Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.332
Filtrar
1.
ACS Sens ; 9(7): 3680-3688, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38958469

RESUMO

As one of the common carriers of biological information, along with human urine specimens and blood, exhaled breath condensate (EBC) carries reliable and rich information about the body's metabolism to track human physiological normal/abnormal states and environmental exposures. What is more, EBC has gained extensive attention because of the convenient and nondestructive sampling. Facemasks, which act as a physical filter barrier between human exhaled breath and inhaled substances from the external environment, are safe, noninvasive, and economic devices for direct sampling of human exhaled breath and inhaled substances. Inspired by the ability of fog collection of Namib desert beetle, a strategy for in situ collecting and detecting EBC with surface-enhanced Raman scattering is illustrated. Based on the intrinsic and unique wettability differences between the squares and the surrounding area of the pattern on facemasks, the hydrophilic squares can capture exhaled droplets and spontaneously enrich the analytes and silver nanocubes (AgNCs), resulting in good repeatability in situ detection. Using R6G as the probe molecule, the minimal detectable concentration can reach as low as 10-16 M, and the relative standard deviation is less than 7%. This proves that this strategy can achieve high detection sensitivity and high detection repeatability. Meanwhile, this strategy is applicable for portable nitrite analysis in EBC and may provide an inspiration for monitoring other biomarkers in EBC.


Assuntos
Testes Respiratórios , Expiração , Nitritos , Prata , Análise Espectral Raman , Molhabilidade , Análise Espectral Raman/métodos , Humanos , Prata/química , Nitritos/análise , Nitritos/urina , Testes Respiratórios/métodos , Máscaras , Nanopartículas Metálicas/química , Animais , Besouros/química
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124817, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39029197

RESUMO

Surface plasmon driven photocatalytic reactions have great potential for information encryption as well as information security. In this paper, explored the detection concentrations of dye molecule Rhodamine6G (R6G) on three substrates, where complete original Raman spectra signals were still obtained at a concentration of 10-8 M. Utilized photosensitive molecules to investigate the photocatalytic characteristics of 4-nitrobenzenethiol (4-NBT) on three substrates. Excitation light at a wavelength of 633 nm enables local photocatalytic for information signals writing, while 785 nm wavelength excitation light combined with two-dimensional Mapping technology is used for information signal reading. Read information signals are often prone to reading errors due to their own lack of resolution or strong interference from back bottom signals, so error correction processing of information signals is essential. Through comparative exploration, it is found that the ratio method can obtain high-precision and high-resolution information signals, and the interference of the background signals were well suppressed. Leveraging the advantages of Raman fingerprint spectra at the micro/nanoscale, it solves the challenge of incomplete information signals presentation at smaller scales. Additionally, through error correction processing of the information signals, high precision and high-resolution information signals are obtained.

3.
Nanomaterials (Basel) ; 14(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39057902

RESUMO

This research introduces a novel approach using silver (Ag) nanostructures generated through electrochemical deposition and photo-reduction of Ag on fluorine-doped tin oxide glass substrates (denoted as X-Ag-AgyFTO, where 'X' and 'y' represent the type of light source and number of deposited cycles, respectively) for surface-enhanced Raman spectroscopy (SERS). This study used malachite green (MG) as a Raman probe to evaluate the enhancement factors (EFs) in SERS-active substrates under varied fabrication conditions. For the substrates produced via electrochemical deposition, we determined a Raman EF of 6.15 × 104 for the Ag2FTO substrate. In photo-reduction, the impact of reductant concentration, light source, and light exposure duration were examined on X-Ag nanoparticle formation to achieve superior Raman EFs. Under optimal conditions (9.0 mM sodium citrate, 460 nm blue-LED at 10 W for 90 min), the combination of blue-LED-reduced Ag (B-Ag) and an Ag2FTO substrate (denoted as B-Ag-Ag2FTO) exhibited the best Raman EF of 2.79 × 105. This substrate enabled MG detection within a linear range of 0.1 to 1.0 µM (R2 = 0.98) and a detection limit of 0.02 µM. Additionally, the spiked recoveries in aquaculture water samples were between 90.0% and 110.0%, with relative standard deviations between 3.9% and 6.3%, indicating the substrate's potential for fungicide detection in aquaculture.

4.
Toxins (Basel) ; 16(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39057952

RESUMO

Abrin and ricin, both type II ribosome-inactivating proteins, are toxins of significant concern and are under international restriction by the Chemical Weapons Convention and the Biological and Toxin Weapons Convention. The development of a rapid and sensitive detection method for these toxins is of the utmost importance for the first emergency response. Emerging rapid detection techniques, such as surface-enhanced Raman spectroscopy (SERS) and lateral flow assay (LFA), have garnered attention due to their high sensitivity, good selectivity, ease of operation, low cost, and disposability. In this work, we generated stable and high-affinity nanotags, via an efficient freezing method, to serve as the capture module for SERS-LFA. We then constructed a sandwich-style lateral flow test strip using a pair of glycoproteins, asialofetuin and concanavalin A, as the core affinity recognition molecules, capable of trace measurement for both abrin and ricin. The limit of detection for abrin and ricin was 0.1 and 0.3 ng/mL, respectively. This method was applied to analyze eight spiked white powder samples, one juice sample, and three actual botanic samples, aligning well with cytotoxicity assay outcomes. It demonstrated good inter-batch and intra-batch reproducibility among the test strips, and the detection could be completed within 15 min, indicating the suitability of this SERS-LFA method for the on-site rapid detection of abrin and ricin toxins.


Assuntos
Abrina , Ricina , Análise Espectral Raman , Ricina/análise , Abrina/análise , Análise Espectral Raman/métodos , Glicoproteínas/análise , Limite de Detecção , Humanos , Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/toxicidade
5.
Food Chem ; 460(Pt 1): 140394, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39032292

RESUMO

In this work, a sea urchin gold nanoparticles-zearalenone aptamer- tetramethylrhodamine sensor was constructed. Sea urchin gold nanoparticles, prepared using the seed-mediated growth method, were used as Raman substrates. Nucleic acid aptamers were mainly used as specific recognition molecules. Zearalenone detection in miscellaneous beans was accomplished using the principle of conformational change in aptamer. In addition, we evaluated the linear range, sensitivity, and selectivity of our sensor. We observed that at the displacement of 814 cm-1, for Zearalenone concentrations of 0.01-60 ng/mL, the Raman signal intensity linearly correlated with the zearalenone concentration, with a limit of detection of 0.01 ng/mL, and recoveries of 91.7% to 108.3%. The optimum detection time was 30 min. Thus, our sensor exhibited great potential in zearalenone detection in food products.

6.
Food Chem ; 457: 140486, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032478

RESUMO

A gold nanogap substrate was used to measure the thiram and carbaryl residues in various fruit juices using surface-enhanced Raman scattering (SERS). The gold nanogap substrates can detect carbaryl and thiram with limits of detection of 0.13 ppb (0.13 µgkg-1) and 0.22 ppb (0.22 µgkg-1). Raw SERS data were first preprocessed to reduce noise and undesirable effects and, were later used for model creation, implementing classification, and regression analysis techniques. The partial least-squares regression models achieved the highest prediction correlation coefficient (R2) of 0.99 and the lowest root mean square of prediction value below 0.62 ppb for both pesticide-infected juice samples. Furthermore, to differentiate between juice samples contaminated by both pesticides and control (pesticide-free), logistic-regression classification models were produced and achieved the highest classification accuracies of 100% and 99% for contaminated juice containing thiram and 100% accurate results for contaminated juice containing carbaryl. This indicates that the gold nanogap surface has significant potential for achieving high sensitivity in detecting trace contaminants in food samples.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124758, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38963945

RESUMO

In this study, electroporation-surface-enhanced Raman scattering (SERS) was applied to rapidly measure intracellular pH. The generation of a sensitive SERS probe for measuring pH in the range of 6.0-8.0 was accomplished through the conjugation of the pH-sensitive molecule 4-mercaptobenzoic acid (4-MBA) to the surface of gold nanoparticles (Au NPs) through its thiol functional group. This bioprobe was then rapidly introduced into nasopharyngeal carcinoma CNE-1 cells by electroporation, followed by SERS scanning and the fitting of intensity ratios of each detection point's Raman peaks at 1423 cm-1 and 1072 cm-1, to create the pH distribution map of CNE-1 cells. The electroporation-SERS assay introduces pH bioprobes into a living cell in a very short time and disperses the nanoprobe throughout the cytoplasm, ultimately enabling rapid and comprehensive pH analysis of the entire cell. Our work demonstrates the potential of electroporation-SERS for the biochemical analysis of live cells.

8.
Mikrochim Acta ; 191(8): 441, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954045

RESUMO

A ratiometric SERS aptasensor based on catalytic hairpin self-assembly (CHA) mediated cyclic signal amplification strategy was developed for the rapid and reliable determination of Escherichia coli O157:H7. The recognition probe was synthesized by modifying magnetic beads with blocked aptamers, and the SERS probe was constructed by functionalizing gold nanoparticles (Au NPs) with hairpin structured DNA and 4-mercaptobenzonitrile (4-MBN). The recognition probe captured E. coli O157:H7 specifically and released the blocker DNA, which activated the CHA reaction on the SERS probe and turned on the SERS signal of 6-carboxyl-x-rhodamine (ROX). Meanwhile, 4-MBN was used as an internal reference to calibrate the matrix interference. Thus, sensitive and reliable determination and quantification of E. coli O157:H7 was established using the ratio of the SERS signal intensities of ROX to 4-MBN. This aptasensor enabled detection of 2.44 × 102 CFU/mL of E. coli O157:H7 in approximately 3 h without pre-culture and DNA extraction. In addition, good reliability and excellent reproducibility were observed for the determination of E. coli O157:H7 in spiked water and milk samples. This study offered a new solution for the design of rapid, sensitive, and reliable SERS aptasensors.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Escherichia coli O157 , Ouro , Limite de Detecção , Nanopartículas Metálicas , Leite , Análise Espectral Raman , Escherichia coli O157/isolamento & purificação , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Ouro/química , Leite/microbiologia , Leite/química , Análise Espectral Raman/métodos , Técnicas Biossensoriais/métodos , Animais , Catálise , Sequências Repetidas Invertidas , Contaminação de Alimentos/análise , Microbiologia da Água , Reprodutibilidade dos Testes
9.
Mikrochim Acta ; 191(8): 444, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38955823

RESUMO

Transferrin (TRF), recognized as a glycoprotein clinical biomarker and therapeutic target, has its concentration applicable for disease diagnosis and treatment monitoring. Consequently, this study developed boronic acid affinity magnetic surface molecularly imprinted polymers (B-MMIPs) with pH-responsitivity as the "capture probe" for TRF, which have high affinity similar to antibodies, with a dissociation constant of (3.82 ± 0.24) × 10-8 M, showing 7 times of reusability. The self-copolymerized imprinted layer synthesized with dopamine (DA) and 3-Aminophenylboronic acid (APBA) as double monomers avoided nonspecific binding sites and produced excellent adsorption properties. Taking the gold nanostar (AuNS) with a branch tip "hot spot" structure as the core, the silver-coated AuNS functionalized with the biorecognition element 4-mercaptophenylboronic acid (MPBA) was employed as a surface-enhanced Raman scattering (SERS) nanotag (AuNS@Ag-MPBA) to label TRF, thereby constructing a double boronic acid affinity "sandwich" SERS biosensor (B-MMIPs-TRF-SERS nanotag) for the highly sensitive detection of TRF. The SERS biosensor exhibited a detection limit for TRF of 0.004 ng/mL, and its application to spiked serum samples confirmed its reliability and feasibility, demonstrating significant potential for clinical TRF detection. Moreover, the SERS biosensor designed in this study offers advantages in stability, detection speed (40 min), and cost efficiency. The portable Raman instrument for SERS detection fulfills the requirements for point-of-care testing.


Assuntos
Técnicas Biossensoriais , Ácidos Borônicos , Ouro , Análise Espectral Raman , Ácidos Borônicos/química , Técnicas Biossensoriais/métodos , Ouro/química , Humanos , Análise Espectral Raman/métodos , Prata/química , Nanopartículas Metálicas/química , Limite de Detecção , Transferrina/análise , Transferrina/química , Impressão Molecular , Polímeros Molecularmente Impressos/química , Glicoproteínas/sangue , Glicoproteínas/química , Materiais Biomiméticos/química , Dopamina/sangue , Dopamina/análise , Compostos de Sulfidrila
10.
Small ; : e2403672, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970560

RESUMO

Real-time polymerase chain reaction (RT-PCR) with fluorescence detection is the gold standard for diagnosing coronavirus disease 2019 (COVID-19) However, the fluorescence detection in RT-PCR requires multiple amplification steps when the initial deoxyribonucleic acid (DNA) concentration is low. Therefore, this study has developed a highly sensitive surface-enhanced Raman scattering-based PCR (SERS-PCR) assay platform using the gold nanoparticle (AuNP)-internalized gold nanodimpled substrate (AuNDS) plasmonic platform. By comparing different sizes of AuNPs, it is observed that using 30 nm AuNPs improves the detection limit by approximately ten times compared to 70 nm AuNPs. Finite-difference time-domain (FDTD) simulations show that multiple hotspots are formed between AuNPs and the cavity surface and between AuNPs when 30 nm AuNPs are internalized in the cavity, generating a strong electric field. With this 30 nm AuNPs-AuNDS SERS platform, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ribonucleic acid (RNA)-dependent RNA polymerase (RdRp) can be detected in only six amplification cycles, significantly improving over the 25 cycles required for RT-PCR. These findings pave the way for an amplification-free molecular diagnostic system based on SERS.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124732, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38971083

RESUMO

Three functional magnetic nanocatalytic probe, which integrates recognition, catalytic amplification, and separation enrichment, is a new approach to construct a simple, fast, highly selective, and sensitive analytical method. In this article, a new magnetic nanosurface molecularly imprinted polymer nanoprobe (Fe3O4@MIP) with trifunctionality was rapidly prepared using a microwave-assisted method with magnetic Fe3O4 nanoparticles as a substrate, chloramphenicol (CAP) as a template molecule, and methacrylic acid as a functional monomer. The characterized nanoprobe was found that could specifically recognize CAP, strongly catalyze the new indicator nanoreaction of fructose (DF)-HAuCl4. The gold nanoparticles (AuNPs) exhibit strong resonance Rayleigh scattering (RRS) and surface enhanced Raman scattering (SERS) effects. Upon addition of CAP, the SERS/RRS signals were linearly weakened. Accordingly, a new SERS/RRS analysis platform for highly sensitive and selective determination of CAP was constructed. The SERS linear range was 0.0125-0.1 nmol/L, with detection limit (DL) of 0.004 nmol/L CAP. Furthermore, it could be combined with magnet-enriched separation to further improve the sensitivity, with a DL of 0.04 pmol/L CAP. The SERS method has been used for the determination of CAP in real samples, with relative standard deviations of 2.37-9.89 % and the recovery of 95.24-107.1 %.

12.
Anal Chim Acta ; 1317: 342919, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39030015

RESUMO

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in widespread disease transmission, challenging the stability of global healthcare systems. Surface-enhanced Raman scattering (SERS) as an easy operation, fast, and low-cost technology illustrates a good potential in detecting SARS-CoV-2. In the study, one-step fabrication of gold-silver alloy nanoparticles (AuAgNPs) with adjustable metal proportions and diameters is employed as SERS substrates. The angiotensin-converting enzyme 2 (ACE2) functionalized AuAgNPs are applied as sensor surfaces to detect SARS-CoV-2 S protein. By optimizing the SERS substrates, ACE2/Au35Ag65NPs illustrate higher performance in detecting the SARS-CoV-2 S protein with a limit of detection (LOD) of 10 fg/mL in both phosphate-buffered saline (PBS) and pharyngeal swabs solution (PSS). It also provides excellent reproducibility with a relative standard deviation (RSD) of 7.7 % and 7.9 %, respectively. This easily preparable and highly reproducible SERS substrate has good potential in the practical application of detecting SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Ouro , Limite de Detecção , Nanopartículas Metálicas , SARS-CoV-2 , Prata , Análise Espectral Raman , Glicoproteína da Espícula de Coronavírus , Análise Espectral Raman/métodos , Prata/química , Glicoproteína da Espícula de Coronavírus/análise , Nanopartículas Metálicas/química , SARS-CoV-2/isolamento & purificação , Humanos , Ouro/química , COVID-19/diagnóstico , COVID-19/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Ligas/química
13.
Anal Chim Acta ; 1316: 342864, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969411

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a malignant epithelial carcinoma arising from the nasopharyngeal mucosal lining. Diagnosis of NPC at early stage can improve the outcome of patients and facilitate reduction in cancer mortality. The most significant change between cancer cells and normal cells is the variation of cell nucleus. Therefore, accurately detecting the biochemical changes in nucleus between cancer cells and normal cells has great potential to explore diagnostic molecular markers for NPC. Highly sensitive surface-enhanced Raman scattering (SERS) could reflect the biochemical changes in the process of cell cancerization at the molecular level. However, rapid nuclear targeting SERS detection remains a challenge. RESULTS: A novel and accurate nuclear-targeting SERS detection method based on electroporation was proposed. With the assistance of electric pulses, nuclear-targeting nanoprobes were rapidly introduced into different NPC cells (including CNE1, CNE2, C666 cell lines) and normal nasopharyngeal epithelial cells (NP69 cell line), respectively. Under the action of nuclear localization signaling peptides (NLS), the nanoprobes entering cells were located to the nucleus, providing high-quality nuclear SERS signals. Hematoxylin and eosin (H&E) staining and in situ cell SERS imaging confirmed the excellent nuclear targeting performance of the nanoprobes developed in this study. The comparison of SERS signals indicated that there were subtle differences in the biochemical components between NPC cells and normal nasopharyngeal cells. Furthermore, SERS spectra combined with principal component analysis (PCA) and linear discriminant analysis (LDA) were employed to diagnose and distinguish NPC cell samples, and high sensitivity, specificity, and accuracy were obtained in the screening of NPC cells from normal nasopharyngeal epithelial cells. SIGNIFICANCE: To the best of our knowledge, this is the first study that employing nuclear-targeting SERS testing to screen nasopharyngeal carcinoma cells. Based on the electroporation technology, nanoprobes can be rapidly introduced into living cells for intracellular biochemical detection. Nuclear-targeting SERS detection can analyze the biochemical changes in the nucleus of cancer cells at the molecular level, which has great potential for early cancer screening and cytotoxicity analysis of anticancer drugs.


Assuntos
Núcleo Celular , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Análise Espectral Raman , Análise Espectral Raman/métodos , Humanos , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/patologia , Núcleo Celular/química , Núcleo Celular/metabolismo , Linhagem Celular Tumoral , Propriedades de Superfície , Nanopartículas Metálicas/química
14.
Talanta ; 278: 126531, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39002262

RESUMO

Herein, the surface-enhanced Raman scattering (SERS) platform was combined with an azo coupling reaction and an aluminum alloy covered with a hydrophobic layer of praseodymium oxide and stearic acid complexes for the detection of histamine. The praseodymium oxide on aluminum alloy was successfully synthesized by the rare-earth-salt-solution boiling bath method and modified by stearic acid. Its surface exhibits a water contact angle (WCA) of 125.0°. Through the azo derivatization reaction with 3-amino-5-mercapto-1,2,4-triazole (AMTA) diazonium salts, histamine can be converted into the derivatization product with higher Raman activity. The mixture of the derivatization product and ß-cyclodextrin-modified Ag nanoparticles (ß-CD-AgNPs) were dropped onto the surface of an aluminum alloy covered with a hydrophobic layer of praseodymium oxide and stearic acid complexes, and dried for SERS measurement. The intensity ratio between the SERS peaks at 1246 cm-1 and 1104 cm-1 (I1246/I1104) of the derivatization product was used for the quantification of histamine. Under the selected conditions, the limit of detection (LOD) and the limit of quantification (LOQ) for this method were 7.2 nM (S/N = 3) and 24 nM (S/N = 10), respectively. The relative standard deviation (RSD) of this method for the determination of 1 µM histamine was 6.1 % (n = 20). The method was also successfully used for the determination of histamine in fish samples with recoveries ranging from 92 % to 111 %. The present method is simple, sensitive, reliable, and may provide a new approach for preparing the composite hydrophobic layer that can enhance SERS signals through hydrophobic condensation effect. Meanwhile, it may have a promising future in the determination of small molecular compounds containing an imidazole ring.

15.
Mikrochim Acta ; 191(8): 468, 2024 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023836

RESUMO

A highly sensitive surface-enhanced Raman scattering (SERS) biosensor has been developed for the detection of microRNA-21 (miR-21) using an isothermal enzyme-free cascade amplification method involving catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR). The CHA reaction is triggered by the target miR-21, which causes hairpin DNA (C1 and C2) to self-assemble into CHA products. After AgNPs@Capture captures the resulting CHA product, the HCR reaction is started, forming long-stranded DNA on the surface of AgNPs. A strong SERS signal is generated due to the presence of a large amount of the Raman reporter methylene blue (MB) in the vicinity of the SERS "hot spot" on the surface of AgNPs. The monitoring of the SERS signal changes of MB allows for the highly sensitive and specific detection of miR-21. In optimal conditions, the biosensor exhibits a satisfactory linear range and a low detection limit for miR-21 of 42.3 fM. Additionally, this SERS biosensor shows outstanding selectivity and reproducibility. The application of this methodology to clinical blood samples allows for the differentiation of cancer patients from healthy controls. As a result, the CHA-HCR amplification strategy used in this SERS biosensor could be a useful tool for miRNA detection and early cancer screening.


Assuntos
Técnicas Biossensoriais , Limite de Detecção , Nanopartículas Metálicas , MicroRNAs , Hibridização de Ácido Nucleico , Análise Espectral Raman , MicroRNAs/sangue , MicroRNAs/análise , Técnicas Biossensoriais/métodos , Humanos , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Prata/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Azul de Metileno/química , Catálise
16.
Artigo em Inglês | MEDLINE | ID: mdl-39037907

RESUMO

The semiconducting layered transition metal dichalcogenides (e.g., WS2) are excellent candidates for the realization of optoelectronic and nanophotonic applications on account of their band gap tunability, high binding energy and oscillator strength of the excitons, strong light-matter interaction, appreciable charge carrier mobility, and valleytronic properties. However, the photoluminescence (PL) emissions are reported to show a nonuniform spatial distribution, with the edges emitting features like defect-bound excitons and biexcitons at low temperatures in addition to the typical excitons and trions. The appearance of these additional PL features has been shown in the literature to have a strong dependence on the presence of S-vacancies and excess charge carriers. We demonstrate an enhancement of the defect-bound excitons and biexcitons by creating a heterostructure of WS2 with h-BN where the coupling between the charge carriers in WS2 with the polar phonons in h-BN governs the enhancement. Furthermore, we have performed a comprehensive resonant Raman study with varying polarization and magnetic field which not only confirms the presence of electron-phonon coupling in WS2/h-BN heterostructure, it further demonstrates a thermally induced differential resonance behavior with the excitonic level and the defect-induced midgap states (due to S-vacancies at the edge of WS2) exhibited by a dome-shaped behavior of the Raman intensities with temperature for the normal and defect-induced phonon modes. The defect-bound Raman modes exhibit maximum resonance at ∼240 K while normal Raman modes show at ∼280 K owing to a thermal variation of the electronic states.

17.
Talanta ; 278: 126524, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38986308

RESUMO

The high efficient surface-enhanced Raman scatterring (SERS) methods to detect thiacloprid and imidacloprid were established using ZIF-8-wrapped Ag nanoparticles (AgNPs) modified with ß-cyclodextrin (ß-CD). The substrate of ZIF-8/ß-CD@AgNPs was characterized by ultraviolet visible spectra (UV-vis), thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The interaction between the substrate and thiacloprid/imidacloprid was also explored. The optimum measurement conditions were obtained by response surface model based on single-factor experiments. Enhancement factors (EFs) of thiacloprid and imidacloprid were respectively 2.29 × 106 and 2.60 × 106. A good linearity between the scattering intensity and the concentration of thiacloprid/imidacloprid within 3-1000 nmol L-1/6-400 nmol L-1 was established. The interference experiments indicated that the methods had good selectivity. The SERS methods were successfully applied to detect thiacloprid and imidacloprid in several vegetables samples. The recoveries ranged from 95.5 % to 105 % (n = 5). The detection limits (LODs) (S/N = 3) for thiacloprid and imidacloprid were 1.50 and 0.83 nmol L-1, respectively.

18.
J Colloid Interface Sci ; 676: 127-138, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018805

RESUMO

Plasmon-induced hot carriers are a promising "active" energy source, attracting increasing attention for their potential applications in photocatalysis and photodetection. Here, we hybridize plasmonic Au spherical nanoparticles (SNPs) with catalytically active Pt nanocrystals to form Au@Pt core-satellite nanoparticles (CSNPs), which act as both an efficient catalyst for plasmon-promoted decarboxylation reaction and a robust surface-enhanced Raman scattering (SERS) substrate for plasmon-enhanced molecular spectroscopic detection. By regulating the coverage of Pt nanocrystals on the Au SNPs, we modulated the "hotspot" structures of the Au@Pt CSNPs to optimize the SERS detecting capability and catalytic decarboxylation performance. The coupling functionalities enable us with unique opportunities to in-situ SERS monitor universal reactions catalyzed by active catalysts (e.g. Pt, Pd) in the chemical industry in real-time. The decarboxylation rate of 4-mercaptophenylacetic acid was dynamically controlled by the surface catalytic decarboxylation step, following first-order overall reaction kinetics. Moreover, the reaction rate exhibited a strong correlation with the local field enhancement |E/E0|4 of the hotspot structure. This work provides spectroscopic insights into the molecule-plasmon interface under the plasmon-promoted catalytic reactions, guiding the rational design of the plasmonic interface of nanocatalysts to achieve desired functionalities.

19.
Talanta ; 279: 126547, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018951

RESUMO

As we all know, SERS (Surface-enhanced Raman spectroscopy) is widely used in sensing, analysis and detection. The covalent organic frameworks (COFs) have performed well as a material for supporting metal nanoparticles and facilitating analyte adsorption in SERS, which may greatly enhance the detection sensitivity and reproducibility. The synthesis of traditional metal/COFs composites involved chemical reduction methods, however, the resulting metallic NPs exhibited reduced capacity to enhance SERS due to their small particle sizes (usually <20 nm). This paper presented a novel photoreduction method for the facile growth of AuNPs (diameters: 75 nm) on COFs matrix under light control, which represents the first report of such synthesis on COF. Subsequently, the photoreduction deposition induced AuNPs/COFs composites, which served as highly sensitive and reproducible SERS-active substrates for capturing the spectral information of four types of macrolide antibiotics. The detection limits for the four macrolide antibiotics were determined to be 3.30 × 10-11, 3.43 × 10-10, 1.10 × 10-10 and 5.78 × 10-11 M, respectively, exhibiting excellent linear relationships within the concentration range of 10-10 to 10-3 M. Therefore, our proposed SERS method opens up a new idea for the development of SERS substrates and environmental safety monitoring, and it has great potential for ensuring food safety in the future.

20.
Artigo em Inglês | MEDLINE | ID: mdl-39016554

RESUMO

We proposed and demonstrated highly sensitive hybrid surface-enhanced Raman scattering (SERS) substrates, which are grating-integrated gold nanograsses (GIGN) that are tip-selectively encapsulated by ZIF-8 nanospheres (GIGN/tip-ZIF). This unique structure is realized through the tip-selective modification of GIGN by polyvinylpyrrolidone (PVP), and then, the tips of the GIGN were encapsulated by ZIF-8 nanospheres. The ZIF-8 nanospheres can adsorb analyte molecules, resulting in the spatial overlap between the analyte molecules and the "hotspots" on the tips of GIGN. Such a unique GIGN/tip-ZIF hybrid SERS substrate exhibits high sensitivity and quantitative detection ability. The detection limits can reach as low as 10-11 M, and the relative standard deviation is 5.59% for 4-aminothiophenol (4-ATP). In a wide range of concentrations from 10-5 to 10-11 M, the SERS intensity and concentration relationship can be fitted as a sigmoidal curve with R2 = 0.988. These indicate that the GIGN/tip-ZIF hybrid SERS substrates have broad applications in detecting toxic and harmful substances in food safety, disease diagnosis, and environmental monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA