Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 814
Filtrar
1.
Viruses ; 16(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39066309

RESUMO

The leading cause of gastroenteritis in children under the age of five is rotavirus infection, accounting for 37% of diarrhoeal deaths in infants and young children globally. Oral rotavirus vaccines have been widely incorporated into national immunisation programs, but whilst these vaccines have excellent efficacy in high-income countries, they protect less than 50% of vaccinated individuals in low- and middle-income countries. In order to facilitate the development of improved vaccine strategies, a greater understanding of the immune response to existing vaccines is urgently needed. However, the use of mouse models to study immune responses to human rotavirus strains is currently limited as rotaviruses are highly species-specific and replication of human rotaviruses is minimal in mice. To enable characterisation of immune responses to human rotavirus in mice, we have generated chimeric viruses that combat the issue of rotavirus host range restriction. Using reverse genetics, the rotavirus outer capsid proteins (VP4 and VP7) from either human or murine rotavirus strains were encoded in a murine rotavirus backbone. Neonatal mice were infected with chimeric viruses and monitored daily for development of diarrhoea. Stool samples were collected to quantify viral shedding, and antibody responses were comprehensively evaluated. We demonstrated that chimeric rotaviruses were able to efficiently replicate in mice. Moreover, the chimeric rotavirus containing human rotavirus outer capsid proteins elicited a robust antibody response to human rotavirus antigens, whilst the control chimeric murine rotavirus did not. This chimeric human rotavirus therefore provides a new strategy for studying human-rotavirus-specific immunity to the outer capsid, and could be used to investigate factors causing variability in rotavirus vaccine efficacy. This small animal platform therefore has the potential to test the efficacy of new vaccines and antibody-based therapeutics.


Assuntos
Anticorpos Antivirais , Proteínas do Capsídeo , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Animais , Rotavirus/imunologia , Rotavirus/genética , Camundongos , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/virologia , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Vacinas contra Rotavirus/imunologia , Vacinas contra Rotavirus/administração & dosagem , Modelos Animais de Doenças , Antígenos Virais/imunologia , Antígenos Virais/genética , Formação de Anticorpos , Eliminação de Partículas Virais , Replicação Viral , Fezes/virologia , Diarreia/virologia , Diarreia/imunologia
2.
J Vet Sci ; 25(4): e54, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39083206

RESUMO

IMPORTANCE: As one of the main etiologic agents of infectious diseases in pigs, pseudorabies virus (PRV) infections have caused enormous economic losses worldwide. EP0, one of the PRV early proteins (EP) plays a vital role in PRV infections, but the mechanisms are unclear. OBJECTIVE: This study examined the function of EP0 to provide a direction for its in-depth analysis. METHODS: In this study, the EP0-deleted PRV mutant was obtained, and Tandem Mass Tag-based proteomic analysis was used to screen the differentially expressed proteins (DEPs) quantitatively in EP0-deleted PRV- or wild-type PRV-infected porcine kidney 15 cells. RESULTS: This study identified 7,391 DEPs, including 120 and 21 up-regulated and down-regulated DEPs, respectively. Western blot analysis confirmed the changes in the expression of the selected proteins, such as speckled protein 100. Comprehensive analysis revealed 141 DEPs involved in various biological processes and molecular functions, such as transcription regulator activity, biological regulation, and localization. CONCLUSIONS AND RELEVANCE: These results holistically outlined the functions of EP0 during a PRV infection and might provide a direction for more detailed function studies of EP0 and the stimulation of lytic PRV infections.


Assuntos
Herpesvirus Suídeo 1 , Proteômica , Herpesvirus Suídeo 1/fisiologia , Herpesvirus Suídeo 1/genética , Animais , Suínos , Linhagem Celular , Deleção de Genes , Proteínas Virais/genética , Proteínas Virais/metabolismo , Pseudorraiva/virologia , Pseudorraiva/genética , Proteoma , Doenças dos Suínos/virologia , Doenças dos Suínos/genética , Doenças dos Suínos/metabolismo
3.
Mol Cells ; : 100092, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019219

RESUMO

Reverse genetics offers precise functional insights into genes through the targeted manipulation of gene expression followed by phenotypic assessment. While these approaches have proven effective in model organisms such as Saccharomyces cerevisiae, large-scale genetic manipulations in human cells were historically unfeasible due to methodological limitations. However, recent advancements in functional genomics, particularly CRISPR-based screening technologies and next-generation sequencing platforms, have enabled pooled screening technologies that allow massively parallel, unbiased assessments of biological phenomena in human cells. This review provides a comprehensive overview of cutting-edge functional genomic screening technologies applicable to human cells, ranging from shRNA screens to modern CRISPR screens. Additionally, we explore the integration of CRISPR platforms with single-cell approaches to monitor gene expression, chromatin accessibility, epigenetic regulation, and chromatin architecture following genetic perturbations at the omics level. By offering an in-depth understanding of these genomic screening methods, this review aims to provide insights into more targeted and effective strategies for genomic research and personalized medicine.

4.
Front Vet Sci ; 11: 1434539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993278

RESUMO

China has the largest pig herd in the world which accounts for more than 50% of the global pig population. Over the past three decades, the porcine reproductive and respiratory syndrome virus (PRRSV) has caused significant economic loss to the Chinese swine industry. Currently, the prevalent PRRSV strains in the field are extremely complicated, and the NADC30-like strains, NADC34-like strains, and novel recombinant viruses have become a great concern to PRRS control in China. In this study, a novel NADC30-like PRRSV, named GS2022, was isolated from the lung of a dead pig collected from a farm that experienced a PRRS outbreak. The complete genome of GS2022 shares the highest identity with the NADC30 strain and contains a discontinuous deletion of 131 aa in nsp2. Novel deletion and insertion have been identified in ORF7 and 3'UTR. Recombination analysis revealed that the GS2022 is a potential recombinant of NADC30-like and JXA1-like strains. Both inter-lineage and intra-lineage recombination events were predicted to be involved in the generation of the GS2022. An infectious cDNA clone of GS2022 was assembled to generate the isogenic GS2022 (rGS2022). The growth kinetics of rGS2022 were almost identical to those of GS2022. The pathogenicity of the GS2022 and rGS2022 was evaluated using a nursery piglet model. In the infection groups, the piglets exhibited mild clinical symptoms, including short periods of fever and respiratory diseases. Both gross lesions and histopathological lesions were observed in the lungs and lymph nodes of the infected piglets. Therefore, we reported a novel recombinant NADC30-like PRRSV strain with moderate pathogenicity in piglets. These results provide new information on the genomic characteristics and pathogenicity of the NADC30-like PRRSV in China.

5.
Virology ; 598: 110170, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39003987

RESUMO

The genus Orthonairovirus includes highly pathogenic tick-borne viruses such as the Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV). A reverse genetics system is an indispensable tool for determining the viral factors related to pathogenicity. Tofla orthonairovirus (TFLV) is a recently identified virus isolated from ticks in Japan and our research has suggested that TFLV is a useful model for studying pathogenic orthonairoviruses. In this study, we successfully established a reverse genetics system for TFLV using T7 RNA polymerase. Recombinant TFLV was generated by transfecting cloned complementary DNAs encoding the TFLV genome into BSR T7/5 cells expressing T7 RNA polymerase. We were able to rescue infectious recombinant TFLV mutant (rTFLVmt) and wild-type TFLV (rTFLVpt) viruses, which exhibited indistinguishable growth kinetics in mammalian cells and pathogenicity in A129 mice compared with the authentic virus. Our approach provides a valuable method for establishing reverse genetics system for orthonairoviruses.

6.
Methods Mol Biol ; 2824: 397-408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039426

RESUMO

The NSs protein is a major virulence factor in bunyaviruses, crucial for viral pathogenesis. However, assessing NSs protein function can be challenging due to its inhibition of cellular RNA polymerase II, impacting NSs protein expression from plasmid DNA. The recombinant Rift Valley fever virus (RVFV) MP-12 strain (rMP-12), a highly attenuated vaccine strain, can be safely manipulated under biosafety level 2 conditions. Leveraging a reverse genetics system, we can engineer rMP-12 variants expressing heterologous NSs genes, enabling functional testing in cultured cells. Human macrophages hold a central role in viral pathogenesis, making them an ideal model for assessing NSs protein functions. Consequently, we can comprehensively compare and analyze the functional significance of various NSs proteins in human macrophages using rMP-12 NSs variants. In this chapter, we provide a detailed overview of the preparation process for rMP-12 NSs variants and introduce two distinct human macrophage models: THP-1 cells and primary macrophages. This research framework promises valuable insights into the virulence mechanisms of RVFV and other bunyaviruses and the potential for vaccine development.


Assuntos
Macrófagos , Vírus da Febre do Vale do Rift , Proteínas não Estruturais Virais , Humanos , Macrófagos/virologia , Macrófagos/imunologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/patogenicidade , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Células THP-1
7.
Methods Mol Biol ; 2824: 425-445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039428

RESUMO

Rift Valley fever virus (RVFV) is an arboviral pathogen of clinical and agricultural relevance. The ongoing development of targeted RVFV prophylactics and therapeutics is overwhelmingly dependent on animal models due to both natural, that is, sporadic outbreaks, and structural, for example, underresourcing of endemic regions, limitations in accessing human patient samples and cohorts. Elucidating mechanisms of viral pathogenesis and testing therapeutics is further complicated by the diverse manifestations of RVFV disease and the heterogeneity of the host response to infection. In this chapter, we describe major clinical manifestations of RVFV infection and discuss the laboratory animal models used to study each.


Assuntos
Modelos Animais de Doenças , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Febre do Vale de Rift/virologia , Animais , Vírus da Febre do Vale do Rift/patogenicidade , Humanos , Camundongos , Animais de Laboratório/virologia
8.
Heliyon ; 10(13): e33142, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040327

RESUMO

Japanese encephalitis virus (JEV) is a pathogen responsible for high mortality and morbidity rates among children with encephalitis. Since JEV genotype 1 (GI) is the most prevalent strain in South Korea these days, corresponding research and vaccine development is urgently required. Molecular genetic studies on JEV vaccines can be boosted by obtaining genetically stable full-length infectious JEV complementary DNA (cDNA) clones. Furthermore, the significance of the reverse genetics system in facilitating molecular biological analyses of JEV properties has been demonstrated. This study constructed a recombinant JEV-GI strain using a reverse genetics system based on a Korean wild-type GI isolate (K05GS). RNA extracted from JEV-GI was used to synthesize cDNA, a recombinant full-length JEV clone, pTRE-JEVGI, was generated from the DNA fragment, and the virus was rescued. We performed in vitro and in vivo experiments to analyze the rescued JEV-GI virus. The rescued JEV-GI exhibited similar characteristics to wild-type JEV. These results suggest that our reverse genetics system can generate full-length infectious clones that can be used to analyze molecular biological factors that influence viral properties and immunogenicity. Additionally, it may be useful as a heterologous gene expression vector and help develop new strains for JEV vaccines.

9.
Viruses ; 16(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38932135

RESUMO

Hepatitis E virus (HEV) can cause self-limiting acute and chronic hepatitis infections, particularly in immunocompromised individuals. In developing countries, HEV is mainly transmitted via drinking contaminated water, whereas zoonotic transmission dominates the route of infection in developed countries, including Japan. Pigs are an important reservoir for HEV infection. Wild boars, which share the same genus and species as domestic pigs, are also an HEV reservoir. During our nationwide study of HEV infection in wild boar populations in Japan, a genotype 6 (HEV-6) strain, wbJHG_23, was isolated in Hyogo Prefecture in 2023. The genomic length was 7244 nucleotides, excluding the poly(A) tract. The wbJHG_23 strain exhibited the highest nucleotide identity throughout its genome with two previously reported HEV-6 strains (80.3-80.9%). Conversely, it displayed lower similarity (73.3-78.1%) with the HEV-1-5, HEV-7, and HEV-8 strains, indicating that, although closely related, the wbJHG_23 strain differs significantly from the reported HEV-6 strains and might represent a novel subtype. The wbJHG_23 strain successfully infected the human-derived cancer cell lines, PLC/PRF/5 and A549 1-1H8 cells, suggesting that HEV-6 has the potential for zoonotic infection. An infectious cDNA clone was constructed using a reverse genetics system, and a cell culture system supporting the efficient propagation of the HEV-6 strain was established, providing important tools for further studies on this genotype. Using this cell culture system, we evaluated the sensitivity of the wbJHG_23 strain to ribavirin treatment. Its good response to this treatment suggested that it could be used to treat human infections caused by HEV-6.


Assuntos
Genoma Viral , Vírus da Hepatite E , Hepatite E , Filogenia , Sus scrofa , Animais , Linhagem Celular , DNA Complementar/genética , Genótipo , Hepatite E/virologia , Hepatite E/veterinária , Hepatite E/transmissão , Vírus da Hepatite E/genética , Vírus da Hepatite E/classificação , Vírus da Hepatite E/isolamento & purificação , Japão , RNA Viral/genética , Sus scrofa/virologia , Suínos , Doenças dos Suínos/virologia , Doenças dos Suínos/transmissão
10.
Viruses ; 16(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38932159

RESUMO

In virology, the term reverse genetics refers to a set of methodologies in which changes are introduced into the viral genome and their effects on the generation of infectious viral progeny and their phenotypic features are assessed. Reverse genetics emerged thanks to advances in recombinant DNA technology, which made the isolation, cloning, and modification of genes through mutagenesis possible. Most virus reverse genetics studies depend on our capacity to rescue an infectious wild-type virus progeny from cell cultures transfected with an "infectious clone". This infectious clone generally consists of a circular DNA plasmid containing a functional copy of the full-length viral genome, under the control of an appropriate polymerase promoter. For most DNA viruses, reverse genetics systems are very straightforward since DNA virus genomes are relatively easy to handle and modify and are also (with few notable exceptions) infectious per se. This is not true for RNA viruses, whose genomes need to be reverse-transcribed into cDNA before any modification can be performed. Establishing reverse genetics systems for members of the Caliciviridae has proven exceptionally challenging due to the low number of members of this family that propagate in cell culture. Despite the early successful rescue of calicivirus from a genome-length cDNA more than two decades ago, reverse genetics methods are not routine procedures that can be easily extrapolated to other members of the family. Reports of calicivirus reverse genetics systems have been few and far between. In this review, we discuss the main pitfalls, failures, and delays behind the generation of several successful calicivirus infectious clones.


Assuntos
Caliciviridae , Genética Reversa , Genética Reversa/métodos , Caliciviridae/genética , Genoma Viral , Animais , Humanos , Replicação Viral
11.
Viruses ; 16(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38932270

RESUMO

Honey bees (Apis mellifera) play a crucial role in agriculture through their pollination activities. However, they have faced significant health challenges over the past decades that can limit colony performance and even lead to collapse. A primary culprit is the parasitic mite Varroa destructor, known for transmitting harmful bee viruses. Among these viruses is deformed wing virus (DWV), which impacts bee pupae during their development, resulting in either pupal demise or in the emergence of crippled adult bees. In this study, we focused on DWV master variant B. DWV-B prevalence has risen sharply in recent decades and appears to be outcompeting variant A of DWV. We generated a molecular clone of a typical DWV-B strain to compare it with our established DWV-A clone, examining RNA replication, protein expression, and virulence. Initially, we analyzed the genome using RACE-PCR and RT-PCR techniques. Subsequently, we conducted full-genome RT-PCR and inserted the complete viral cDNA into a bacterial plasmid backbone. Phylogenetic comparisons with available full-length sequences were performed, followed by functional analyses using a live bee pupae model. Upon the transfection of in vitro-transcribed RNA, bee pupae exhibited symptoms of DWV infection, with detectable viral protein expression and stable RNA replication observed in subsequent virus passages. The DWV-B clone displayed a lower virulence compared to the DWV-A clone after the transfection of synthetic RNA, as evidenced by a reduced pupal mortality rate of only 20% compared to 80% in the case of DWV-A and a lack of malformations in 50% of the emerging bees. Comparable results were observed in experiments with low infection doses of the passaged virus clones. In these tests, 90% of bees infected with DWV-B showed no clinical symptoms, while 100% of pupae infected with DWV-A died. However, at high infection doses, both DWV-A and DWV-B caused mortality rates exceeding 90%. Taken together, we have generated an authentic virus clone of DWV-B and characterized it in animal experiments.


Assuntos
Genoma Viral , Filogenia , Vírus de RNA , Replicação Viral , Animais , Abelhas/virologia , Vírus de RNA/genética , Vírus de RNA/classificação , Pupa/virologia , Virulência , Varroidae/virologia , RNA Viral/genética
12.
Vaccine ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944579

RESUMO

Infectious bursal disease virus (IBDV) is an acute and highly infectious RNA virus known for its immunosuppressive capabilities, chiefly inflicting rapid damage to the bursa of Fabricius (BF) of chickens. Current clinical control of IBDV infection relies on vaccination. However, the emergence of novel variant IBDV (nVarIBDV) has posed a threat to the poultry industry across the globe, underscoring the great demand for innovative and effective vaccines. Our previous studies have highlighted the critical role of IBDV VP5 as an apoptosis-inducer in host cells. In this study, we engineered IBDV mutants via a reverse genetic system to introduce amino acid mutations in VP5. We found that the mutant IBDV-VP5/3m strain caused reduced host cell mortality, and that strategic mutations in VP5 reduced IBDV replication early after infection, thereby delaying cell death. Furthermore, inoculation of chickens with IBDV-VP5/3m effectively reduced damage to BF and induced neutralizing antibody production comparable to that of parental IBDV WT strain. Importantly, vaccination with IBDV-VP5/3m protected chickens against challenges with nVarIBDV, an emerging IBDV variant strain in China, reducing nVarIBDV loads in BF while alleviating bursal atrophy and splenomegaly, suggesting that IBDV-VP5/3m might serve as a novel vaccine candidate that could be further developed as an effective vaccine for clinical control of IBD. This study provides a new clue to the development of novel and effective vaccines.

13.
J Clin Microbiol ; 62(7): e0004224, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38874339

RESUMO

Rapid characterization of the causative agent(s) during a disease outbreak can aid in the implementation of effective control measures. However, isolation of the agent(s) from crude clinical samples can be challenging and time-consuming, hindering the establishment of countermeasures. In the present study, we used saliva specimens collected for the diagnosis of SARS-CoV-2-a good example of a practical target-and attempted to characterize the virus within the specimens without virus isolation. Thirty-four saliva samples from coronavirus disease 2019 patients were used to extract RNA and synthesize DNA amplicons by PCR. New primer sets were designed to generate DNA amplicons of the full-length spike (S) gene for subsequent use in a circular polymerase extension reaction (CPER), a simple method for deriving recombinant viral genomes. According to the S sequence, four clinical specimens were classified as BA. 1, BA.2, BA.5, and XBB.1 and were used for the de novo generation of recombinant viruses carrying the entire S gene. Additionally, chimeric viruses carrying the gene encoding GFP were generated to evaluate viral propagation using a plate reader. We successfully used the RNA purified directly from clinical saliva samples to generate chimeric viruses carrying the entire S gene by our updated CPER method. The chimeric viruses exhibited robust replication in cell cultures with similar properties. Using the recombinant GFP viruses, we also successfully characterized the efficacy of the licensed antiviral AZD7442. Our proof-of-concept demonstrates the novel utility of CPER to allow rapid characterization of viruses from clinical specimens. IMPORTANCE: Characterization of the causative agent(s) for infectious diseases helps in implementing effective control measurements, especially in outbreaks. However, the isolation of the agent(s) from clinical specimens is often challenging and time-consuming. In this study, saliva samples from coronavirus disease 2019 patients were directly subjected to purifying viral RNA, synthesizing DNA amplicons for sequencing, and generating recombinant viruses. Utilizing an updated circular polymerase extension reaction method, we successfully generated chimeric SARS-CoV-2 viruses with sufficient in vitro replication capacity and antigenicity. Thus, the recombinant viruses generated in this study were applicable for evaluating the antivirals. Collectively, our developed method facilitates rapid characterization of specimens circulating in hosts, aiding in the establishment of control measurements. Additionally, this approach offers an advanced strategy for controlling other (re-)emerging viral infectious diseases.


Assuntos
COVID-19 , RNA Viral , SARS-CoV-2 , Saliva , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , COVID-19/virologia , COVID-19/diagnóstico , Saliva/virologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Genoma Viral/genética , Animais
14.
Virus Res ; 347: 199427, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38917940

RESUMO

The hepatitis E virus (HEV) is infecting over 20 million people annually with a high morbidity especially in pregnant women and immune-suppressed individuals. While HEV genotype 1 (HEV-1) infects only humans, genotype 3 (HEV-3) is zoonotic and commonly transmitted from infected animals to humans. Whereas a few reverse genetics systems enabling targeted genome manipulations exist for HEV-3, those for HEV-1 are still very limited, mainly because of inefficient cell culture replication. Here, the generation of HEV-1 strain Sar55 and HEV-3 strain 47832mc by transfecting in vitro-transcribed and capped virus genomes into different cell lines was attempted. Culture supernatants of colon-derived colorectal adenocarcinoma cell line Caco-2 contained HEV-1 and HEV-3 capable of infecting Caco-2 cells. Density gradient centrifugation analyses of culture supernatants confirmed that HEV-1 particles were quasi-enveloped in analogy to HEV-3 and that non-virion-associated capsid protein was secreted from cells. Following transfection or infection of Caco-2 cells, HEV-1 consistently reached higher titers than HEV-3 in culture supernatants, but HEV-1 generated by transfection of Caco-2 cells was unable to efficiently infect hepatoma cell lines PLC/PRF/5 or HuH7-Lunet BLR. Taken together, our results indicate that HEV-1 is able to exert a complete replication cycle in Caco-2 cells. An efficient cell culture system for this genotype will be useful for studying species tropism, but further research is required to determine the significance of HEV-1 replication in colon-derived cells.


Assuntos
Genótipo , Vírus da Hepatite E , Genética Reversa , Replicação Viral , Humanos , Vírus da Hepatite E/genética , Vírus da Hepatite E/fisiologia , Células CACO-2 , Genética Reversa/métodos , Colo/virologia , Genoma Viral , Hepatite E/virologia
15.
J Gen Virol ; 105(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38921821

RESUMO

Schmallenberg virus (SBV) belongs to the Simbu serogroup within the family Peribunyaviridae, genus Orthobunyavirus and is transmitted by Culicoides biting midges. Infection of naïve ruminants in a critical phase of gestation may lead to severe congenital malformations. Sequence analysis from viremic animals revealed a very high genome stability. In contrast, sequence variations are frequently described for SBV from malformed fetuses. In addition to S segment mutations, especially within the M segment encoding the major immunogen Gc, point mutations or genomic deletions are also observed. Analysis of the SBV_D281/12 isolate from a malformed fetus revealed multiple point mutations in all three genome segments. It also has a large genomic deletion in the antigenic domain encoded by the M segment compared to the original SBV reference strain 'BH80/11' isolated from viremic blood in 2011. Interestingly, SBV_D281/12 showed a marked replication deficiency in vitro in Culicoides sonorensis cells (KC cells), but not in standard baby hamster kidney cells (BHK-21). We therefore generated a set of chimeric viruses of rSBV_D281/12 and wild-type rSBV_BH80/11 by reverse genetics, which were characterized in both KC and BHK-21 cells. It could be shown that the S segment of SBV_D281/12 is responsible for the replication deficit and that it acts independently from the large deletion within Gc. In addition, a single point mutation at position 111 (S to N) of the nucleoprotein was identified as the critical mutation. Our results suggest that virus variants found in malformed fetuses and carrying characteristic genomic mutations may have a clear 'loss of fitness' for their insect hosts in vitro. It can also be concluded that such mutations lead to virus variants that are no longer part of the natural transmission cycle between mammalian and insect hosts. Interestingly, analysis of a series of SBV sequences confirmed the S111N mutation exclusively in samples of malformed fetuses and not in blood from viremic animals. The characterization of these changes will allow the definition of protein functions that are critical for only one group of hosts.


Assuntos
Infecções por Bunyaviridae , Ceratopogonidae , Genoma Viral , Orthobunyavirus , Animais , Orthobunyavirus/genética , Orthobunyavirus/classificação , Orthobunyavirus/isolamento & purificação , Infecções por Bunyaviridae/virologia , Infecções por Bunyaviridae/veterinária , Ceratopogonidae/virologia , Cricetinae , Linhagem Celular , Replicação Viral , Mutação Puntual , Bovinos , Ovinos , Filogenia , RNA Viral/genética
16.
Viruses ; 16(5)2024 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-38793648

RESUMO

Small-animal models and reverse genetics systems are powerful tools for investigating the molecular mechanisms underlying viral replication, virulence, and interaction with the host immune response in vivo. Rotavirus (RV) causes acute gastroenteritis in many young animals and infants worldwide. Murine RV replicates efficiently in the intestines of inoculated suckling pups, causing diarrhea, and spreads efficiently to uninoculated littermates. Because RVs derived from human and other non-mouse animal species do not replicate efficiently in mice, murine RVs are uniquely useful in probing the viral and host determinants of efficient replication and pathogenesis in a species-matched mouse model. Previously, we established an optimized reverse genetics protocol for RV and successfully generated a murine-like RV rD6/2-2g strain that replicates well in both cultured cell lines and in the intestines of inoculated pups. However, rD6/2-2g possesses three out of eleven gene segments derived from simian RV strains, and these three heterologous segments may attenuate viral pathogenicity in vivo. Here, we rescued the first recombinant RV with all 11 gene segments of murine RV origin. Using this virus as a genetic background, we generated a panel of recombinant murine RVs with either N-terminal VP8* or C-terminal VP5* regions chimerized between a cell-culture-adapted murine ETD strain and a non-tissue-culture-adapted murine EW strain and compared the diarrhea rate and fecal RV shedding in pups. The recombinant viruses with VP5* domains derived from the murine EW strain showed slightly more fecal shedding than those with VP5* domains from the ETD strain. The newly characterized full-genome murine RV will be a useful tool for dissecting virus-host interactions and for studying the mechanism of pathogenesis in neonatal mice.


Assuntos
Animais Recém-Nascidos , Proteínas do Capsídeo , Genética Reversa , Infecções por Rotavirus , Rotavirus , Replicação Viral , Animais , Rotavirus/genética , Rotavirus/patogenicidade , Camundongos , Virulência , Infecções por Rotavirus/virologia , Proteínas do Capsídeo/genética , Genética Reversa/métodos , Linhagem Celular , Modelos Animais de Doenças , Humanos
17.
Emerg Microbes Infect ; 13(1): 2356149, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38747061

RESUMO

Lassa virus (LASV), a risk-group 4 pathogen, must be handled in biosafety level-4 (BSL-4) conditions, thereby limiting its research and antiviral development. Here, we developed a novel LASV reverse genetics system which, to our knowledge, is the first to study the complete LASV life cycle under BSL-2 conditions. Viral particles can be produced efficiently when LASV minigenomic RNA harbouring minimal viral cis-elements and reporter genes is transfected into a helper cell line stably expressing viral NP, GP, Z and L proteins. The resulting defective virions, named LASVmg, can propagate only in the helper cell line, providing a BSL-2 model to study the complete LASV life cycle. Using this model, we found that a previously reported cellular receptor α-dystroglycan is dispensable for LASVmg infection. Furthermore, we showed that ribavirin can inhibit LASVmg infection by inducing viral mutations. This new BSL-2 system should facilitate studying the LASV life cycle and screening antivirals.


Assuntos
Vírus Lassa , Genética Reversa , Vírus Lassa/genética , Vírus Lassa/fisiologia , Genética Reversa/métodos , Humanos , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Linhagem Celular , Replicação Viral , Febre Lassa/virologia , Ribavirina/farmacologia , Células Vero , Contenção de Riscos Biológicos , Genoma Viral , Vírion/genética , Vírion/metabolismo
18.
Methods Mol Biol ; 2808: 89-103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743364

RESUMO

The study of virus-host interactions is essential to achieve a comprehensive understanding of the viral replication process. The commonly used methods are yeast two-hybrid approach and transient expression of a single tagged viral protein in host cells followed by affinity purification of interacting cellular proteins and mass spectrometry analysis (AP-MS). However, by these approaches, virus-host protein-protein interactions are detected in the absence of a real infection, not always correctly compartmentalized, and for the yeast two-hybrid approach performed in a heterologous system. Thus, some of the detected protein-protein interactions may be artificial. Here we describe a new strategy based on recombinant viruses expressing tagged viral proteins to capture both direct and indirect protein partners during the infection (AP-MS in viral context). This way, virus-host protein-protein interacting co-complexes can be purified directly from infected cells for further characterization.


Assuntos
Interações Hospedeiro-Patógeno , Vírus do Sarampo , Genética Reversa , Proteínas Virais , Vírus do Sarampo/genética , Humanos , Interações Hospedeiro-Patógeno/genética , Genética Reversa/métodos , Proteínas Virais/metabolismo , Proteínas Virais/genética , Técnicas do Sistema de Duplo-Híbrido , Replicação Viral , Espectrometria de Massas , Mapeamento de Interação de Proteínas/métodos , Sarampo/virologia , Sarampo/metabolismo , Animais , Ligação Proteica
19.
Methods Mol Biol ; 2808: 57-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743362

RESUMO

RNA viruses generate defective genomes naturally during virus replication. Defective genomes that interfere with the infection dynamics either through resource competition or by interferon stimulation are known as defective interfering (DI) genomes. DI genomes can be successfully packaged into virus-like-particles referred to as defective interfering particles (DIPs). Such DIPs can sustainably coexist with the full-length virus particles and have been shown to negatively impact virus replication in vitro and in vivo. Here, we describe a method to generate a clonal DI genome population by reverse genetics. This method is applicable to other RNA viruses and will enable assessment of DIPs for their antiviral properties.


Assuntos
Vírus Defeituosos , Genoma Viral , Morbillivirus , Genética Reversa , Replicação Viral , Genética Reversa/métodos , Vírus Defeituosos/genética , Animais , Replicação Viral/genética , Morbillivirus/genética , Humanos , Vírion/genética , Células Vero , Chlorocebus aethiops , RNA Viral/genética
20.
Emerg Microbes Infect ; 13(1): 2356140, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38742328

RESUMO

Reverse genetic systems are mainly used to rescue recombinant viral strains in cell culture. These tools have also been used to generate, by inoculating infectious clones, viral strains directly in living animals. We previously developed the "Infectious Subgenomic Amplicons" (ISA) method, which enables the rescue of single-stranded positive sense RNA viruses in vitro by transfecting overlapping subgenomic DNA fragments. Here, we provide proof-of-concept for direct in vivo generation of infectious particles following the inoculation of subgenomic amplicons. First, we rescued a strain of tick-borne encephalitis virus in mice to transpose the ISA method in vivo. Subgenomic DNA fragments were amplified using a 3-fragment reverse genetics system and inoculated intramuscularly. Almost all animals were infected when quantities of DNA inoculated were at least 20 µg. We then optimized our procedure in order to increase the animal infection rate. This was achieved by adding an electroporation step and/or using a simplified 2- fragment reverse genetics system. Under optimal conditions, a large majority of animals were infected with doses of 20 ng of DNA. Finally, we demonstrated the versatility of this method by applying it to Japanese encephalitis and Chikungunya viruses. This method provides an efficient strategy for in vivo rescue of arboviruses. Furthermore, in the context of the development of DNA-launched live attenuated vaccines, this new approach may facilitate the generation of attenuated strains in vivo. It also enables to deliver a substance free of any vector DNA, which seems to be an important criterion for the development of human vaccines.


Assuntos
Arbovírus , Vírus da Encefalite Transmitidos por Carrapatos , Genética Reversa , Animais , Camundongos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Genética Reversa/métodos , Arbovírus/genética , Vírus Chikungunya/genética , Vírus da Encefalite Japonesa (Espécie)/genética , DNA Viral/genética , Encefalite Transmitida por Carrapatos/virologia , Feminino , Genoma Viral , Febre de Chikungunya/virologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA