RESUMO
In this study, a bacterium with the ability to extracellularly produce a water-soluble polysaccharide (with high molecular mass of 743 kDa) was obtained from saline soils. This strain named as ZB01 was identified as Rhizobium punsense by 16S rRNA sequence analysis. The monomer composition and structure of extracellular polysaccharides were investigated by high-performance anion-exchange chromatography-pulsed amperometric detector, Fourier-transform infrared, methylation and nuclear magnetic resonance spectroscopy analysis. In addition, the morphological characterization of extracellular polysaccharides was performed by scanning electron microscopy analysis. As a result, the polysaccharide is found to be a novel water-soluble type of glucan most likely consisting of repeating two ß-d-Glcp-(1 â 3) and one α-d-Glcp-(1 â 3). Furthermore, it showed pronounced antimicrobial effects against Escherichia coli and Bacillus subtilis, suggesting it has the potential to be used as a natural antibacterial agent in the future.
Assuntos
Rhizobium , beta-Glucanas , Antibacterianos/farmacologia , Glucanos , Polissacarídeos/química , RNA Ribossômico 16S , Solo , Espectroscopia de Infravermelho com Transformada de Fourier , Água/químicaRESUMO
Enzymatic glycosylation is an industrially useful technique for improving the properties of compounds with hydroxy groups, and the biological activities of the resulting glycosides differ depending on the glycosylation position. Therefore, regioselective glycosyltransferases are required for precise synthesis of glycosides. We found that Rhizobium pusense JCM 16209T could catalyze the regioselective glycosylation of resveratrol. To identify the regioselective glycosyltransferase, two α-glucosidases of R. pusense JCM 16209T (RpG I and RpG II) were cloned and expressed in Escherichia coli. The molecular mass of purified recombinant RpG I and II was estimated to be 60 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). RpG I showed strong glycosylation activity toward resveratrol with 4'-selectivity of 98.3%. The enzyme activity was maximized at pH 8.0 and 50 °C, and enhanced in the presence of Cs+ and Li+ ions. The maximum molar yield of resveratrol 4'-O-α-glucoside from resveratrol reached 41.6% at 30 min, and the concentration of the product was 2.08 mmol L-1. Glycosylation activity was observed toward resveratrol as well as toward caffeic acid, ferulic acid, 6-gingerol, flavonoid, and isoflavonoid compounds with high regioselectivity, indicating that RpG I could glycosylate a wide range of substrates. To the best of our knowledge, there are few reports on microbial glycosyltransferases that are useful for regioselective glycosylation. This research could be the first step toward developing technologies for the precise synthesis of glycosides.
Assuntos
Glucosídeos , Glicosiltransferases , Escherichia coli/genética , Glucosídeos/química , Glicosídeos , Glicosiltransferases/genética , Resveratrol , RhizobiumRESUMO
Plant growth-promoting rhizobacteria (PGPR) are root endophytic bacteria used for growth promotion, and they have broader applications in enhancing specific crop yield as a whole. In the present study, we have explored the potential of Rhizobium pusense MB-17a as an endophytic bacterium isolated from the roots of the mung bean (Vigna radiata) plant. Furthermore, this bacterium was sequenced and assembled to reveal its genomic potential associated with plant growth-promoting traits. Interestingly, the root endophyte R. pusense MB-17a showed all essential PGPR traits which were determined by biochemical and PGPR tests. It was noted that this root endophytic bacterium significantly produced siderophores, indole acetic acid (IAA), ammonia, and ACC deaminase and efficiently solubilized phosphate. The maximum IAA and ammonia produced were observed to be 110.5 and 81 µg/ml, respectively. Moreover, the PGPR potential of this endophytic bacterium was also confirmed by a pot experiment for mung bean (V. radiata), whose results show a substantial increase in the plant's fresh weight by 76.1% and dry weight by 76.5% on the 60th day after inoculation of R. pusense MB-17a. Also, there is a significant enhancement in the nodule number by 66.1% and nodule fresh weight by 162% at 45th day after inoculation with 100% field capacity after the inoculation of R. pusense MB-17a. Besides this, the functional genomic annotation of R. pusense MB-17a determined the presence of different proteins and transporters that are responsible for its stress tolerance and its plant growth-promoting properties. It was concluded that the unique presence of genes like rpoH, otsAB, and clpB enhances the symbiosis process during adverse conditions in this endophyte. Through Rapid Annotation using Subsystem Technology (RAST) analysis, the key genes involved in the production of siderophores, volatile compounds, indoles, nitrogenases, and amino acids were also predicted. In conclusion, the strain described in this study gives a novel idea of using such type of endophytes for improving plant growth-promoting traits under different stress conditions for sustainable agriculture.
RESUMO
AIMS: Because the effect of Cd2+ -immobilized microbe on Cd uptake of plants in Cd-contaminated soil remains underexplored, this study focuses on the effect of Cd2+ -immobilized rhizobia on Cd uptake of soybean. METHODS AND RESULTS: Strain KG2 from soybean nodule was identified as Rhizobium pusense KG2 by phylogenetic analysis. Rhizobium pusense KG2 showed the 120 mg l-1 of minimal lethal concentration for Cd2+ . In 50 and 100 mg l-1 of Cd2+ liquid, approximately 2 × 1010 cells removed 56·71 and 22·11% of Cd2+ , respectively. In pot soil containing 50 and 100 mg kg-1 of Cd2+ , strain KG2 caused a 45·9 and 35·3% decrease in soybean root Cd content, respectively. Meanwhile, KG2 improved the root and shoot length, nitrogen content and biomass of soybean plants and superoxide dismutase activity. CONCLUSIONS: The Cd2+ -immobilized rhizobia could inhibit soybean plants to absorb Cd2+ from soil, promote plant growth and improve plant's tolerance against Cd. This study is the first time to report that R. pusense is an effective nodulating rhizobium of legume. SIGNIFICANCE AND IMPACT OF THE STUDY: Some Cd2+ -immobilized microbe lowering Cd uptake of plant and promoting plant growth should be considered as an effective strategy for producing safety crops in the Cd-contaminated agricultural soil.
Assuntos
Cádmio , Células Imobilizadas , Glycine max , Rhizobium , Agricultura , Cádmio/análise , Cádmio/química , Cádmio/metabolismo , Células Imobilizadas/química , Células Imobilizadas/metabolismo , Contaminação de Alimentos/prevenção & controle , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Rhizobium/química , Rhizobium/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Glycine max/química , Glycine max/metabolismoRESUMO
INTRODUCTION: Species of the genus Rhizobium are opportunistic, usually saprophytic, glucose-non-fermenting, Gram-negative bacilli found in agricultural soil. Rhizobium pusense infections are the least common Rhizobium infections and have low incidence. CASE PRESENTATION: Herein, we report the first case of sepsis with R. pusense in Japan in a 67-year-old Japanese woman with a history of hyperlipidaemia, hypertension, diabetes, hypothyroidism and osteoporosis. She had undergone cerebrovascular treatment because she was diagnosed with a subarachnoid haemorrhage. The results of postoperative blood culture showed oxidase-positive, urease-positive, non-lactose-fermenting Gram-stain-negative rods. Using the Vitek2 system, the isolate was distinctly identified as Rhizobium radiobacter. However, 16S rRNA gene sequencing showed 99.93â% similarity with the type strain of R. pusense and 99.06â% similarity with the type strain of R. radiobacter. Additional gene sequencing analysis using recA (97.2â%) and atpD (96.2â%) also showed that the isolated strain is most closely related to R. pusense. The patient was cured by treatment using intravenous meropenem (3 g/d) for 4 weeks and was discharged safely. CONCLUSION: The definite source of sepsis was unknown. However, the possibility of having been infected through the catheter during the cerebrovascular operation was speculated.
RESUMO
Rhizobium pusense was recently described after isolation from the rhizosphere of chickpea. Multilocus sequence-based analysis of clinical isolates identified as Agrobacterium (Rhizobium) radiobacter demonstrated that R. pusense is the main human pathogen within Agrobacterium (Rhizobium) spp. Clinical microbiology of Agrobacterium (Rhizobium) should be considered in the light of recent taxonomic changes.