Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 22(4): 643-653, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35451652

RESUMO

The detailed regulatory mechanism of LINC00174 in lung cancer (LC) development remains largely unknown. This research was designed to probe into the impacts of LINC00174 in LC cells through modulating the microRNA (miR)-584-3p/ribosomal protein S24 (RPS24) axis. LINC00174, miR-584-3p, and RPS24 expression levels in LC cells and tissues were examined. The constructs altering LINC00174, miR-584-3p, or RPS24 expression were transfected into LC cells to examine the malignant phenotypes of LC cells. The relations among LINC00174, miR-584-3p, and RPS24 were validated. LINC00174 and RPS24 were high-expressed while miR-584-3p was low-expressed in LC. Downregulated LINC00174 or RPS24 or upregulated miR-584-3p inhibited the malignant biological behaviors of LC cells. The silenced miR-584-3p could reverse the repressive effects of reduced LINC00174 on the development of LC cells; while RPS24 overexpression inverted the repressive effects of miR-584-3p elevation on LC cells. Mechanically, LINC00174 bound to miR-584-3p that targeted RPS24. Repressed LINC00174 can relieve the malignant phenotypes of LC cells via modulating the miR-584-3p/RPS24 axis.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Proteínas Ribossômicas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , RNA Longo não Codificante/genética , Proteínas Ribossômicas/genética
2.
Mol Metab ; 2(2): 74-85, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24199146

RESUMO

MicroRNAs (miRNAs) have recently emerged as key regulators of metabolism. However, their potential role in the central regulation of whole-body energy homeostasis is still unknown. In this study we show that the expression of Dicer, an essential endoribonuclease for miRNA maturation, is modulated by nutrient availability and excess in the hypothalamus. Conditional deletion of Dicer in POMC-expressing cells resulted in obesity, characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism and alterations in the pituitary-adrenal axis. The development of the obese phenotype was paralleled by a POMC neuron degenerative process that started around 3 weeks of age. Hypothalamic transcriptomic analysis in presymptomatic POMCDicerKO mice revealed the downregulation of genes implicated in biological pathways associated with classical neurodegenerative disorders, such as MAPK signaling, ubiquitin-proteosome system, autophagy and ribosome biosynthesis. Collectively, our results highlight a key role for miRNAs in POMC neuron survival and the consequent development of neurodegenerative obesity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA