Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.337
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39096454

RESUMO

Air pollutants generated from volatile toxic chemicals pose significant public health concerns. Density functional theory (DFT) computations were used in this research to explore the efficiency and mechanism of harmful gas sensing over the reduced graphene oxide-polypyrrole (rGO-PPy) composite. Volatile molecule sensing was investigated for the NH3, H2CO, CH3OH, and C2H5OH gas molecules over three PPy orientations on the rGO substrate. Results showed that PPy orientation over rGO plays a crucial role in the sensing efficiency of the investigated gas molecules. The rGO-PPy composite, with PPy in a vertical orientation, demonstrated higher stability and enhanced sensing than other orientations. The results indicate that the strong hydrogen bonding of NH3 and CH3OH with both PPy and rGO significantly enhanced the sensing of these gas molecules on rGO by influencing the charge transfer with adsorption energy values of - 0.84 and - 0.92 eV, respectively. The lack of a direct hydrogen bonding with rGO and the weak hydrogen bonding with PPy caused a weak adsorption of H2CO and C2H5OH over rGO as indicated by the adsorption energy values of - 0.60 and - 0.78 eV, respectively. Selectivity analysis for the NH3 and C2H5OH gas molecules showed that NH3 can maintain hydrogen bonding with PPy in the presence of C2H5OH while C2H5OH cannot sustain this interaction. This study highlights the importance of the structural and electronic properties of the rGO-PPy composite in volatile pollutant sensing, providing insights for designing high-performance gas sensors.

2.
Talanta ; 279: 126609, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39106647

RESUMO

Acebutolol (ACE) is commonly used to treat hypertension and high blood pressure. Large doses of ACE can have adverse effects with potentially life-threatening consequences. It is, therefore, essential to develop a simple, low-cost, reliable, and reproducible device for detecting ACE in biofluids. This study explores the potential of unique two-dimensional nano-flakes, such as tungsten trioxide (WO3). Graphene oxide (GO) typically exhibits lower electrical conductivity than pristine graphene due to the presence of oxygen-containing functional groups that interfere with the π-conjugated structure. Functionalizing GO with tannic acid (TA) can partially reinstate the π-conjugation and limit the amount of oxygen, resulting in enhanced electrical conductivity. Ultrasonic techniques were utilized to create WO3 NFs@TA-rGO, and a range of spectroscopic and microscopic methods were applied to examine the formation of the resulting WO3 NFs@TA-rGO nanocomposites. Under optimal conditions, modified sensors resulted in lower limits of detection (0.0055 µM) and good sensitivity (0.40 µA µM-1 cm-2). They also exhibited a broad linear range spanning from 0.009 to 568.6 µM. Fabricated sensors have significant anti-interference properties with high specificity and excellent storage stability (RSD = 4.3 %), reproducibility (RSD = 3.9 %), and repeatability (RSD = 3.3 %). Ultimately, the sensor's efficacy was confirmed through the successful detection of ACE in biological samples (with recoveries ranging from 99.1 to 99.6 %). Lastly, this study highlights the substantial potential of ACE detection and extends its applications in biomedical diagnostics and pharmaceutical research.

3.
J Colloid Interface Sci ; 677(Pt A): 512-520, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39106776

RESUMO

Aerogel-based conductive materials have emerged as a major candidate for piezoresistive pressure sensors due to their excellent mechanical and electrical performance besides light-weighted and low-cost characteristics, showing great potential for applications in electronic skins, biomedicine, robot controlling and intelligent recognition. However, it remains a grand challenge for these piezoresistive sensors to achieve a high sensitivity across a wide working temperature range. Herein, we report a highly flexible and ultra-light composite aerogel consisting of aramid nanofibers (ANFs) and reduced graphene oxide flakes (rGOFs) for application as a high-performance pressure sensing material in a wide temperature range. By controlling the orientations of pores in the composite framework, the aerogel promotes pressure transfer by aligning its conductive channels. As a result, the ANFs/rGOFs aerogel-based piezoresistive sensor exhibits a high sensitivity of up to 7.10 kPa-1, an excellent stability over 12,000 cycles, and an ultra-wide working temperature range from -196 to 200 °C. It is anticipated that the ANFs/rGOFs composite aerogel can be used as reliable sensing materials in extreme environments.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39162184

RESUMO

Transition-metal sulfide is considered to be an admirable transformational electrode material due to low cost, large specific capacity, and good reversibility in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). Herein, the reduced graphene oxide-wrapped open bimetallic sulfide (NiS2-Co3S4@rGO) nanocage, derived from nickel-cobalt Prussian blue, was obtained by two-step calcination. There are luxuriant pore structures in the nanocage composite with a specific surface area of 85.28 m2 g-1, which provides plentiful paths for rapid transmission of Li+/Na+ and alleviates the volume stress caused by insertion and extraction of alkali metal ions. The excellent interface combination of bimetallic sulfide wrapped in reduced graphene oxide improves the conductivity and overall performance of the battery. Thanks to the special interface engineering, the open NiS2-Co3S4@rGO nanocage composite displays rapid lithium storage properties with an average diffusion coefficient of 8.5 × 10-13 cm2 s-1. Moreover, after 300 cycles, the reversible capacity of the composite is 1113.2 mAh g-1 at 1 A g-1. In SIBs, the capacity of the open NiS2-Co3S4@rGO composite is 487.9 mAh g-1 when the current density is 5 A g-1. These preeminent performances demonstrate the enormous development prospects of bimetallic sulfide nanocage as anode material in LIBs and SIBs.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39185799

RESUMO

Material extrusion 3D printing has received enormous attention to potentially overcome its limits by tailoring and designing thick electrodes. In this work, we prepared a thick reduced graphene oxide/carbon nanotube-reduced graphene oxide/carbon nanotubes/manganese oxide@carbon nanotubes (rGC-rGCMC) electrode with controlled lattice architectures, core-sheath structure, and hierarchical porosity by material coaxial extrusion 3D printing, freeze-drying, and thermal treatment. The volume ratios of core to sheath, including 100%-0%, 0%-100%, 20%-80%, 30%-70%, 40%-60%, and 50%-50%, were designed to investigate the influences of the core-sheath structure on thick electrodes. The electrodes with a core-sheath volume ratio of 30%-70% electrodes exhibited an enhanced areal specific capacitance of 588.27 mF cm-2 (39.48 F g-1) at a scan rate of 0.5 mA cm-2. All capacitance decays from core-sheath electrodes (20%-80%, 30%-70%, 40%-60%, and 50%-50%) were smaller than those from rGCMC (0%-100%) electrodes, indicating the improved rate capability from the core-sheath structure. On comparison of 30%-70% core-sheath electrodes with electrodes made of a homogeneous 30% rGC and 70% rGCMC mixture (30%+70%), lower capacitance (382.27 mF cm-2 and 25.66 F g-1 at 0.5 mA cm-2) of the 30%+70% mixture electrode without a core-sheath structure suggested less efficiency to harvest electrons from the redox reactions. Electrochemical impedance spectroscopy (EIS) data further supported and explained the resistances of thick electrodes with different volume ratios.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39137951

RESUMO

Anisotropic cellulose nanofiber (CNF) foams represent the state-of-the-art in renewable insulation. These foams consist of large (diameter >10 µm) uniaxially aligned macropores with mesoporous pore-walls and aligned CNF. The foams show anisotropic thermal conduction, where heat transports more efficiently in the axial direction (along the aligned CNF and macropores) than in the radial direction (perpendicular to the aligned CNF and macropores). Here we explore the impact on axial and radial thermal conductivity upon depositing a thin film of reduced graphene oxide (rGO) on the macropore walls in anisotropic CNF foams. To obtain rGO films on the foam walls we developed liquid-phase self-assembly to deposit rGO in a layer-by-layer fashion. Using electron and ion microscopy, we thoroughly characterized the resulting rGO-CNF foams and confirmed the successful deposition of rGO. These hierarchical rGO-CNF foams show lower radial thermal conductivity (λr) across a wide range of relative humidity compared to CNF control foams. Our work therefore demonstrates a potential method for improved thermal insulation in anisotropic CNF foams and introduces versatile self-assembly for postmodification of such foams.

7.
J Food Sci ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136979

RESUMO

In this work, an ultrasensitive electrochemical sensor based on Zr-MOF-SH/rGA/NPG was developed for the first time for the rapid determination of mercury ions. First, nanoporous gold (NPG) film was covered on the glassy carbon electrode (GCE) to offer a desirable substrate. Then, Zr-MOF-SH/rGA composites were dropped on the NPG film to form a modified electrode. Mercapto functionalized MOFs (Zr-MOF-SH) showed strong adsorption capability toward mercury ions, and the unique structure of reduced graphene oxide aerogel (rGA) provided various sites for coupling with Zr-MOF-SH as well as improved the electrochemical activity. As a consequence of the synergistic effect of Zr-MOF-SH, rGA, and NPG, the optimized Zr-MOF-SH/rGA/NPG/GCE sensor showed excellent detection performance toward mercury ions with a linear range from 0 to 200 nM and a low limit of detection of 1.4 nM. Meanwhile, the fabricated electrochemical sensor exhibited outstanding stability, reproducibility, and anti-interference ability. To verify the practical applicability, the Zr-MOF-SH/rGA/NPG/GCE was applied for the determination of mercury ions in real rice samples with desirable recovery rates ranging from 98.8% to 108.3%.

8.
Int J Nanomedicine ; 19: 8159-8174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139505

RESUMO

Background: Wound healing has always been a focal point in clinical work. Bacterial infections and immune microenvironment disorders can both hinder normal wound healing. Current wound dressings only serve a covering function. Developing wound dressings with antibacterial and immunomodulatory functions is crucial for aiding wound healing. To address this issue, we have developed a hydrogel with antibacterial and immunomodulatory functions for managing infected wounds. Methods: The present study describes a photo-crosslinked antibacterial hydrogel composed of curcumin, silver nanoparticles-loaded reduced graphene oxide, and silk fibroin methacryloyl for the treatment of infected wounds. The study assessed its antibacterial properties and its capacity to induce macrophage M2 polarization through in vitro and in vivo experiments. Results: The hydrogel demonstrates robust antibacterial properties and enhances macrophage M2 polarization in both in vitro and in vivo settings. Moreover, it accelerates the healing of infected wounds in vivo by stimulating collagen deposition and angiogenesis. Conclusion: Overall, this hydrogel shows great potential in managing wound infections.


Assuntos
Antibacterianos , Grafite , Hidrogéis , Nanopartículas Metálicas , Prata , Cicatrização , Infecção dos Ferimentos , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Camundongos , Grafite/química , Grafite/farmacologia , Infecção dos Ferimentos/tratamento farmacológico , Curcumina/farmacologia , Curcumina/química , Macrófagos/efeitos dos fármacos , Fibroínas/química , Fibroínas/farmacologia , Células RAW 264.7 , Humanos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Masculino
9.
ACS Appl Bio Mater ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141809

RESUMO

Age-related macular degeneration (AMD) is a well-recognized affliction among the elderly, causing vision impairment ranging from blurred vision to complete blindness. This underscores the critical need for accurate, precise, and early detection methods. Herein, we developed a noninvasive, label-free electrical biosensor, constructed on an economical printed circuit board (PCB) substrate, designed specifically for the precise quantification of AMD biomarker: complement component III (C3). The hydrothermally reduced graphene oxide (rGO) was deposited between gold-interdigitated microelectrodes, forming a conductive channel. The fabricated C3 biosensor exhibits a low detection limit of 0.4342 ng/mL and an impressive sensitivity of 9.238 ((ΔR/R)/ng.mL-1)/cm2 with a regression coefficient of 0.9815 calibrated within the clinical C3 range of 10-30 ng/mL. This excellent performance is ascribed to the synergistic effects of 1-pyrenebutanoic acid succinimidyl ester (PBASE) linker and conducting properties of rGO as they generate large active sites for higher anti-C3 antibody immobilization, thereby enhancing sensitivity and specificity. Furthermore, the performance of this proposed C3 sensor chip was validated with enzyme-linked immunosorbent assay (ELISA) using five human tear samples exhibiting an outstanding correlation of a regression value of 0.9774. The unparalleled merits of this newly crafted C3 biosensor transcend those of preceding platforms, boasting superior accuracy and precision in quantifying C3 levels in human tears, accelerated operational speed with results attainable within a mere 15 min, cost-effectiveness, and excellent sensitivity.

10.
Talanta ; 280: 126684, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39154437

RESUMO

Kynurenic acid (KA) is an active metabolite of tryptophan with notable biological effects, such as antioxidant, neuroprotective, and anti-inflammatory properties. It often undergoes changes of the concentration in biological fluids in chronic diseases. Thus, detecting KA is of great importance for diagnosing inflammatory and neurodegenerative conditions, monitoring disease progression, and assessing responses to pharmacological treatment. This study aimed to design a tailored, flexible platform for sensitive and direct electrochemical detection of KA in biological fluids. Carbon-based electrodes were custom-printed in the lab using specialized inks and flexible substrates. The working electrodes were further functionalized with graphene oxide and subsequently electrochemically reduced to increase the sensitivity toward the analyte. An optimized differential pulse voltammetry protocol was developed for KA detection. The elaborated platform was firstly characterized and then evaluated regarding the analytical performances. It showed a good limit of detection (3 nM and demonstrated the capability to detect KA across a broad concentration range (0.01-500 µM). Finally, the elaborated flexible platform, was succesfully applied for KA determination in serum and saliva samples, in comparison with an optimized HPLC-UV method. The developed platform is the first example of in-lab printed flexible platform reported in literature so far for KA detection. It is also the first study reported in the literature of detection of KA in raw saliva collected from 10 subjects. The sensitivity towards the target analyte, coupled with the adaptability and portability, showcases the potential of this platform for thus illustrating great potential for further development of wearable sensors and biomedical applications.

11.
J Chromatogr A ; 1733: 465277, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39154496

RESUMO

Food safety is an important issue to protect humane health and improve the life quality. Hence, analysis of the possible contaminants in food samples is essential. A rapid and efficient vortexed-assisted dispersive µ-solid-phase extraction coupled with gas chromatography-mass spectrometry was proposed for simultaneous separation/preconcentration and determination of five commonly used organophosphorus pesticides. Reduced graphene oxide decorated NiCo2(OH)6 nanoflowers as a novel nanostructure was synthetized and introduced for separation of the target pesticides from the wheat flour, rice flour, and baby food cereal samples. The characterization of the nanoflowers was accomplished by SEM-EDX, XRD, and FT-IR techniques. The main factors including pH, the amount of nanoflower, the volume of sample solution, salt concentration (ionic strength), desorption conditions (i.e. desorption solvent type and volume, and desorption time) on the pesticides extraction efficiencies were inquired using matrixed match method. Applying the optimum conditions, the linearity of 0.100-500.000 µg kg-1, LODs and LOQs in the range of 0.03-0.04 µg kg-1 and 0.1 µg kg-1 for the studied food samples were obtained. The repeatability (intra-day precision (n = 5)) of ≤ 2.0 % and reproducibility (inter-day precision, days = 5, n = 3) of ≤3.1 % and were appraise at three concentration levels (10, 50 and 100 µg kg-1 of each analyte). High relative recoveries of 90.0-99.3 % ascertained high potential of the presented method for complex matrix analysis.

12.
ACS Appl Mater Interfaces ; 16(32): 42118-42127, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39094118

RESUMO

Graphite, with abundant resources and low cost, is regarded as a promising anode material for potassium-ion batteries (PIBs). However, because of the large size of potassium ions, the intercalation/deintercalation of potassium between the interlayers of graphite results in its huge volume expansion, leading to poor cycling stability and rate performance. Herein, a self-propagating reduction strategy is adopted to fabricate a flexible, self-supporting 3D porous graphite@reduced graphene oxide (3D-G@rGO) composite film for PIBs. The 3D porous network can not only effectively mitigate the volume expansion in graphite but also provide numerous active sites for potassium storage as well as allow for electrolyte penetration and rapid ion migration. Therefore, compared to the pristine graphite anode, the flexible 3D-G@rGO film electrode exhibits greatly improved K-storage performance with a reversible capacity of 452.8 mAh g-1 at 0.1 C and a capacity retention rate of 80.4% after 100 cycles. It also presents excellent rate capability with a high specific capacity of 139.1 and 94.2 mAh g-1 maintained at 2 and 5 C, respectively. The proposed self-propagating reduction strategy to construct a three-dimensional self-supporting structure is a viable route to improve the structural stability and potassium storage performance of graphite anodes.

13.
Molecules ; 29(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39124981

RESUMO

The recycling and recovery of value-added secondary raw materials such as spent Zn/C batteries is crucial to reduce the environmental impact of wastes and to achieve cost-effective and sustainable processing technologies. The aim of this work is to fabricate reduced graphene oxide (rGO)-based sorbents with a desulfurization capability using recycled graphite from spent Zn/C batteries as raw material. Recycled graphite was obtained from a black mass recovered from the dismantling of spent batteries by a hydrometallurgical process. Graphene oxide (GO) obtained by the Tour's method was comparable to that obtained from pure graphite. rGO-based sorbents were prepared by doping obtained GO with NiO and ZnO precursors by a hydrothermal route with a final annealing step. Recycled graphite along with the obtained GO, intermediate (rGO-NiO-ZnO) and final composites (rGO-NiO-ZnO-400) were characterized by Wavelength Dispersive X-ray Fluorescence (WDXRF) and X-ray diffraction (XRD) that corroborated the removal of metal impurities from the starting material as well as the presence of NiO- and ZnO-doped reduced graphene oxide. The performance of the prepared composites was evaluated by sulfidation tests under different conditions. The results revealed that the proposed rGO-NiO-ZnO composite present a desulfurization capability similar to that of commercial sorbents which constitutes a competitive alternative to syngas cleaning.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39177742

RESUMO

The elimination of organic substances, such as phenol, in conventional and biological processes, has been considered a challenge for the petroleum industry. In this work, reduced graphene oxide (rGO), obtained from cellulosic biomass (CB-rGO), as cotton waste, was employed as a phenol adsorbent in an aqueous solution simulating refinery effluent. The CB-rGO was characterized using HRTEM, Raman, XRD, FTIR, BET, and zeta analysis. The behavior of variables such as pH, contact time, temperature, CB-rGO mass, and adsorbate concentration on the characteristics of the adsorption process were continuously investigated. These parameters of the adsorption process were evaluated across a range of adsorbent concentrations from 100 to 300 mg/L, pH in the range of 2-11, adsorbent mass 5-25 mg, contact time of 0-180 min, and temperature of 20-60 °C. The adsorption isotherm data were better described by the Freundlich equation compared to the Langmuir and Sips models, despite the small difference in R2 values. Mechanism diffusion was analyzed using the Boyd model and confirmed to be the rate-limiting step in the adsorption process. The endothermic nature of this CB-rGO adsorption process with phenol was confirmed by verifying the thermodynamic data. This successful removal of phenol from synthetic effluents highlights the promising potential of this adsorbent obtained from an industrial residue and being an ecologically more sustainable alternative compared to the synthesis of other materials identified to remove this contaminant.

15.
Heliyon ; 10(15): e34921, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39166032

RESUMO

Bismuth oxyfluoride (BiOF) is an emerging class of material with notable chemical stability, unique layered structure and striking energy band structure. Bi-based semiconductor materials and reduced graphene oxides (rGOs) have attracted considerable attention due to their broad spectrum of potential applications. Herein, we successfully synthesised an efficient photocatalyst comprising BiOF-rGO nanocomposites with embedded Ag nanoparticles using a simple hydrothermal method. The synthesised nanocomposites were characterised through Fourier-transform infrared spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy and ultraviolet (UV)-visible spectroscopy. The XRD results indicated the crystalline structures of the BiOF, Ag-doped BiOF and Ag-doped BiOF-rGO composites. Photocatalytic activity assessments focused on the degradation of methylene blue (MB) and methyl orange (MO) dyes under UV-light and sunlight irradiation. The Ag-doped BiOF-rGO composite exhibited significantly enhanced degradation efficiency, achieving 61.81 % and 74.25 % degradation of MB and MO, respectively, after 300 min under UV-light irradiation. On the contrary, pure BiOF demonstrated only 17.63 % and 48.29 % degradation for MB and MO, respectively, under similar conditions. Furthermore, under sunlight irradiation, the Ag-doped BiOF-rGO composite exhibited an MB removal efficiency of 43.87 % after 300 min, whereas pure BiOF showed only 27.47 % under identical conditions. These results underscore the potential of Ag-doped BiOF-rGO composites as highly efficient and adaptable photocatalysts for the photodegradation of organic dyes in industrial wastewater.

16.
Mikrochim Acta ; 191(9): 507, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098931

RESUMO

An electrochemical sensor based on an electroactive nanocomposite was designed for the first time consisting of electrochemically reduced graphene oxide (ERGO), polyaniline (PANI), and poly(alizarin red S) (PARS) for ciprofloxacin (CIPF) detection. The ERGO/PANI/PARS-modified screen-printed carbon electrode (SPCE) was constructed through a three-step electrochemical protocol and characterized using FTIR, UV-visible spectroscopy, FESEM, CV, LSV, and EIS. The new electrochemical CIPF sensor demonstrated a low detection limit of 0.0021 µM, a broad linear range of 0.01 to 69.8 µM, a high sensitivity of 5.09 µA/µM/cm2, and reasonable selectivity and reproducibility. Moreover, the ERGO/PANI/PARS/SPCE was successfully utilized to determine CIPF in milk with good recoveries and relative standard deviation (< 5%), which were close to those with HPLC analysis.


Assuntos
Compostos de Anilina , Antraquinonas , Carbono , Ciprofloxacina , Técnicas Eletroquímicas , Eletrodos , Grafite , Limite de Detecção , Leite , Grafite/química , Leite/química , Compostos de Anilina/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Animais , Ciprofloxacina/análise , Carbono/química , Antraquinonas/química , Reprodutibilidade dos Testes , Contaminação de Alimentos/análise , Antibacterianos/análise
17.
Sci Rep ; 14(1): 18172, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107555

RESUMO

In the current arena, new-generation functional nanomaterials are the key players for smart solutions and applications including environmental decontamination of pollutants. Among the plethora of new-generation nanomaterials, graphene-based nanomaterials and nanocomposites are in the driving seat surpassing their counterparts due to their unique physicochemical characteristics and superior surface chemistry. The purpose of the present research was to synthesize and characterize magnetite iron oxide/reduced graphene oxide nanocomposites (FeNPs/rGO) via a green approach and test its application in the degradation of methylene blue. The modified Hummer's protocol was adopted to synthesize graphene oxide (GO) through a chemical exfoliation approach using a graphitic route. Leaf extract of Azadirachta indica was used as a green reducing agent to reduce GO into reduced graphene oxide (rGO). Then, using the green deposition approach and Azadirachta indica leaf extract, a nanocomposite comprising magnetite iron oxides and reduced graphene oxide i.e., FeNPs/rGO was synthesized. During the synthesis of functionalized FeNPs/rGO, Azadirachta indica leaf extract acted as a reducing, capping, and stabilizing agent. The final synthesized materials were characterized and analyzed using an array of techniques such as scanning electron microscopy (SEM)-energy dispersive X-ray microanalysis (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis, and UV-visible spectrophotometry. The UV-visible spectrum was used to evaluate the optical characteristics and band gap. Using the FT-IR spectrum, functional groupings were identified in the synthesized graphene-based nanomaterials and nanocomposites. The morphology and elemental analysis of nanomaterials and nanocomposites synthesized via the green deposition process were investigated using SEM-EDX. The GO, rGO, FeNPs, and FeNPs/rGO showed maximum absorption at 232, 265, 395, and 405 nm, respectively. FTIR spectrum showed different functional groups (OH, COOH, C=O), C-O-C) modifying material surfaces. Based on Debye Sherrer's equation, the mean calculated particle size of all synthesized materials was < 100 nm (GO = 60-80, rGO = 90-95, FeNPs = 70-90, Fe/GO = 40-60, and Fe/rGO = 80-85 nm). Graphene-based nanomaterials displayed rough surfaces with clustered and spherical shapes and EDX analysis confirmed the presence of both iron and oxygen in all the nanocomposites. The final nanocomposites produced via the synthetic process degraded approximately 74% of methylene blue. Based on the results, it is plausible to conclude that synthesized FeNPs/rGO nanocomposites can also be used as a potential photocatalyst degrader for other different dye pollutants due to their lower band gap.

18.
J Colloid Interface Sci ; 675: 488-495, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986322

RESUMO

As a promising sustainable power source in intelligent electronics, Triboelectric Nanogenerators (TENGs) have garnered widespread interest, with various strategies explored to enhance their output performance. However, most optimization methods for triboelectric materials have focused solely on tuning chemical compositions or fabricating surface microstructures. Here, we have prepared amino-functionalized reduced graphene oxide (FRGO)/polyimide (PI) composite films (PI-FRGO) via in-situ polymerization, aimed at enhancing PI materials' nanotribological power generation performance. By varying the doping levels of amino groups and controlling the FRGO proportion during synthesis, we can explore the optimal FRGO/PI composite film ratio. At a p-Phenylenediamine: reduced Graphene Oxide (PPDA: RGO) ratio of 1:1 and an FRGO addition of 0.1 %, the output electrical performance peaks with a voltage of 58 V, a charge of 33 nC and a current of 12 µA, nearly 2 times that of a pure PI film. We have fabricated a TENG with an optimally formulated PI-FRGO composite to explore its application potential. Under a 10 MΩ external load resistance, the TENG can deliver a power density of 3.5 mW/m2 and can be powering small devices. This work presents new effective strategies to significantly enhance TENG output performance and promote their widespread application.

19.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000683

RESUMO

Chitosan is a biopolymer with unique properties that have attracted considerable attention in various scientific fields in recent decades. Although chitosan is known for its poor electrical and mechanical properties, there is interest in producing chitosan-based materials reinforced with carbon-based materials to impart exceptional properties such as high electrical conductivity and high Young's modulus. This study describes the synergistic effect of carbon-based materials, such as reduced graphene oxide and carbon nanotubes, in improving the electrical, optical, and mechanical properties of chitosan-based films. Our findings demonstrate that the incorporation of reduced graphene oxide influences the crystallinity of chitosan, which considerably impacts the mechanical properties of the films. However, the incorporation of a reduced graphene oxide-carbon nanotube complex not only significantly improves the mechanical properties but also significantly improves the optical and electrical properties, as was demonstrated from the photoluminescence studies and resistivity measurements employing the four-probe technique. This is a promising prospect for the synthesis of new materials, such as biopolymer films, with potential applications in optical, electrical, and biomedical bioengineering applications.

20.
Sci Rep ; 14(1): 16213, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003352

RESUMO

In this study, Al6061 alloy matrix composites reinforced Al2O3-decorated reduced graphene oxide (Al2O3/RGO) with 0.1, 0.3 and 0.5 weight present (wt%) were successfully fabricated using high energy ball milling and hot extrusion techniques. The microstructures of these Al2O3/RGO/Al6061 aluminum matrix composites (Al MMCs) were characterized. The results showed that Al2O3/RGO were uniformly distributed within the Al6061 matrix and tightly bonded to the matrix. Al2O3 encapsulation on RGO surface would prevent the formation of Al4C3 brittle phase in matrix, ensuring that there was no reaction between the reinforcement and the matrix Al6061. Tensile strength and Vickers hardness tests demonstrated that the mechanical properties of Al MMCs significantly increased with addition of Al2O3/RGOs. Remarkably, Al MMCs with 0.1 wt% reinforcement showed tensile yield and tensile strengths of 270 MPa and 286 MPa, respectively, which were 49% and 43% higher than those of pure Al6061 prepared using the same process. Furthermore, the 0.1 wt% Al2O3/RGO composite also showed the best plastic deformation capability in considering of the strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA