Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(14): 17355-17368, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33398751

RESUMO

This work investigated an innovative alternative to improve municipal wastewater treatment plant effluent (MWWTP effluent) quality aiming at the removal of contaminants of emerging concern (caffeine, carbendazim, and losartan potassium), and antibiotic-resistant bacteria (ARB), as well as disinfection (E. coli). Persulfate was used as an alternative oxidant in the solar photo-Fenton process (solar/Fe/S2O82-) due to its greater stability in the presence of matrix components. The efficiency of solar/Fe/S2O82- at neutral pH using intermittent iron additions is unprecedented in the literature. At first, solar/Fe/S2O82- was performed in a solar simulator (30 W m-2) leading to more than 60% removal of CECs, and the intermittent iron addition strategy was proved effective. Then, solar/Fe/S2O82- and solar/Fe/H2O2 were compared in semi-pilot scale in a raceway pond reactor (RPR) and a cost analysis was performed. Solar/Fe/S2O82- showed higher efficiencies of removal of target CECs (55%), E. coli (3 log units), and ARB (3 to 4 log units) within 1.9 kJ L-1 of accumulated irradiation compared to solar/Fe/H2O2 (CECs, 49%; E. coli, 2 log units; ARB, 1 to 3 log units in 2.5 kJ L-1). None of the treatments generated acute toxicity upon Allivibrio fischeri. Lower total cost was obtained using S2O82- (0.6 € m-3) compared to H2O2 (1.2 € m-3). Therefore, the iron intermittent addition aligned to the use of persulfate is suitable for MWWTP effluent quality improvement at neutral pH.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos , Desinfecção , Escherichia coli , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Águas Residuárias , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 766: 144320, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33401038

RESUMO

Simultaneous removal of contaminants of emerging concern and bacteria inactivation in simulated municipal wastewater effluent (SMWW) through solar advanced oxidation processes, namely sunlight/H2O2 and solar photo-Fenton with Ethylenediamine-N,N'-disuccinic acid (EDDS) at neutral pH was investigated. Process efficiency was evaluated in terms of (i) degradation of five contaminants of emerging concern (CECs, namely caffeine, carbamazepine, diclofenac, sulfamethoxazole and trimethoprim) at the initial concentration of 100 µgL-1 each and (ii) bacteria inactivation (E. coli, S. enteritidis and E. faecalis), at the initial concentration of 103 CFU mL-1 each. Solar photo-Fenton process was first investigated at lab scale in a solar simulator to evaluate the effect of iron concentration (0.1 mM and 0.05 mM) and Fe:EDDS ratio (1:2 and 1:1). Subsequently, sunlight/H2O2 and solar photo-Fenton with EDDS (molar ratio 1:1, Fe(III) 0.1 mM) at neutral pH were singularly and sequentially investigated at pilot scale in a raceway pond reactor. Sunlight/H2O2 (50 mg L-1) tests resulted in total bacteria inactivation in 60 min (0.69 kJ L-1) but low CECs removal efficiency. On the opposite, solar photo-Fenton was effective in the removal of the total CECs (87% removal after 20 min and 0.14 kJ L-1) but not in E. faecalis inactivation (the initial concentration did not change even after 180 min). However, when the two processes were operated sequentially, a complete bacteria inactivation was observed in 15 min (0.17 kJ L-1), 20 min (0.23 kJ L-1) and 60 min (0.70 kJ L-1) of treatment for E. coli, S. enteritidis and E. faecalis, respectively and 80% removal of total CECs was achieved after 10 min of Fe:EDDS addition. Sequential combination of sunlight/H2O2 and solar photo-Fenton would be an effective solution for simultaneous CECs removal and bacteria inactivation in the same photo-reactor.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Escherichia coli , Compostos Férricos , Peróxido de Hidrogênio , Oxirredução , Luz Solar , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 755(Pt 2): 142624, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33045600

RESUMO

This work proposes the evaluation of an aluminized surface on the bottom of open reactors to perform a photo-Fenton process, at circumneutral pH (using Fe III-Ethylenediamine-N,N'-disuccinic acid complex), for elimination of micropollutants (MPs) in real effluents from municipal wastewater treatment plants (EMWWTP). Firstly, the strategy was to initially investigate the real EMWWTP spiked with several MPs (acetaminophen, diclofenac, carbamazepine, caffeine, trimethoprim and sulfamethoxazole) with 20 and 100 µg L-1 in a laboratory scale (evaluated by HPLC-UV) using a solar simulator. Finally, the removal of all MCs present in the real EMWWTP was monitored (evaluated by HPLC-MS) in a pilot-scale (90 L) in a raceway pond reactor (RPR). The treatment time required for degradation above 80% for the investigated MPs was over 30 min, and the predominant effect could be mainly associated with organics present in the real EMWWTP due to the light attenuation and scavenging of radical species. Moreover, the results confirmed that chloride and sulfate would most likely equally not affect the process. The use of an aluminized surface on the bottom of RPRs has been confirmed as a suitable option to improve the photo-Fenton reaction, enabling the use of lower doses of iron. Up to 60 different MPs found in EMWWTP have been successfully degraded using 0.1 mM of Fe at circumneutral pH with a consumption of 30 mg L-1 H2O2 with less than 45 min.

4.
J Environ Manage ; 261: 110265, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148322

RESUMO

For the first time, the operational feasibility of the solar photo-Fenton process at neutral pH in continuous flow has been tested for three consecutive days. The aim of the treatment was to remove of contaminants of emerging concern (CECs) from wastewater treatment plant secondary effluents. To this end, a 5 cm-deep raceway pond reactor was run in continuous flow mode and the degradation of the CECs present in real secondary effluents was monitored at their natural concentrations. To keep dissolved iron at neutral pH, ethylenediamine-N,N'-disuccinic acid (EDDS) was used to form the complex Fe(III):EDDS as an iron source for the photo-Fenton reactions. At pilot scale the effects of the Fe(III):EDDS molar ratio (1:1 and 1:2) and hydraulic residence time (HRT) (20 and 40 min) on CEC removal were studied. The best operating condition was 20 min of HRT, giving rise to a treatment capacity of 900 L m-2 d-1 with CEC removal percentages of around 60%. The reactant concentrations were 0.1 mM Fe(III):EDDS at a 1:1 M ratio and 0.88 mM H2O2. Under these operating conditions, the short-term stability of the process was also demonstrated, thus pointing out the potential of this solar technology as a tertiary treatment.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Compostos Férricos , Concentração de Íons de Hidrogênio , Oxirredução , Luz Solar , Águas Residuárias
5.
J Hazard Mater ; 378: 120737, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202058

RESUMO

Solar photo-Fenton process in raceway pond reactors was investigated at neutral pH as a sustainable tertiary treatment of real urban wastewater. In particular, the effect on antibiotic resistance determinants was evaluated. An effective inactivation of different wild bacterial populations was achieved considering total and cefotaxime resistant bacteria. The detection limit (1 CFU mL-1) was achieved in the range 80-100 min (5.4-6.7 kJ L-1 of cumulative solar energy required) for Total Coliforms (TC) (40-60 min for resistant TC, 4.3-5.2 kJ L-1), 60-80 min (4.5-5.4 kJ L-1) for Escherichia coli (E. coli) (40 min for resistant E. coli, 4.1-4.7 kJ L-1) and 40-60 min (3.9-4.5 kJ L-1) for Enterococcus sp. (Entero) (30-40 min for resistant Entero, 3.2-3.8 kJ L-1) with 20 mg L-1 Fe2+ and 50 mg L-1 H2O2. Under these mild oxidation conditions, 7 out of the 10 detected antibiotics were effectively removed (60-100%). As the removal of antibiotic resistance genes (ARGs) is of concern, no conclusive results were obtained, as sulfonamide resistance gene was reduced to some extent (relative abundance <1), meanwhile class 1 integron intI1 and ß-lactam resistance genes were not affected. Accordingly, more research and likely more intensive oxidative conditions are needed for an efficient ARGs removal.


Assuntos
Resistência Microbiana a Medicamentos/genética , Peróxido de Hidrogênio , Ferro , Energia Solar , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Carga Bacteriana , DNA Bacteriano/genética , Genes Bacterianos , Concentração de Íons de Hidrogênio , Luz Solar , Microbiologia da Água
6.
Sci Total Environ ; 605-606: 230-237, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28672227

RESUMO

This study evaluates the combined effect of photo-catalyst concentration and irradiance level on photo-Fenton efficiency when this treatment is applied to industrial wastewater decontamination. Three levels of irradiance (18, 32 and 46W/m2) and three iron concentrations (8, 20 and 32mg/L) were selected and their influence over the process studied using a raceway pond reactor placed inside a solar box. For 8mg/L, it was found that there was a lack of catalyst to make use of all the available photons. For 20mg/L, the treatment always improved with irradiance indicating that the process was photo-limited. For 32mg/L, the excess of iron caused an excess of radicals production which proved to be counter-productive for the overall process efficiency. The economic assessment showed that acquisition and maintenance costs represent the lowest relative values. The highest cost was found to be the cost of the reagents consumed. Both sulfuric acid and sodium hydroxide are negligible in terms of costs. Iron cost percentages were also very low and never higher than 10.5% while the highest cost was always that of hydrogen peroxide, representing at least 85% of the reagent costs. Thus, the total costs were between 0.76 and 1.39€/m3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA