Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Water Res ; 259: 121874, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38870887

RESUMO

This study explored the potential of sand biofiltration for tertiary treatment of real refinery wastewater. The biofilter (2 cm (I.D.) x 15 cm (L)) operated on secondary treated refinery wastewater at flow rate of 1 mL/min had empty bed contact time (EBCT) of 47.12 min for one circulation. Maximum reduction in COD after 4, 8 and 12 times recirculation was 25 %, 52 % and 56 %; while the TOC reduction was 33 %, 43 % and 51 %, respectively, after biofilm development over 30 days. Quantification using two dimensional gas chromatography - time of flight mass spectrometry (GCxGC-TOF MS) revealed that several of the identified target compounds could not be detected in the wastewater after 12 recirculations. After 8 times recirculation, most of the compounds showed very high removal efficiency. For biofiltration over the flow rate range 2-10 mL/min, the reduction in COD and NH4+-N ranged from 62-73 % and 78-86 %, respectively, after 8 times recirculation. The nitrite concentration first increased and subsequently decreased, while the nitrate concentration continuously increased with increase in the number of recirculations. Solid phase micro-extraction (SPME) analysis of the aqueous phase using GCxGC-TOF MS and a semi-quantitative approach indicated that the removal of predominant classes of compounds was greater than 95 % after 8 times recirculation, with maximum reduction occurring in the first pass through the biofilter. Assimilable organic carbon (AOC) reduction was 98 % after 8 times recirculation. Metagenomic analysis revealed that Proteobacteria was the most dominant phylum in the biofilter. Many known polynuclear aromatic hydrocarbon (PAH) degraders, such as Sphingomonadales, Burkholderiales, Rhodobacterales and Rhodospirillales, were found in the biofilter leading to high removal efficiency of hazardous organic pollutants.


Assuntos
Filtração , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Dióxido de Silício , Compostos Orgânicos , Purificação da Água/métodos , Biofilmes
2.
Sci Rep ; 14(1): 4476, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396129

RESUMO

The main purpose of this research endeavor is to reduce lead concentrations in the wastewater of an oil refinery through the utilization of a material composed of oyster shell waste (MIL-100(Fe)/Cygnea/Fe3O4/TiO2. Initially, iron oxide nanoparticles (Fe3O4) were synthesized via solvent-thermal synthesis. It was subsequently coated layer by layer with the organic-metallic framework MIL-100 (Fe) using the core-shell method. Additionally, the solvent-thermal method was utilized to integrate TiO2 nanoparticles into the magnetic organic-metallic framework's structure. Varieties of analytical analysis were utilized to investigate the physical and chemical properties of the synthetic final photocatalyst. Nitrogen adsorption and desorption technique (BET), scanning electron microscopy (SEM), scanning electron diffraction pattern (XRD), and transmission electron microscopy (TEM). Following the characterization of the final photocatalyst, the physical and chemical properties of the nanoparticles synthesized in each step, several primary factors that significantly affect the removal efficiency in the advanced oxidation system (AOPs) were examined. These variables consist of pH, photocatalyst dosage, lead concentration, and reaction temperature. The synthetic photocatalyst showed optimal performance in the removal of lead from petroleum wastewater under the following conditions: 35 °C temperature, pH of 3, 0.04 g/l photocatalyst dosage, and 100 mg/l wastewater concentration. Additionally, the photocatalyst maintained a significant level of reusability after undergoing five cycles. The findings of the study revealed that the photocatalyst dosage and pH were the most influential factors in the effectiveness of lead removal. According to optimal conditions, lead removal reached a maximum of 96%. The results of this investigation showed that the synthetic photocatalyst, when exposed to UVA light, exhibited an extraordinary capacity for lead removal.

3.
J Environ Manage ; 354: 120356, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377757

RESUMO

As of 2022, China has achieved a crude oil processing capacity of 918 million tons, leading to a notable escalation in the production of refinery wastewater. The composition of refinery wastewater is intricate and diverse, posing a substantial challenge to its treatment. In order to facilitate appropriate discharge or reuse, an exhaustive separation process is imperative for refinery wastewater. Conventional pre-treatment processes typically employ inclined plate separators and dissolved air flotation (DAF) for the removal of oil and suspended solids (SS), while sequencing batch reactor (SBR), oxidation ditch, or biological aerated filter (BAF) are employed for the biological treatment process. However, these approaches encounter challenges such as a large spatial footprint, suboptimal treatment efficiency, and high energy consumption. In response to these challenges, this study introduces a novel integrated apparatus consisting of a high-efficiency oil remover (HEOR), coalescence oil remover (COR), and an airlift-enhanced loop bioreactor (AELR). A pilot-scale test was conducted to evaluate the performance of this integrated system in practical field applications. The pilot-scale tests reveal that, without the addition of chemical agents, the petroleum removal efficiency of "HEOR + COR" system was 1.2 times that of DAF. Compared with the SBR system, AELR's volume loading was increased by 1.56 times. The effluent quality achieved in the pilot-scale tests attained parity with that the original process. The "HEOR + COR + AELR" system exhibited energy and carbon emissions reduction of 28% and 30% compared to the "DAF + SBR" system, respectively. Therefore, the operating costs was reduced by approximate 1 Chinese Yuan (CNY) per ton of treated water. This technological advancement serves as a valuable reference for the implementation of low-carbon treatment of refinery wastewater.


Assuntos
Petróleo , Purificação da Água , Águas Residuárias , Eliminação de Resíduos Líquidos , Reatores Biológicos , Carbono
4.
Artigo em Inglês | MEDLINE | ID: mdl-38175507

RESUMO

The present investigation highlights the necessity of monitoring some basic physico-chemical water quality indicators and their phytotoxic effect using ecotoxicological bioassays such as "seed germination tests." The phytotoxicity of raw and treated vegetable oil refinery wastewater (VORW) using different treatment processes was assessed through some physiological responses (relative seed germination (RSG), seedling elongation, and germination index (GI)) using Lactuca sativa cultivar. Biotest results of different raw water samples revealed a noticeable correlation between the organic matter content and water phytotoxicity. In fact, VORW showed a very low RSG (17 ± 0.7 to -47 ± 0.58%) and high phytotoxic effects (GI < 50%). The use of coagulation/flocculation (CF) allowed a satisfactory phytotoxicity removal where RSG obtained ranged from 83 ± 1.58 to 90 ± 1.2%. However, the effluent still presents high to moderate phytotoxicity since GI remained below 80% which indicates the presence of toxic elements remaining after CF treatment. When VORW were treated using membrane processes, their phytotoxicity was gradually decreased with the decrease in the membrane pore size. The use of microfiltration membranes (MF), with pore size of 5 µm, 1.2 µm, 0.45 µm, and 0.22 µm, showed RSG values ranged from 37 ± 1.15 to 77 ± 1.68% and GI of less than 80% indicating a moderate to high phytotoxicity. However, the use of ultrafiltration (UF) membranes with molecular weight cut-off (MWCO) of 100 kDa, 30 kDa, and 10 kDa made it possible to achieve an RSG of 100% and an IG exceeding 80% showing that the VORW-treated using UF does not exhibit any phytotoxicity effect. Hence, UF appears to be the most efficient and environmentally friendly technology that could be used for safely treated VORW irrigation purposes compared to CF and MF processes.

5.
Environ Sci Pollut Res Int ; 31(12): 17634-17650, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37126170

RESUMO

The study aimed to optimize the treatment of oil refinery-contaminated wastewater through modification of the well-established activated sludge process with new nanocomposite (NC) materials to produce high-quality treated effluents for potential reuse. Refinery wastewater samples were collected from one of the major oil refineries, Alexandria, Egypt, where the operation, performance, and efficiency of the current activated sludge (AS) unit were evaluated for 6 consecutive months. Two AS bench scale PVC basins were constructed. Magnetite nanoparticles (Fe3O4 NPs) and magnetite silica (Fe3O4/silica) nanocomposite (NC) were prepared and characterized. Bioremediation trials were carried out in a sequential batch mode using Fe3O4/silica NC-modified AS and control (unmodified AS). The proposed treatment produced high-quality effluents in a very short time (2 h) despite the very high initial pollutant concentration accompanied with a reduction in the produced sludge. The highest removal of TSS, TDS, BOD, COD, and OG from raw industrial wastewater recorded 78.33, 3.6, 87.65, 85.17, and 92.92% compared to 55.3, 12.6, 50.0, 40.22, and 56.84%, respectively, achieved by the unmodified AS unit. The results confirmed that integration of the AS treatment with nanomaterial composite is highly effective, promising, and economic for the treatment of highly toxic and complicated industrial wastewater such as petroleum refinery effluents.


Assuntos
Nanocompostos , Petróleo , Águas Residuárias , Esgotos , Silício , Óxido Ferroso-Férrico , Dióxido de Silício , Eliminação de Resíduos Líquidos/métodos
6.
J Environ Manage ; 345: 118834, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659365

RESUMO

Treating wastewater using purple non-sulfur bacteria (PNSB) is an environmentally friendly technique that can simultaneously remove pollutants and lead to the accumulation of high-value cell inclusions. However, no PNSB system for treating heavy oil refinery wastewater (HORW) and recovering high-value cell inclusions has yet been developed. In this study, five batch PNSB systems dominated by Rhodopseudomonas were used to treat real HORW for 186 d. The effects of using different hydraulic retention times (HRT), sludge retention times (SRT), trace element solutions, phosphate loads, and influent loads were investigated, and the bacteriochlorophyll, carotenoid, and coenzyme Q10 concentrations were determined. The community structure and quantity of Rhodopseudomonas in the systems were determined using a high-sequencing technique and quantitative polymerase chain reaction technique. The long-term results indicated that phosphate was the limiting factor for treating HORW in the PNSB reactor. The soluble chemical oxygen demand (SCOD) removal rates were 67.03% and 85.26% without and with phosphate added, respectively, and the NH4+-N removal rates were 32.18% and 89.22%, respectively. The NO3--N concentration in the effluent was stable at 0-3 mg/L with or without phosphate added. Adding phosphate increased the Rhodopseudomonas relative abundance and number by 13.21% and 41.61%, respectively, to 57.35% and 8.52 × 106 gene copies/µL, respectively. The SRT was the limiting factor for SCOD removal, and the bacteria concentration was the limiting factor for nitrogen removal. Once the inflow load had been increased, the total nitrogen (TN) removal rate increased as the HRT increased. Maximum TN removal rates of 64.46%, 68.06%, 73.89%, 82.15%, and 89.73% were found at HRT of 7, 10, 13, 16, and 19 d, respectively. The highest bacteriochlorophyll, carotenoid, and coenzyme Q10 concentrations were 2.92, 4.99, and 4.53 mg/L, respectively. This study provided a simple and efficient method for treating HORW and reutilizing resources, providing theoretical support and parameter guidance for the application of Rhodopseudomonas in treating HORW.


Assuntos
Poluentes Ambientais , Rodopseudomonas , Águas Residuárias , Ubiquinona , Bacterioclorofilas , Esgotos , Carotenoides , Nitrogênio , Indústria de Petróleo e Gás , Fosfatos
7.
Bioprocess Biosyst Eng ; 46(11): 1613-1625, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37656256

RESUMO

This study investigated the MBR performance, sludge morphology, and membrane fouling potential in treating sunflower oil refinery wastewater containing high oleic acid at three different SRTs of 10 days, 40 days, and infinite. The analysis of mixed liquor morphology including sludge volume index, PSD, EPS, and SMP showed that the sludge flocs compressibility and bioflocculation considerably improved at 40-days SRT. Additionally, at this SRT, the mixed liquor O&G, COD, and SMP accumulation were low, and the microbial activity and COD removal were enhanced. The gas chromatography/mass spectrometry analysis results confirmed the formation of three different new compounds related to non-readily biodegradable recalcitrant oily compounds and SMP at all SRTs. The analysis of mixed liquor EPS, PSD, SMP, and effluent COD at three different SRTs suggests that under the industrial conditions of MBR operation treating SORW with high oleic acid, the optimal operating conditions are predicted to be at 40-days SRT.


Assuntos
Helianthus , Águas Residuárias , Esgotos/química , Ácido Oleico , Óleo de Girassol , Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos
8.
J Environ Manage ; 342: 118362, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37311343

RESUMO

In the present study a sequential process composed of electrocoagulation (EC) followed by electrooxidation (EO) was utilized at the laboratory scale to remove the chemical oxygen demand (COD) from wastewater generated in Iraqi vegetable oil refinery plant.in the EC, impacts of operating variables such as current density (10-30 mA cm-2) and pH (4-10),and EC time (30-90 min) on the COD removal (RE%) were investigated using response surface methodology (RSM) based on Box- Behnken design(BBD). a mathematical correlation that relates the operating factors with RE% was developed and its regression coefficient was 99.02% confirming the significant of the model. Response surface plots showed that RE% increased with increasing current density and time while it decreased with increasing pH. The optimum removal with a lower cost for EC process were achieved at current density of 30mA/cm2, pH of 4, and electrolysis time of 90 min in which RE% of 69.19% was obtained with requirement of 0.513kWh/kg COD as specific energy consumption (SEC). The effluent exit from EC was treated by EO for a period of 240min at a current density of 30mA/cm2 and an initial pH value of 4 to obtain RE% of 96% at SEC of 1.554 kWh/kg COD. Combining EC with EO resulted in a total RE% of 98.72% and a total SEC of 2.067 kWh/kg COD. Based on the results of present study, the applicability of a sequential electrocoagulation-electrooxidation process for treatment vegetable oil wastewaters is feasible.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Verduras , Eletrocoagulação/métodos , Óleos de Plantas
9.
Protoplasma ; 260(1): 89-101, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35467135

RESUMO

Concern on the toxicity of final wastewater generated by the petroleum refining industry has increased in recent years due to the potential health threats associated with their release into the waterways. This study determined the mutagenic and genotoxic potential of petroleum refinery wastewater and a receiving river using the Ames fluctuation test on Salmonella typhimurium strains TA100 and TA98, SOS chromotest on Escherichia coli PQ37, and piscine peripheral micronucleus (MN) assay. Analyses of the physicochemical parameters, heavy metal, and organic contents of the samples were also performed. Ames test result showed that the two tested samples were mutagenic with TA100 strain as the more responsive strain for both the refinery wastewater and the river sample in terms of the calculated mutagenic index. A similar result was obtained in the SOS chromotest; however, the E. coli PQ37 system recorded a slightly higher sensitivity for detecting genotoxins than the Salmonella assay in the two samples. MN data showed induction of a concentration-dependent significant (p < 0.05) increase in the frequency of MN by both samples when compared with the negative control. Generally, the refinery wastewater induced the highest mutagenicity and genotoxicity compared to the river sample in the three assays used. Haemoglobin, platelets, red blood cells, mean corpuscular volume, total white blood cells, heterophils, haematocrit, and eosinophils reduced significantly with increased lymphocytes, basophils, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration in fishes exposed to both samples. Total petroleum hydrocarbon, benzene, toluene, phenol index, polycyclic aromatic hydrocarbons, cadmium, mercury, nickel, lead, and vanadium contents analysed in the samples were believed to be responsible for the observed genotoxicity and mutagenicity. The findings of this study revealed that petroleum refinery wastewater is a potential mutagenic and genotoxic risk to the environment.


Assuntos
Mutagênicos , Petróleo , Dano ao DNA , Escherichia coli/genética , Eucariotos , Testes de Mutagenicidade , Mutagênicos/toxicidade , Mutagênicos/análise , Petróleo/toxicidade , Petróleo/análise , Rios/química , Águas Residuárias/toxicidade
10.
Membranes (Basel) ; 12(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36557109

RESUMO

The waste oil emulsion liquid membrane produced by waste oil from oil refineries (WELM) is used to separate the phenol in purified water from the sour water stripper in oil refinery facilities, and the stability of WELM was studied. It is verified that waste refinery oil can be produced into emulsion liquid membrane with good stability and high removal rate for the first time. The WELM stability models were established by response surface methodology (RSM) and artificial neural network (ANN), respectively. The principle and mechanism of various parameters, as well as the interaction effects on the stability of WELM, are proposed. The effects of parameters, including the ratio of Span-80, liquid paraffin, the ratio of internal and oil, and the rotational speed of the homogenizer, were investigated. Under the optimal operating parameters, the WELM had a demulsification percentage of just 0.481%, and the prediction results of RSM and ANN were 0.536% and 0.545%, respectively. Both models demonstrate good predictability. The WELM stability model has a high application value in the treatment of phenol-containing wastewater in the oil refining industry, and provides a green method of resource recovery.

11.
Sci Total Environ ; 839: 156301, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636544

RESUMO

Free Living Amoebae (FLA) are ubiquitous microorganisms reported from harsh environmental conditions. Oil refinery facilities consume vast volumes of water during their processes, generating a large amount of wastewater. The present study aimed to evaluate the wastewater treatment process in an oil refinery wastewater treatment facility (ORWWTF) for the presence of FLA. Water samples were collected from an oil refinery wastewater (ORWW) for nine months. After recording physical-chemical features, samples were cultivated onto non-nutrient agar (NNA). The discriminative fragments of the ribosomal RNA (rRNA) gene were amplified and sequenced to characterize the isolated FLA. Phylogenetic tree, and network analysis were employed to evaluate genetic relationships. The thermo- and osmotolerant tests were performed on the isolated FLA. Twenty-five (32.9%) samples were positive for FLA cultivation. Acanthamoeba spp., Vahlkampfiids, and Vermamoeba spp. were detected, of which Acanthamoeba species were predominant. There was no statistical correlation between pH, NH3, PO4, H2S, and TDS with the presence of FLA. A statistical correlation between the presence of FLA and the type of wastewater treatment plants (WWTPs) was significant (P-value = 0.011). All Acanthamoeba spp. isolates belonged to the genotypes T4 (17/21; 80.95%) and T11 (4/21; 19.05%). Vahlkampfiids were Naegleria spp., (7/10; 70%), Tetramitus aberdonicus (1/10; 10%), Learamoeba spp., (1/10; 10%), and Vahlkampfia spp., (1/10; 10%). All three Vermamoeba spp. were V. vermiformis. The ORWW contains toxic materials, and a few microorganisms can stay active in these environments. This is the first study which isolates FLA from such super harsh conditions. For the first time, T. aberdonicus, and Learamoeba spp., were isolated from oily wastewater. Our findings signify the concern due to the distribution of potentially pathogenic FLA to downstream lands via treated wastewater that may be released after treatment processing.


Assuntos
Acanthamoeba , Amoeba , Purificação da Água , Indústria de Petróleo e Gás , Filogenia , Águas Residuárias , Água
12.
Bioresour Technol ; 355: 127263, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35526717

RESUMO

Petroleum refinery wastewater (PRW) is a complex mixture of hydrocarbons, sulphides, ammonia, oils, suspended and dissolved solids, and heavy metals. As these pollutants are toxic and recalcitrant, it is essential to address the above issue with efficient, economical, and eco-friendly technologies. In this review, initially, an overview of the characteristics of wastewater discharged from different petroleum refinery units is discussed. Further, various pre-treatment and post-treatment strategies for complex PRW are introduced. A segregated approach has been proposed to treat the crude desalting, sour, spent caustic, and oily wastewater of petroleum refineries. The combined systems (e.g., ozonation + moving bed biofilm reactor and photocatalysis + packed bed biofilm reactor) for the treatment of low biodegradability index wastewater (BOD5/COD < 0.2) were discussed to construct a perspective map and implement the proposed system efficiently. The economic, toxicity, and biodegradability aspects are also introduced, along with research gaps and future scope.


Assuntos
Petróleo , Águas Residuárias , Biofilmes , Eliminação de Resíduos Líquidos , Águas Residuárias/análise
13.
Chemosphere ; 294: 133520, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35032517

RESUMO

Metal ions has been widely used as a method of improving pollutant removal efficiency in wastewater biological treatment system. In order to enhance pollutants removal and high-value cell inclusions accumulation in heavy oil refinery wastewater treatment systems using PSB, different reactors were built feeding with different Fe2+ concentrations respectively, and run with enriching Rhodopseudomonas and Pseudomonas in the reactors. Solute chemical oxygen demand (SCOD), ammonia (NH4+-N), nitrate nitrogen (NO3--N), nitrous nitrogen (NO2--N), Fe2+, and related cell inclusions were all detected, moreover, microbial community structure and the quantity of Rhodopseudomonas and Pseudomonas were also detected. The results showed that at the optimal dosage of Fe2+ with 20 mg/L, the corresponding removal ratios of solute chemical oxygen demand and ammonia were 73.51% and 92.26%, respectively. The yields of carotenoid, bacteriochlorophyll, and coenzyme Q10 were 11.18, 6.75, and 9.84 mg/g-DCW respectively. Furthermore, with 20 mg/L Fe2+ dosage, the relative abundance and gene number of Rhodopseudomonas were the highest in the system, which were 91.57% and 1.843 × 106 gene copies/µL, while Fe2+ had no obvious effect on the growth of Pseudomonas. The results showed that adding Fe2+ has improved the removal of pollutants and accumulation of high-value cells inclusions, also provided theoretical guidance for the treatment of heavy oil refinery wastewater using PSB.


Assuntos
Poluentes Ambientais , Rodopseudomonas , Nitrogênio/química , Indústria de Petróleo e Gás , Pseudomonas , Águas Residuárias/química
14.
J Hazard Mater ; 421: 126629, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34315020

RESUMO

Spent caustic discharges are responsible for increasing oil and grease (O&G) matter in refineries wastewater, leading to increasing treatment costs due to low water quality and environmental constraints associated with high O&G concentration discharges. As a way to settle and optimize treatment technologies for such complex effluents, more insight regarding the effluents impact and deeper characterization is necessary. The present study intends to assess the possibility of a relationship between the processed crude oils with the polar O&G concentration in naphthenic spent caustic as well as in the final wastewater; Sines refinery was considered as case-study. Also, in order to get insights about the nature of the polar O&G compounds, their structures and their prevalence in the effluent treatment system was carried out through detailed analytical characterization studies. Proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectrometry (GC-MS) were chosen. It was found that, for the Sines refinery, spent caustic discharges may increase the refinery effluent management cost up to 3 €/ton of processed crude oil, every time a high kerosene cut acid crude oil is processed. It was also found that the typical spent caustic O&G effluents are composed by organic contaminants with low molecular weight (MW), with aromatic and polar arrangements, like phenolic groups and naphthenic acids. This outcome is crucial for subsequently establishing the best technologies able to deal with such complex effluents.


Assuntos
Cáusticos , Petróleo , Petróleo/análise , Petróleo/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias
15.
Heliyon ; 7(10): e08116, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34693051

RESUMO

Petroleum refinery wastewater combined with domestic sewage were collected from the open channel in the vicinity of Mathura oil refinery, UP (India) and analysed by inductively coupled plasma optical emission spectrometry (ICP-OES) and gas chromatography-mass spectrometry (GC-MS) for elemental analysis and organic pollutants, respectively. Several potentially toxic and non-toxic elements were found to be present in the wastewater samples. GC-MS analysis revealed the presence of several organic contaminants including pesticides. Wastewater samples were extracted using amberlite XAD4/8 resins and liquid-liquid extraction procedures using different organic solvents. The extracts were tested for their cyto-genotoxic potential using bacterial (Salmonella mutagenicity test, E. coli K-12 DNA repair defective mutants, Bacteriophage λ assay) and plant (Vigna mungo phytotoxicity test, Allium cepa chromosomal aberration assay) systems. A significant increase was observed in the number of revertants of TA97a, TA98 and TA100 strains with the test samples and XAD concentrated samples were found to be more mutagenic than liquid-liquid extracts. Colony forming units (CFUs) of DNA repair defective mutants of E. coli K-12 recA, lexA and polA declined significantly as compared to their isogenic wild-type counterparts with the test samples. Significant reduction in plaque forming units (PFUs) of bacteriophage λ was also found on treatment with the solvent extracts. Presence of several toxic pollutants in the wastewater apply prohibitive action on the seed germination process. Germination rate of Vigna mungo seeds as well as radicle and plumule lengths were found to be affected when treated with different concentration of wastewater as compared to control. Present study also indicated concentration dependent reduction in mitotic index of A. cepa i.e., 16.38% at 5% and 9.74% at 100% wastewater and percentage of aberrant cells were highest at 100% effluent. Present findings indicated that mutagenicity/genotoxicity of wastewater is due to the mixture of genotoxins; poses serious hazards to the receiving waterbodies which require continuous monitoring and remedial measures for their improvement.

16.
Membranes (Basel) ; 11(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34564468

RESUMO

With the development of the refining industry, the treatment of refinery wastewater has become an urgent problem. In this study, a ceramic membrane (CM) was combined with Fenton-activated carbon (AC) adsorption to dispose of refinery wastewater. The effect of the combined process was analyzed using excitation-emission matrix (EEM), ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopies (FTIR). Compared with direct filtration, the combined process could significantly improve the removal of organic pollution, where the removal rate of the COD and TOC could be 70% and the turbidity removal rate was above 97%. It was found that the effluent could meet the local standards. In this study, the membrane fouling was analyzed for the impact of the pretreatment on the membrane direction. The results showed that Fenton-AC absorption could effectively alleviate membrane fouling. The optimal critical flux of the combined process was increased from 60 to 82 L/(m2·h) compared with direct filtration. After running for about 20 d, the flux remained at about 55 L/(m2·h) and the membrane-fouling resistance was only 1.2 × 1012 m-1. The Hermia model revealed that cake filtration was present in the early stages of the combined process. These results could be of great use in improving the treatment efficiency and operation cycle of refinery wastewater.

17.
Materials (Basel) ; 14(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34501100

RESUMO

In this study, the use of ultra-violet (UV) light with or without iron oxide nanoparticles (IONPs) for the degradation of synthetic petroleum wastewater was investigated. The IONPs was synthesised by sodium borohydride reduction of ferric chloride solution and was characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), x-ray fluorescence spectrophotometry (XRF), and energy dispersive spectroscopy (EDS). The amount of degradation was evaluated by chemical oxygen demand (COD) determination. Experimental results show that the COD removal from synthetic petroleum wastewater by IONPs/UV system was more effective than they were independently. The combination of UV light at a wavelength of 254 nm, pH of 8, and 1.0 g of IONPs resulted in COD removal from 10.5% up to 95.5%. The photocatalytic degradation of synthetic petroleum wastewater is about 1.3-2.0 times faster in comparison to UV light only. The removal of COD from synthetic petroleum wastewater by UV light and IONPs follows the pseudo-first-order kinetic model with rate constant k ranging from 0.0133 min-1 to 0.0269 min-1. Consequently, this study has shown that the use of UV light in the presence of IONPs is favourable and effective for the removal of organic pollutants from petroleum refinery wastewater.

18.
Carbohydr Polym ; 266: 118125, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044941

RESUMO

The biomaterials have gained the attention for utilization as sustainable alternatives for petroleum-derived products due to the rapid depletion of petroleum resources and environmental issues. Chitosan is an economical, renewable and abundant polysaccharide having unique molecular characteristics. Chitosan is derived by deacetylation of chitin, a natural polysaccharide existing in insects' exoskeleton, outer shells of crustaceans, and some fungi cell walls. Chitosan is widely used in numerous domains like agriculture, food, water treatment, medicine, cosmetics, fisheries, packaging, and chemical industry. This review aims to account for all the efforts made towards chitosan and its derivatives for utilization in the petroleum industry and related processes including exploration, extraction, refining, transporting oil spillages, and wastewater treatment. This review includes a compilation of various chemical modifications of chitosan to enhance the petroleum field's performance and applicability.

19.
J Biosci Bioeng ; 132(1): 41-48, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33931317

RESUMO

Heterotrophic nitrifying and aerobic denitrifying bacteria that have been widely isolated from complicated activated sludge microflorae demonstrate dominant advantages in simultaneous removal of ammonium and nitrogen oxides under aerobic conditions. However, owing to the need of organic carbon to support bacterial growth, nitrogen removal of actual industrial wastewater with low carbon-to-nitrogen (C/N) ratio remains a challenge. Here, Pseudomonas mendocina Y7 was identified and presented to effectively remove nitrogen of actual refinery wastewater with low C/N ratio. The isolated bacterium showed high removal efficiency of NH4+-N, NO2--N, and NO3--N up to about 90% in single (100 mg/L) or mixed (200 mg/L) nitrogen source media at low C/N ratio of 6 when it was cultivated for 12 or 21 h. According to PCR amplification, the heterotrophic nitrification and aerobic denitrification capability of strain Y7 was attributed to the functional genes of amoA, hao, napA, and nirS. In activated sludge process for treating actual refinery wastewater with low C/N ratio, compared to abundant accumulation of NO2--N and NO3--N only using the activated sludge, strain Y7 significantly improved the removal efficiency of NH4+‒N and total nitrogen (with influent concentrations of about 40 and 55 mg/L) from about 47% and 22% to about 85% and 73%, respectively, without the accumulation of nitrogen oxides. Microbial community structure analysis revealed that strain Y7 could coexist well with other microorganisms in the activated sludge and maintain highly efficient and steady nitrogen removal in continuous treatment system. This discovery provides a promising treatment approach toward actual nitrogen-rich industrial wastewater.


Assuntos
Bactérias/metabolismo , Carbono/análise , Processos Heterotróficos , Nitrificação , Nitrogênio/análise , Águas Residuárias/microbiologia , Purificação da Água/métodos , Aerobiose , Desnitrificação
20.
J Environ Manage ; 272: 111080, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32854886

RESUMO

Reclaiming water for cooling systems in oil refineries has been strongly encouraged over the past years for decreasing the large consumption of fresh water, thus contributing to the efficient use of this valuable resource. In a recent study [Journal of Environmental Management 261 (2020) 110229], some of the authors studied the retention of phenols in refinery wastewater through reverse osmosis (RO) and found rejections of up to 98% of phenols and 99% of both chemical oxygen demand (COD) and total organic carbon (TOC). The permeates complied with the quality standards for make-up water in cooling processes. A missing aspect, important for the water to be used in the oil and gas industry, was the level of corrosivity of the new permeates. In this work the corrosion of mild carbon steel in the permeates and in the original cooling tower make-up water was studied by electrochemical techniques. The corrosion rate of steel in the permeates in aerated conditions was lower (between 0.053 ± 0.006 and 0.123 ± 0.011 mm year-1) than in the make-up water (0.167 ± 0.030 mm year-1), confirming their suitability for replacing make-up water in the cooling towers. The low corrosion of carbon steel was attributed to the low conductivity and absence of oxidizing species in the fluids, compared to fresh water.


Assuntos
Carbono , Aço , Corrosão , Eliminação de Resíduos Líquidos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA