mediated resistance in Arabidopsis against powdery mildew. We isolated and characterized Arabidopsis b7-6 mutant. A point mutation in b7-6 at the At5g12380 locus resulted in an amino acid substitution in ANNEXIN 8 (AtANN8). Loss-of-function or RNA-silencing of AtANN8 led to enhanced expression of RPW8.1, RPW8.1-dependent necrotic lesions in leaves, and defense against powdery mildew. Conversely, over-expression of AtANN8 compromised RPW8.1-mediated disease resistance and cell death. Interestingly, the mutation in AtANN8 enhanced RPW8.1-triggered H2 O2 . In addition, mutation in AtANN8 led to hypersensitivity to salt stress. Together, our data indicate that AtANN8 is involved in multiple stress signaling pathways and negatively regulates RPW8.1-mediated resistance against powdery mildew and cell death, thus linking ANNEXIN's function with plant immunity.


Assuntos
Anexinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Resistência à Doença , Doenças das Plantas/microbiologia , Adaptação Fisiológica , Sequência de Aminoácidos , Anexinas/química , Anexinas/genética , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ascomicetos/fisiologia , Morte Celular , Retículo Endoplasmático/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Peróxido de Hidrogênio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação/genética , Necrose , Estresse Salino , Estresse Fisiológico
3.
New Phytol ; 229(1): 516-531, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32767839

RESUMO

The Arabidopsis RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) activates confined cell death and defense against different pathogens. However, the underlying regulatory mechanisms still remain elusive. Here, we show that RPW8.1 activates ethylene signaling that, in turn, negatively regulates RPW8.1 expression. RPW8.1 binds and stabilizes 1-aminocyclopropane-1-carboxylate oxidase 4 (ACO4), which may in part explain increased ethylene production and signaling in RPW8.1-expressing plants. In return, ACO4 and other key components of ethylene signaling negatively regulate RPW8.1-mediated cell death and disease resistance via suppressing RPW8.1 expression. Loss of function in ACO4, EIN2, EIN3 EIL1, ERF6, ERF016 or ORA59 increases RPW8.1-mediated cell death and defense response. By contrast, overexpression of EIN3 abolishes or significantly compromises RPW8.1-mediated cell death and disease resistance. Furthermore, ERF6, ERF016 and ORA59 appear to act as trans-repressors of RPW8.1, with OAR59 being able to directly bind to the RPW8.1 promoter. Taken together, our results have revealed a feedback regulatory circuit connecting RPW8.1 and the ethylene-signaling pathway, in which RPW8.1 enhances ethylene signaling, and the latter, in return, negatively regulates RPW8.1-mediated cell death and defense response via suppressing RPW8.1 expression to attenuate its defense activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascomicetos/metabolismo , Morte Celular , Resistência à Doença , Etilenos , Retroalimentação , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais
4.
Front Plant Sci ; 8: 2044, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29250093

RESUMO

Ectopic expression of the Arabidopsis RESISTANCE TO POWDERY MILDEW8.1 (RPW8.1) boosts pattern-triggered immunity leading to enhanced resistance to different pathogens in Arabidopsis and rice. However, the underlying regulatory mechanism remains largely elusive. Here, we report that XAP5 CIRCADIAN TIMEKEEPER (XCT, At2g21150) positively regulates RPW8.1-mediated cell death and disease resistance. Forward genetic screen identified the b3-17 mutant that exhibited less cell death and susceptibility to powdery mildew and bacterial pathogens. Map-based cloning identified a G-to-A point mutation at the 3' splice site of the 8th intron, which resulted in splice shift to 8-bp down-stream of the original splice site of XCT in b3-17, and introduced into a stop codon after two codons leading to a truncated XCT. XCT has previously been identified as a circadian clock gene required for small RNA biogenesis and acting down-stream of ETHYLENE-INSENSITIVE3 (EIN3) in the ethylene-signaling pathway. Here we further showed that mutation or down-regulation of XCT by artificial microRNA reduced RPW8.1-mediated immunity in R1Y4, a transgenic line expressing RPW8.1-YFP from the RPW8.1 native promoter. On the contrary, overexpression of XCT in R1Y4 background enhanced RPW8.1-mediated cell death, H2O2 production and resistance against powdery mildew. Consistently, the expression of RPW8.1 was down- and up-regulated in xct mutant and XCT overexpression lines, respectively. Taken together, these results indicate that XCT positively regulates RPW8.1-mediated cell death and disease resistance, and provide new insight into the regulatory mechanism of RPW8.1-mediated immunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA