Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.093
Filtrar
1.
Biomaterials ; 313: 122764, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39190941

RESUMO

Currently, mitochondrial dysfunction caused by oxidative stress is a growing concern in degenerative diseases, notably intervertebral disc degeneration (IVDD). Dysregulation of the balance of mitochondrial quality control (MQC) has been considered the key contributor, while it's still challenging to effectively harmonize different MQC components in a simple and biologically safe way. Hydrogen gas (H2) is a promising mitochondrial therapeutic molecule due to its bio-reductivity and diffusibility across cellular membranes, yet its relationship with MQC regulation remains unknown. Herein, we propose a mitochondrial 'Birth-Death' coordinator achieved by an intelligent hydrogen nanogenerator (Fe@HP-OD), which can sustainably release H2 in response to the unique microenvironment in degenerated IVDs. Both in vitro and in vivo results prove alleviation of cellular oxidative stress and restoration of nucleus pulposus cells function, thereby facilitating successful IVD regeneration. Significantly, this study for the first time proposes the mitochondrial 'Birth-Death' coordination mechanism: 1) attenuation of overactivated mitochondrial 'Death' process (UPRmt and unselective mitophagy); and 2) activation of Adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway for mitochondrial 'Birth-Death' balance (mitochondrial biogenesis and controlled mitophagy). These pioneering findings can fill in the gaps in molecular mechanisms for H2 regulation on MQC homeostasis, and pave the way for future strategies towards restoring equilibrium of MQC system against degenerative diseases.


Assuntos
Hidrogênio , Degeneração do Disco Intervertebral , Mitocôndrias , Estresse Oxidativo , Hidrogênio/química , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Disco Intervertebral/efeitos dos fármacos , Humanos , Mitofagia/efeitos dos fármacos , Ratos Sprague-Dawley , Masculino , Núcleo Pulposo/metabolismo , Ratos
2.
J Colloid Interface Sci ; 678(Pt C): 334-345, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39298986

RESUMO

Skeletal muscle integrity and its intrinsic aligned architecture are crucial for locomotion, postural support, and respiration functions, impacting overall quality of life. However, volumetric muscle loss (VML) can exceed intrinsic regenerative potential, leading to fibrosis and impairments. Autologous muscle grafting, the current gold standard, is constrained by tissue availability and success rates. Therefore, innovative strategies like cell-based therapies and scaffold-based approaches are needed. Our minimally invasive approach involves a tunable injectable hydrogel capable of achieving an aligned architecture post-injection via a low-intensity static magnetic field (SMF). Our hydrogel formulation uses gellan gum as the backbone polymer, enriched with essential extracellular matrix components such as hyaluronic acid and collagen type I, enhancing bio-functionality. To achieve an aligned architectural biomimicry, collagen type I is coupled with iron oxide magnetic nanoparticles, creating magnetic collagen bundles (MagC) that align within the hydrogel when exposed to a SMF. An extensive study was performed to characterize MagC and assess the hydrogel's stability, mechanical properties, and biological response in vitro and in vivo. The proposed system, fully composed of natural polymers, exhibited mechanical properties similar to human skeletal muscle and demonstrated effective biological performances, supporting its potential as a safe and patient-friendly treatment for VML.


Assuntos
Hidrogéis , Músculo Esquelético , Regeneração , Hidrogéis/química , Hidrogéis/farmacologia , Regeneração/efeitos dos fármacos , Animais , Anisotropia , Campos Magnéticos , Humanos , Injeções , Camundongos , Tamanho da Partícula
3.
Biomaterials ; 313: 122768, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39232332

RESUMO

As the most prominent and ideal modality in female fertility preservation, ovarian tissue cryopreservation, and transplantation often confront the challenge of ischemic damage and follicular loss from avascular transplantation. To surmount this impediment, we engineered a novel platelet-derived factors-encapsulated fibrin hydrogel (PFH), a paradigmatic biomaterial. PFH encapsulates autologous platelet-derived factors, utilizing the physiological blood coagulation cascade for precise local delivery of bioactive molecules. In our study, PFH markedly bolstered the success of avascular ovarian tissue transplantation. Notably, the quantity and quality of follicles were preserved with improved neovascularization, accompanied by decreased DNA damage, increased ovulation, and superior embryonic development rates under a Low-concentration Platelet-rich plasma-derived factors encapsulated fibrin hydrogel (L-PFH) regimen. At a stabilized point of tissue engraftment, gene expression analysis mirrored normal ovarian tissue profiles, underscoring the effectiveness of L-PFH in mitigating the initial ischemic insult. This autologous blood-derived biomaterial, inspired by nature, capitalizes on the blood coagulation cascade, and combines biodegradability, biocompatibility, safety, and cost-effectiveness. The adjustable properties of this biomaterial, even in injectable form, extend its potential applications into the broader realm of personalized regenerative medicine. PFH emerges as a promising strategy to counter ischemic damage in tissue transplantation, signifying a broader therapeutic prospect. (197 words).


Assuntos
Preservação da Fertilidade , Hidrogéis , Isquemia , Neovascularização Fisiológica , Ovário , Feminino , Animais , Preservação da Fertilidade/métodos , Neovascularização Fisiológica/efeitos dos fármacos , Ovário/efeitos dos fármacos , Hidrogéis/química , Isquemia/terapia , Humanos , Fibrina/química , Plasma Rico em Plaquetas/metabolismo
4.
Stem Cell Res Ther ; 15(1): 395, 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39497124

RESUMO

BACKGROUND: Globally, prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing, and there is an urgent need to develop innovative therapies that promote liver regeneration following hepatectomy for this disease. Surgical excision is a key therapeutic approach with curative potential for liver tumors. However, hepatic steatosis can lead to delayed liver regeneration and higher post-operative complication risk. Mesenchymal stem cells-conditioned medium (MSC-CM) is considered a rich source of paracrine factors that can repair tissues and restore function of damaged organs. Meanwhile, hydrogels have been widely recognized to load MSC secretome and achieve sustained release. This study aimed to evaluate the therapeutic effect of hydrogel-encapsulated MSC-CM on liver regeneration following partial hepatectomy (PHx) in a rodent model of diet-induced hepatic steatosis. METHODS: Male Lewis rats were fed with a methionine and choline-deficient diet. After 3 weeks of feeding, PHx was performed and rats were randomly allocated into two groups that received hydrogel-encapsulated MSC-CM or vehicle via the intra-mesenteric space of the superior mesenteric vein (SMV). RESULTS: The regeneration of the remnant liver at 30 and 168 h after PHx was significantly accelerated, and the expressions of proliferating cell nuclear antigen were significantly enhanced in the MSC-CM group. MSC-CM treatment significantly increased hepatic ATP and ß-hydroxybutyrate content at 168 h after PHx, indicating that MSC-CM fosters regeneration not only in volume but also in functionality. The number of each TUNEL- and cleaved caspase-3 positive nuclei in hepatocytes at 9 h after PHx were significantly decreased in the MSC-CM group, suggesting that MSC-CM suppressed apoptosis. MSC-CM increased serum immunoregulatory cytokine interleukin-10 and interleukin-13 at 30 h after PHx. Additionally, mitotic figures and cyclin D1 expression decreased and hepatocyte size increased in the MSC-CM group, implying that this mode of regeneration was mainly through cell hypertrophy rather than cell division. CONCLUSIONS: MSC-CM represents a novel therapeutic approach for patients with MASLD requiring PHx.


Assuntos
Hepatectomia , Hidrogéis , Regeneração Hepática , Células-Tronco Mesenquimais , Animais , Regeneração Hepática/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Ratos , Meios de Cultivo Condicionados/farmacologia , Masculino , Hidrogéis/farmacologia , Hidrogéis/química , Fígado Gorduroso/metabolismo , Fígado Gorduroso/terapia , Ratos Endogâmicos Lew , Fígado/metabolismo , Fígado/patologia
5.
Heliyon ; 10(20): e39398, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39497964

RESUMO

Millions globally suffer from visual impairment, complicating the management of eye diseases due to various ocular barriers. The eye's complex structure and the limitations of existing treatments have spurred interest in tissue engineering (TE) as a solution. This approach offers new functionalities and improves therapeutic outcomes over traditional drug delivery methods, creating opportunities for treating various eye disorders, from corneal injuries to retinal degeneration. In our review of recent articles concerning the use of scaffolds for eye repair, we categorized scaffolds employed in eye TE from recent studies into four types based on tissue characteristics: natural, synthetic, biohybrid, and decellularized tissue. Additionally, we gathered data on the cell types and animal models associated with each scaffold. This allowed us to gather valuable insights into the benefits and drawbacks of each material. Our research elucidates that, in comparison to conventional treatment modalities, scaffolds in TE emulate the extracellular matrix (ECM) of the eye and facilitate cell proliferation and tissue regeneration. These scaffolds can be precisely tailored to incorporate growth factors that augment the healing process while also providing considerable advantages such as bacterial inhibition, biocompatibility, and enhanced durability. However, they also have drawbacks, such as potential immune responses, poor tissue integration, complex and costly manufacturing, and inconsistent degradation rates that can affect their effectiveness. In this review, we provide an overview of the present condition of eye regenerative treatments, assess notable preclinical and clinical research endeavors, contemplate the obstacles encountered, and speculate on potential advancements in the upcoming decade.

6.
Heliyon ; 10(20): e39251, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39498056

RESUMO

Diabetic foot ulcers (DFUs) represent a serious complication of diabetes with high incidence, requiring intensive treatment, prolonged hospitalization, and high costs. It poses a severe threat to the patient's life, resulting in substantial burdens on patient and healthcare system. However, the therapy of DFUs remains challenging. Therefore, exploring cell-free therapies for DFUs is both critical and urgent. Exosomes, as crucial mediators of intercellular communication, have been demonstrated potentially effective in anti-inflammation, angiogenesis, cell proliferation and migration, and collagen deposition. These functions have been proven beneficial in all stages of diabetic wound healing. This review aims to summarize the role and mechanisms of exosomes from diverse cellular sources in diabetic wound healing research. In addition, we elaborate on the challenges for clinical application, discuss the advantages of membrane vesicles as exosome mimics in wound healing, and present the therapeutic potential of exosomes and their mimetic vesicles for future clinical applications.

7.
Heliyon ; 10(20): e39584, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39498089

RESUMO

Traditional treatment strategies for recurrent pregnancy loss (RPL) and recurrent implantation failure (RIF) often result in limited success, placing significant emotional and financial burdens on couples. However, novel approaches such as diagnostic gene profiling, cell therapy, stem cell-derived exosome therapy, and pharmacogenomics offer promising, personalized treatments. Combining traditional treatments with precision and regenerative medicine may enhance the efficacy of these approaches and improve pregnancy outcomes. This review explores how integrating these strategies can potentially transform the lives of couples experiencing repeated pregnancy loss or implantation failure, providing hope for improved treatment success. Precision and regenerative medicine represent a new frontier for managing RPL and RIF, offering promising solutions.

8.
Adv Healthc Mater ; : e2402571, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39498750

RESUMO

3D printing, also known as additive manufacturing, holds immense potential for rapid prototyping and customized production of functional health-related devices. With advancements in polymer chemistry and biomedical engineering, polymeric biomaterials have become integral to 3D-printed biomedical applications. However, there still exists a bottleneck in the compatibility of polymeric biomaterials with different 3D printing methods, as well as intrinsic challenges such as limited printing resolution and rates. Therefore, this review aims to introduce the current state-of-the-art in 3D-printed functional polymeric health-related devices. It begins with an overview of the landscape of 3D printing techniques, followed by an examination of commonly used polymeric biomaterials. Subsequently, examples of 3D-printed biomedical devices are provided and classified into categories such as biosensors, bioactuators, soft robotics, energy storage systems, self-powered devices, and data science in bioplotting. The emphasis is on exploring the current capabilities of 3D printing in manufacturing polymeric biomaterials into desired geometries that facilitate device functionality and studying the reasons for material choice. Finally, an outlook with challenges and possible improvements in the near future is presented, projecting the contribution of general 3D printing and polymeric biomaterials in the field of healthcare.

9.
J Cosmet Dermatol ; 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39501429

RESUMO

BACKGROUND: Microfocused ultrasound with visualization (MFU-V) is widely used in aesthetic medicine for skin tightening and rejuvenation. However, its role in regenerative aesthetics and its precise mechanism of action are not fully understood. OBJECTIVE: This narrative review aims to contextualize and articulate the mechanism of action of MFU-V, evaluate its role in regenerative aesthetics, and assess its effectiveness based on existing clinical, histological, and skin-mechanical studies. METHODS: A comprehensive literature search was performed to collect and analyze studies on MFU's biological mechanisms, clinical outcomes, and impact on extracellular matrix (ECM) regeneration. The review integrates findings from clinical trials, histological analyses, and biomechanical assessments to provide a cohesive understanding of MFU-V's role in aesthetic medicine. RESULTS: MFU-V emits focused ultrasound energy that penetrates multiple skin layers and the superficial musculoaponeurotic system, creating localized thermal coagulation points. These points initiate biological responses that recruit fibroblasts and stimulate the production of new collagen and elastin fibers. Enhanced ECM protein synthesis leads to significant improvements in skin biomechanics and quality, reducing skin laxity and enhancing appearance. Clinical studies support these findings, showing improvements in skin firmness and texture following MFU-V treatment. CONCLUSION: Through analyzing the underlying biological mechanisms and the observable clinical outcomes, this narrative review sets the stage for a comprehensive understanding of the mechanism of action and role of MFU-V in regenerative aesthetics.

10.
J Tissue Eng ; 15: 20417314241283148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39502329

RESUMO

In severe skeletal muscle damage, muscle tissue regeneration process has to face the loss of resident muscle stem cells (MuSCs) and the lack of connective tissue necessary to guide the regeneration process. Biocompatible and standardized 3D structures that can be injected to the muscle injury site, conforming to the defect shape while actively guiding the repair process, holds great promise for skeletal muscle tissue regeneration. In this study, we explore the use of an injectable and porous lysine dendrimer/polyethylene glycol (DGL/PEG) hydrogel as an acellular support for skeletal muscle regeneration. We adjusted the DGL/PEG composition to achieve a stiffness conducive to the attachment and proliferation of murine immortalized myoblasts and human primary muscle stems cells, sustaining the formation and maturation of muscle fibers in vitro. We then evaluated the potential of one selected "myogenic-porous hydrogel" as a supportive structure for muscle repair in a large tibialis anterior muscle defect in rats. This injectable and porous formulation filled the defect, promoting rapid cellularization with the presence of endothelial cells, macrophages, and myoblasts, thereby supporting neo-myogenesis more specifically at the interface between the wound edges and the hydrogel. The selected porous DGL/PEG hydrogel acted as a guiding scaffold at the periphery of the defect, facilitating the formation and anchorage of aligned muscle fibers 21 days after injury. Overall, our results indicate DGL/PEG porous injectable hydrogel potential to create a pro-regenerative environment for muscle cells after large skeletal muscle injuries, paving the way for acellular treatment in regenerative muscle medicine.

11.
J Clin Transl Endocrinol ; 38: 100372, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39502713

RESUMO

Aims: Healthcare professionals are relevant stakeholders because of their gatekeeper role in the clinic. This study aims to explore their perspectives on the potential future clinical implementation of the bio-artificial pancreas (BAP) for people with type 1 diabetes, and suitable target groups. Methods: Semi-structured interviews were conducted with 17 healthcare professionals, including endocrinologists, nurses, and pancreas transplant surgeons. Inclusion was stopped once data saturation was reached. The audiotaped interviews were transcribed verbatim. Qualitative content analysis using an inductive approach was conducted to develop themes within a coding framework. Results: Three main themes emerged: (1) hoped-for benefits, which included improved clinical outcomes, enhanced sense of normality, reduced mental burden for patients and their significant others, greater societal participation, and lower costs; (2) concerns, which included safety and effectiveness, inequitable access, accurate information, control over self-management, and organizational challenges; and (3) allocating the BAP during initial implementation, which included prioritizing people who lack effective treatment options, people with mental health issues, and vulnerable people. Conclusions: The results of this study are important for researchers and practitioners involved in the development of the BAP, so that they can align its design and the process of clinical implementation with healthcare professionals' perspectives.

12.
Cureus ; 16(10): e70949, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39502979

RESUMO

Radial nerve injury is a common occurrence in the upper extremities, with various treatment options available such as neurolysis, nerve grafts, or tendon transfers. Recently, amniotic membrane and umbilical cord (AM/UC) particulates have emerged as promising treatments for this type of nerve pathology. Here, we report a new case involving a 24-year-old man who experienced total paralysis of the radial nerve following a humerus shaft fracture. He was treated with peri-nerve injections of AM/UC and underwent an intensive physical rehabilitation program. Three months after the initial injury, significant progress was observed in both motor and sensory functions of his radial nerve.

13.
Cytotherapy ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39503681

RESUMO

BACKGROUND: Knee osteoarthritis (OA) is the most prevalent degenerative musculoskeletal disorder, which is particularly common in older population. While conventional treatments have limited effectiveness, the development of more effective therapeutic strategies is necessary to address this primary source of pain and disability. Umbilical cord mesenchymal stromal cells (UC-MSCs) offer a promising therapeutic approach for treating knee OA. AIM: This randomized, prospective, double-blind and controlled pilot study was carried out to evaluate and compare the safety and therapeutic efficacy of a single intra-articular injection of a standardized product CellistemOA (5 × 106 ± 5 × 105 UC-MSCs), vs. triamcinolone (a synthetic corticosteroid) (10 mg/mL) in thirty patients with symptomatic knee OA (Kellgren-Lawrence grade II or III). METHODS: The outcomes included changes in Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores based on a Likert scale, numerical rating score (NRS) for pain, Magnetic Resonance Imaging (MRI), and quality of life (SF-36 questionnaire), from baseline and throughout 12-months of follow-up. RESULTS: Patients treated with CellistemOA showed significant improvement in WOMAC score (including the three subscale scores (pain, stiffness and function), NRS in pain, and SF-36 profile from baseline to 12 months (p < 0.05) compared to the triamcinolone group, and no severe adverse events were reported. There were no significant differences in MRI WORMS scores between the two groups. However, patients who received the cellular treatment experienced a significant improvement in their SF-36 profile (p < 0.05). CONCLUSIONS: This pilot study revealed that a single dose of CellistemOA is safe and superior to the active comparator in knee OA at 1-year of follow-up, making it a compelling therapeutic alternative to treat symptomatic OA patients.

14.
Elife ; 132024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39494688

RESUMO

An enzyme known as caspase, which initiates apoptosis, has a central role in the regeneration of cells and repair of tissue that can occur after necrosis.


Assuntos
Caspases , Proliferação de Células , Necrose , Animais , Caspases/metabolismo , Caspases/genética , Humanos , Apoptose , Camundongos
15.
Cureus ; 16(10): e70760, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39493021

RESUMO

The biomaterial of dentin has emerged as a promising candidate for the tissue engineering of dental hard tissues. In bone tissue engineering, it may serve as either a scaffold or a reservoir of growth factors. The physical and chemical similarities between the dentin structure and bone have sparked scientific interest in using its features for the development of a new bone transplant material. Dentin, unlike hard and fragile enamel, is viscoelastic, making it a very effective bone replacement. The regeneration of pulp tissue has proven challenging due to its encasement in dentin, which lacks collateral blood flow except from the apical end of the root. Yet, the emergence of contemporary tissue engineering and the identification of dental stem cells have enabled experimentation with the regeneration of both pulp and dentin. This review will explain the different types of dentin grafts, their biocompatibility, safety, and effectiveness, along with difficulties. Additionally, the paper covers several strategies for creating autogenous dentin grafts and gives evidence-based insights into their clinical effectiveness. Overall, dentin grafts appear as a potential alternative to standard graft materials, stimulating tissue regeneration and enhancing patient outcomes in regenerative dentistry operations.

16.
World J Stem Cells ; 16(10): 896-899, 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39493826

RESUMO

Recently, we read a mini-review published by Jeyaraman et al. The article explored the optimal methods for isolating mesenchymal stromal cells from adipose tissue-derived stromal vascular fraction (SVF). Key factors include tissue source, processing techniques, cell viability assessment, and the advantages/disadvantages of autologous vs allogeneic use. The authors emphasized the need for standardized protocols for SVF isolation, ethical and regulatory standards for cell-based therapy, and safety to advance mesenchymal stromal cell-based therapies in human patients. This manuscript shares our perspective on SVF isolation in canines. We discussed future directions to potentiate effective regenerative medicine therapeutics in human and veterinary medicine.

17.
World J Gastroenterol ; 30(40): 4339-4353, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39494103

RESUMO

Diabetes mellitus, characterized by chronic hyperglycemia due to insulin deficiency or resistance, poses a significant global health burden. Central to its pathogenesis is the dysfunction or loss of pancreatic beta cells, which are res-ponsible for insulin production. Recent advances in beta-cell regeneration research offer promising strategies for diabetes treatment, aiming to restore endogenous insulin production and achieve glycemic control. This review explores the physiological basis of beta-cell function, recent scientific advan-cements, and the challenges in translating these findings into clinical applications. It highlights key developments in stem cell therapy, gene editing technologies, and the identification of novel regenerative molecules. Despite the potential, the field faces hurdles such as ensuring the safety and long-term efficacy of regen-erative therapies, ethical concerns around stem cell use, and the complexity of beta-cell differentiation and integration. The review highlights the importance of interdisciplinary collaboration, increased funding, the need for patient-centered approaches and the integration of new treatments into comprehensive care strategies to overcome these challenges. Through continued research and collaboration, beta-cell regeneration holds the potential to revolutionize diabetes care, turning a chronic condition into a manageable or even curable disease.


Assuntos
Células Secretoras de Insulina , Regeneração , Transplante de Células-Tronco , Humanos , Células Secretoras de Insulina/transplante , Células Secretoras de Insulina/metabolismo , Transplante de Células-Tronco/métodos , Insulina/metabolismo , Diabetes Mellitus/terapia , Diferenciação Celular , Edição de Genes/métodos , Animais
18.
ACS Biomater Sci Eng ; 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39492720

RESUMO

Bone tissue engineering (BTE) is a complex biological process involving the repair of bone tissue with proper neuronal network and vasculature as well as bone surrounding soft tissue. Synthetic biomaterials used for BTE should be biocompatible, support bone tissue regeneration, and eventually be degraded in situ and replaced with the newly generated bone tissue. Recently, various forms of bone graft materials such as hydrogel, nanofiber scaffolds, and 3D printed composite scaffolds have been developed for BTE application. Decellularized extracellular matrix (DECM), a kind of natural biological material obtained from specific tissues and organs, has certain advantages over synthetic and exogenous biomaterial-derived bone grafts. Moreover, DECM can be developed from a wide range of biological sources and possesses strong molding abilities, natural 3D structures, and bioactive factors. Although DECM has shown robust osteogenic, proangiogenic, immunomodulatory, and bone defect healing potential, the rapid degradation and limited mechanical properties should be improved for bench-to-bed translation in BTE. This review summarizes the recent advances in DECM-based BTE and discusses emerging strategies of DECM-based BTE.

19.
Regen Med ; : 1-7, 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39492785

RESUMO

Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from non-academic institutions in August 2024.

20.
Regen Med ; : 1-8, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400071

RESUMO

Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from non-academic institutions in July 2024.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA