Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Reprod ; 36(8): 2371-2381, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34037756

RESUMO

STUDY QUESTION: Are any novel mutations and corresponding new phenotypes, other than recurrent hydatidiform moles, seen in patients with MEI1 mutations? SUMMARY ANSWER: We identified several novel mutations in MEI1 causing new phenotypes of early embryonic arrest and recurrent implantation failure. WHAT IS KNOWN ALREADY: It has been reported that biallelic mutations in MEI1, encoding meiotic double-stranded break formation protein 1, cause azoospermia in men and recurrent hydatidiform moles in women. STUDY DESIGN, SIZE, DURATION: We first focused on a pedigree in which two sisters were diagnosed with recurrent hydatidiform moles in December 2018. After genetic analysis, two novel mutations in MEI1 were identified. We then expanded the mutational screening to patients with the phenotype of embryonic arrest, recurrent implantation failure, and recurrent pregnancy loss, and found another three novel MEI1 mutations in seven new patients from six families recruited from December 2018 to May 2020. PARTICIPANTS/MATERIALS, SETTING, METHODS: Nine primary infertility patients were recruited from the reproduction centers in local hospitals. Genomic DNA from the affected individuals, their family members, and healthy controls was extracted from peripheral blood. The MEI1 mutations were screened using whole-exome sequencing and were confirmed by the Sanger sequencing. In silico analysis of mutations was performed with Sorting Intolerant From Tolerant (SIFT) and Protein Variation Effect Analyzer (PROVEAN). The influence of the MEI1 mutations was determined by western blotting and minigene analysis in vitro. MAIN RESULTS AND THE ROLE OF CHANCE: In this study, we identified five novel mutations in MEI1 in nine patients from seven independent families. Apart from recurrent hydatidiform moles, biallelic mutations in MEI1 were also associated with early embryonic arrest and recurrent implantation failure. In addition, we demonstrated that protein-truncating and missense mutations reduced the protein level of MEI1, while the splicing mutations caused abnormal alternative splicing of MEI1. LIMITATIONS, REASONS FOR CAUTION: Owing to the lack of in vivo data from the oocytes of the patients, the exact molecular mechanism(s) involved in the phenotypes remains unknown and should be further investigated using knock-out or knock-in mice. WIDER IMPLICATIONS OF THE FINDINGS: Our results not only reveal the important role of MEI1 in human oocyte meiosis and early embryonic development, but also extend the phenotypic and mutational spectrum of MEI1 and provide new diagnostic markers for genetic counseling of clinical patients. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Key Research and Development Program of China (2018YFC1003800, 2017YFC1001500, and 2016YFC1000600), the National Natural Science Foundation of China (81725006, 81822019, 81771581, 81971450, and 81971382), the project supported by the Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), the Project of the Shanghai Municipal Science and Technology Commission (19JC1411001), the Natural Science Foundation of Shanghai (19ZR1444500), the Shuguang Program of the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (18SG03), the Shanghai Health and Family Planning Commission Foundation (20154Y0162), the Strategic Collaborative Research Program of the Ferring Institute of Reproductive Medicine, Ferring Pharmaceuticals and the Chinese Academy of Sciences (FIRMC200507) and the Chongqing Key Laboratory of Human Embryo Engineering (2020KFKT008). No competing interests are declared. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Azoospermia , Animais , Proteínas de Ciclo Celular/genética , China , Feminino , Humanos , Masculino , Camundongos , Mutação , Oócitos , Fenótipo , Gravidez
2.
Artigo em Inglês | MEDLINE | ID: mdl-33685819

RESUMO

The abnormal pregnancies complete and partial hydatidiform mole are genetically unusual, being associated with two copies of the paternal genome. Typical complete hydatidiform moles (CHMs) are diploid and androgenetic, while partial hydatidiform moles (PHMs) are diandric triploids. While diagnosis can usually be made on the basis of morphology, ancillary techniques that exploit their unusual genetic origin can be used to facilitate diagnosis. Genotyping and p57 immunostaining are now routinely used in the differential diagnosis of complete and partial hydatidiform moles, for investigating unusual mosaic or chimeric products of conception with a molar component and identifying the rare diploid, biparental HMs associated with an inherited predisposition to molar pregnancies. Genotyping also plays an important role in the differential diagnosis of gestational and non-gestational trophoblastic tumours and identification of the causative pregnancy where tumours are gestational. Recent developments include the use of cell-free DNA for non-invasive diagnosis of these conditions.


Assuntos
Doença Trofoblástica Gestacional , Mola Hidatiforme , Neoplasias Uterinas , Inibidor de Quinase Dependente de Ciclina p57/genética , Feminino , Genótipo , Doença Trofoblástica Gestacional/diagnóstico , Doença Trofoblástica Gestacional/genética , Humanos , Mola Hidatiforme/diagnóstico , Mola Hidatiforme/genética , Imuno-Histoquímica , Gravidez , Neoplasias Uterinas/genética
3.
J Assist Reprod Genet ; 38(7): 1879-1886, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33751332

RESUMO

PURPOSE: To investigate the frequency of a founder mutation in NLRP7, L750V, in independent cohorts of Mexican patients with recurrent hydatidiform moles (RHMs). METHODS: Mutation analysis was performed by Sanger sequencing on DNA from 44 unrelated Mexican patients with RHMs and seven molar tissues from seven additional unrelated patients. RESULTS: L750V was present in homozygous or heterozygous state in 37 (86%) patients and was transmitted on the same haplotype to patients from different states of Mexico. We also identified a second founder mutation, c.2810+2T>G in eight (18.1%) patients, and a novel premature stop-codon mutation W653*. CONCLUSION: Our data confirm the strong founder effect for L750V, which appears to be the most common mutation in NLRP7. We also report on six healthy live births to five patients with biallelic NLRP7 mutations, two from spontaneous conceptions and four from donated ovum and discuss our recommendations for DNA testing and genetic counseling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Efeito Fundador , Mola Hidatiforme/genética , Mutação , Feminino , Haplótipos , Heterozigoto , Humanos , Nascido Vivo , México , Polimorfismo de Nucleotídeo Único , Gravidez
4.
Am J Hum Genet ; 103(5): 740-751, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388401

RESUMO

Androgenetic complete hydatidiform moles are human pregnancies with no embryos and affect 1 in every 1,400 pregnancies. They have mostly androgenetic monospermic genomes with all the chromosomes originating from a haploid sperm and no maternal chromosomes. Androgenetic complete hydatidiform moles were described in 1977, but how they occur has remained an open question. We identified bi-allelic deleterious mutations in MEI1, TOP6BL/C11orf80, and REC114, with roles in meiotic double-strand breaks formation in women with recurrent androgenetic complete hydatidiform moles. We investigated the occurrence of androgenesis in Mei1-deficient female mice and discovered that 8% of their oocytes lose all their chromosomes by extruding them with the spindles into the first polar body. We demonstrate that Mei1-/- oocytes are capable of fertilization and 5% produce androgenetic zygotes. Thus, we uncover a meiotic abnormality in mammals and a mechanism for the genesis of androgenetic zygotes that is the extrusion of all maternal chromosomes and their spindles into the first polar body.


Assuntos
Androgênios/genética , Mola Hidatiforme/genética , Mutação/genética , Alelos , Animais , Cromossomos/genética , Feminino , Humanos , Masculino , Mamíferos/genética , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/patologia , Gravidez , Zigoto/patologia
5.
Hum Reprod ; 30(9): 2055-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26202916

RESUMO

STUDY QUESTION: What is the risk of further molar pregnancies for women with one or more hydatidiform moles (HM) in relation to molar subtype. SUMMARY ANSWER: Women with a complete hydatidiform mole (CM) have a 1 in 100 and 1 in 4 risk of further CM after one or two consecutive CM, respectively, while women with a partial hydatidiform mole (PM) have only a small increase in risk for further molar pregnancies. WHAT IS KNOWN ALREADY: Women with a molar pregnancy have an increased risk of further HM. A small subgroup of women with recurrent HM has an autosomal recessive condition, familial recurrent hydatidiform moles (FRHM), that predisposes them to molar pregnancies. STUDY DESIGN, SIZE, DURATION: A retrospective study of subsequent pregnancies in 16 000 women registered at a centralized referral centre, with a CM or PM, between 1990 and 2009. PARTICIPANTS/MATERIALS, SETTING, METHODS: One hundred and sixty-six women with two or more molar pregnancies were identified from electronic records and patient notes. Histopathological features of all molar tissue were reviewed in these cases and genotyping performed where diagnosis was not possible on the basis of histopathological features alone. In addition, genotyping of molar tissue was performed in all cases of women with three or more CM to establish whether the tissue was diploid and biparental or androgenetic. MAIN RESULTS AND THE ROLE OF CHANCE: This study confirms an increased recurrence risk of ∼1% for a second molar pregnancy and in addition that this risk is associated with CM rather than PM. The data further indicate that the risk of a third HM is associated almost exclusively with CM and enabled an estimate that 1 in 640 women registered with a CM has the rare condition FRHM. The study also found that there was no significant difference between the risk of developing gestational trophoblastic neoplasia (GTN) for typical sporadic CM and the diploid biparental CM associated with FRHM (GTN; proportion difference 0.05, Z = 0.87, P = 0.29). LIMITATIONS, REASONS FOR CAUTION: While pathology was reviewed for all women with two or more molar pregnancies, not all cases registered underwent central review particularly those women registered in the early 1990s. It is therefore possible that the total number of CM and PM may differ slightly from that stated. While women were followed for a minimum of 5 years, it is possible that some women may subsequently have further molar pregnancies that will not have been included in the present study. WIDER IMPLICATIONS OF THE FINDINGS: This is the largest study to date on recurrence for molar pregnancies, and as such provides the most detailed information so far regarding the risk of further molar pregnancies for women with a PM or CM. Furthermore, the data provide new insights into the incidence of the rare autosomal recessive condition, FRHM, important information for counselling women with molar pregnancies. STUDY FUNDING/COMPETING INTERESTS: No competing interests declared. No funding was obtained for this study.


Assuntos
Mola Hidatiforme/epidemiologia , Recidiva Local de Neoplasia/epidemiologia , Neoplasias Uterinas/epidemiologia , Adolescente , Adulto , Feminino , Humanos , Mola Hidatiforme/genética , Londres/epidemiologia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Gravidez , Estudos Retrospectivos , Risco , Neoplasias Uterinas/genética , Adulto Jovem
6.
Curr Obstet Gynecol Rep ; 3: 55-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24533231

RESUMO

Gestational trophoblastic disease (GTD) is a group of conditions that originate from the abnormal hyperproliferation of trophoblastic cells, which derive from the trophectoderm, the outer layer of the blastocyst that would normally develop into the placenta during pregnancy. GTDs encompass hydatidiform mole (HM) (complete and partial), invasive mole, gestational choriocarcinoma, placental-site trophoblastic tumor, and epithelioid trophoblastic tumor. Of these, the most common is HM, and it is the only one that has been reported to recur in the same patients from independent pregnancies, which indicates the patients' genetic predisposition. In addition, HM is the only GTD that segregates in families according to Mendel's laws of heredity, which made it possible to use rare familial cases of recurrent HMs (RHMs) to identify two maternal-effect genes, NLRP7 and KHDC3L, responsible for this condition. Here, we recapitulate current knowledge about RHMs and conclude with the role and benefits of testing patients for mutations in the known genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA