Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 81, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38194136

RESUMO

We engineered Saccharomyces cerevisiae to express structural proteins of foot-and-mouth disease virus (FMDV) and produce virus-like particles (VLPs). The gene, which encodes four structural capsid proteins (VP0 (VP4 and VP2), VP3, and VP1), followed by a translational "ribosomal skipping" sequence consisting of 2A and protease 3C, was codon-optimized and chemically synthesized. The cloned gene was used to transform S. cerevisiae 2805 strain. Western blot analysis revealed that the polyprotein consisting of VP0, VP3, and VP1 was processed into the discrete capsid proteins. Western blot analysis of 3C confirmed the presence of discrete 3C protein, suggesting that the 2A sequence functioned as a "ribosomal skipping" signal in the yeast for an internal re-initiation of 3C translation from a monocistronic transcript, thereby indicating polyprotein processing by the discrete 3C protease. Moreover, a band corresponding to only VP2, which was known to be non-enzymatically processed from VP0 to both VP4 and VP2 during viral assembly, further validated the assembly of processed capsid proteins into VLPs. Electron microscopy showed the presence of the characteristic icosahedral VLPs. Our results clearly demonstrate that S. cerevisiae processes the viral structural polyprotein using a viral 3C protease and the resulting viral capsid subunits are assembled into virion particles. KEY POINTS: • Ribosomal skipping by self-cleaving FMDV peptide in S. cerevisiae. • Proteolytic processing of a structural polyprotein from a monocistronic transcript. • Assembly of the processed viral capsid proteins into a virus-like particle.


Assuntos
Vírus da Febre Aftosa , Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/genética , Vírus da Febre Aftosa/genética , Proteínas do Capsídeo/genética , Endopeptidases , Peptídeo Hidrolases , Poliproteínas/genética , Proteases Virais 3C
2.
Biotechnol Bioeng ; 120(1): 260-271, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36168285

RESUMO

Efficient expression of multiple genes is critical to yeast metabolic engineering for the bioproduction of bulk and fine chemicals. A yeast polycistronic expression system is of particular interest because one promoter can drive the expression of multiple genes. 2A viral peptides enable the cotranslation of multiple proteins from a single mRNA by ribosomal skipping. However, the wide adaptation of 2A viral peptides for polycistronic-like gene expression in yeast awaits in-depth characterizations. Additionally, a one-step assembly of such a polycistronic-like system is highly desirable. To this end, we have developed a modular cloning (MoClo) compatible 2A peptide-based polycistronic-like system capable of expressing multiple genes from a single promoter in yeast. Characterizing the bi-, tri-, and quad-cistronic expression of fluorescent proteins showed high cleavage efficiencies of three 2A peptides: E2A from equine rhinitis B virus, P2A from porcine teschovirus-1, and O2A from Operophtera brumata cypovirus-18. Applying the polycistronic-like system to produce geraniol, a valuable industrial compound, resulted in comparable or higher titers than using conventional monocistronic constructs. In summary, this highly-characterized polycistronic-like gene expression system is another tool to facilitate multigene expression for metabolic engineering in yeast.


Assuntos
Vetores Genéticos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Expressão Gênica , Regiões Promotoras Genéticas/genética , Peptídeos/química
3.
Methods Mol Biol ; 2070: 211-222, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31625098

RESUMO

Yeast surface display (YSD) is an ultra-high throughput method used in protein engineering. Protein-protein interactions as well as surface presentation on the yeast cell surface are verified through fluorophore-conjugated labeling agents.In this chapter we describe an improved setup for full-length surface presentation detection. To this end, we used a single open reading frame (ORF) encoding for the protein to be displayed and a 2A sequence and tGFP for an intracellular fluorescence signal. The 2A sequence allows the simultaneous generation of two separate proteins from the same ORF through ribosomal skipping. The entangled expression of the POI on the yeast surface and intracellular tGFP obviates the need for fluorescent staining steps.


Assuntos
Proteínas de Fluorescência Verde , Fases de Leitura Aberta , Biblioteca de Peptídeos , Engenharia de Proteínas , Saccharomyces cerevisiae , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Methods Mol Biol ; 2070: 321-334, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31625104

RESUMO

Combinatorial library screening platforms, such as yeast surface display, typically identify several candidate proteins that need further characterization and validation using soluble recombinant protein. However, recombinant production of these candidate proteins involves tedious and time-consuming subcloning steps. This, in turn, limits the number of candidate proteins that can be characterized. To address this bottleneck, we have developed a platform that exploits inefficient ribosomal skipping by the F2A peptide for simultaneous soluble secretion and cell surface display of protein in the yeast Saccharomyces cerevisiae. Here we provide detailed protocols utilizing this F2A-based yeast display system. We discuss specific recommendations for the purification of the secreted protein. Additionally, we provide suggestions for testing the functionality and binding specificity of the soluble secreted proteins using flow cytometry analysis.


Assuntos
Biblioteca de Peptídeos , Peptídeos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Saccharomyces cerevisiae , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Biotechnol Lett ; 41(8-9): 1067-1076, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300936

RESUMO

OBJECTIVES: Establish a method to restrict unexpected fragments including stop codons in scFv library and generate a thermo resistant strain for screening of thermal stable scFv sequences. RESULTS: Here, we have constructed a T2A-Leu2 system for selection of yeast surface display libraries that blocks amplification of "stop codon" plasmids within the library, thereby increasing the quality of the library and efficiency of the selection screen. Also, we generated a temperature-resistant yeast strain, TR1, and validated its combined use with T2A-Leu2 for efficient screening. Thus, we developed a general approach for a fast and efficient screening of scFv libraries using a ribosomal skipping system and thermo-resistant yeast. CONCLUSIONS: The method highlights the utility of the T2A-Leu2-based ribosomal skipping strategy for increasing the quality of the input library for selection, along with an optimized selection protocol based on thermo-resistant yeast cells.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , Biblioteca Gênica , Anticorpos de Cadeia Única/biossíntese , Leveduras/genética , Leveduras/metabolismo , Testes Genéticos/métodos , Temperatura Alta , Engenharia Metabólica/métodos , Estabilidade Proteica/efeitos da radiação , Anticorpos de Cadeia Única/genética , Leveduras/crescimento & desenvolvimento , Leveduras/efeitos da radiação
6.
J Virol ; 92(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29386286

RESUMO

Foot-and-mouth disease virus (FMDV) has a positive-sense single-stranded RNA (ssRNA) genome that includes a single, large open reading frame encoding a polyprotein. The cotranslational "cleavage" of this polyprotein at the 2A/2B junction is mediated by the 2A peptide (18 residues in length) using a nonproteolytic mechanism termed "ribosome skipping" or "StopGo." Multiple variants of the 2A polypeptide with this property among the picornaviruses share a conserved C-terminal motif [D(V/I)E(S/T)NPG↓P]. The impact of 2A modifications within this motif on FMDV protein synthesis, polyprotein processing, and virus viability were investigated. Amino acid substitutions are tolerated at residues E14, S15, and N16 within the 2A sequences of infectious FMDVs despite their reported "cleavage" efficiencies at the 2A/2B junction of only ca. 30 to 50% compared to that of the wild type (wt). In contrast, no viruses containing substitutions at residue P17, G18, or P19, which displayed little or no "cleavage" activity in vitro, were rescued, but wt revertants were obtained. The 2A substitutions impaired the replication of an FMDV replicon. Using transient-expression assays, it was shown that certain amino acid substitutions at residues E14, S15, N16, and P19 resulted in partial "cleavage" of a protease-free polyprotein, indicating that these specific residues are not essential for cotranslational "cleavage." Immunofluorescence studies, using full-length FMDV RNA transcripts encoding mutant 2A peptides, indicated that the 2A peptide remained attached to adjacent proteins, presumably 2B. These results show that efficient "cleavage" at the 2A/2B junction is required for optimal virus replication. However, maximal StopGo activity does not appear to be essential for the viability of FMDV.IMPORTANCE Foot-and-mouth disease virus (FMDV) causes one of the most economically important diseases of farm animals. Cotranslational "cleavage" of the FMDV polyprotein precursor at the 2A/2B junction, termed StopGo, is mediated by the short 2A peptide through a nonproteolytic mechanism which leads to release of the nascent protein and continued translation of the downstream sequence. Improved understanding of this process will not only give a better insight into how this peptide influences the FMDV replication cycle but may also assist the application of this sequence in biotechnology for the production of multiple proteins from a single mRNA. Our data show that single amino acid substitutions in the 2A peptide can have a major influence on viral protein synthesis, virus viability, and polyprotein processing. They also indicate that efficient "cleavage" at the 2A/2B junction is required for optimal virus replication. However, maximal StopGo activity is not essential for the viability of FMDV.


Assuntos
Vírus da Febre Aftosa/fisiologia , Poliproteínas/metabolismo , Biossíntese de Proteínas , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Animais , Linhagem Celular , Cricetinae , Mutação , Poliproteínas/genética , Processamento de Proteína Pós-Traducional , Proteínas Virais/genética
7.
ACS Synth Biol ; 6(11): 2096-2107, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28805373

RESUMO

The need for recombinant expression of soluble protein slows the validation of engineered proteins isolated from combinatorial libraries and limits the number of protein variants evaluated. To overcome this bottleneck, we describe a system for simultaneous cell surface display and soluble secretion of proteins in Saccharomyces cerevisiae based on inefficient ribosomal skipping. Ribosomal skipping mediated by "self-cleaving" 2A peptides produces two proteins from a single open reading frame. Incorporation of the F2A peptide sequence-with ∼50% efficiency of ribosomal skipping-between the protein of interest and the yeast cell wall protein Aga2 results in simultaneous expression of both the solubly secreted protein and the protein-Aga2 fusion that is tethered to the yeast cell surface. We show that binding proteins derived from the Sso7d scaffold and the homodimeric enzyme glucose oxidase can be simultaneously secreted solubly and expressed as yeast cell surface fusions using the F2A-based system. Furthermore, a combinatorial library of Sso7d mutants can be screened to isolate binders with higher affinity for a model target (lysozyme), and the pool of higher affinity binders can be characterized in soluble form. Significantly, we show that both N- and C-terminal fusions to Aga2 can be simultaneously secreted solubly and displayed on the cell surface; this is particularly advantageous because protein functionality can be affected by the specific position of Aga2 in the protein fusion. We expect that the F2A-based yeast surface display and secretion system will be a useful tool for protein engineering and enable efficient characterization of individual clones isolated from combinatorial libraries.


Assuntos
Moléculas de Adesão Celular , Expressão Gênica , Biblioteca de Peptídeos , Peptídeos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Biotechnol J ; 12(2)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27878965

RESUMO

Yeast surface display is a valuable, widely used method for protein engineering. However, current yeast display applications rely on the staining of epitope tags in order to verify full-length presentation of the protein of interest on the cell surface. We aimed at developing a modified yeast display approach that relies on ribosomal skipping, thereby enabling the translation of two proteins from one open reading frame and, in that manner, generating an intracellular fluorescence signal. This improved setup is based on a 2A sequence that is encoded between the protein to be displayed and a gene for green fluorescent protein (GFP). The intracellular GFP fluorescence signal of yeast cells correlates with full-length protein presentation and omits the need for the immunofluorescence detection of epitope tags. For method validation, shark-derived IgNAR variable domains (vNAR) were subjected to affinity maturation using the 2A-GFP system. Yeast library screening of full-length vNAR variants which were detected via GFP expression yielded the same high-affinity binder that had previously been isolated by our group using the conventional epitope tag-based display format. The presented method obviates the need for additional immunofluorescence cell staining, offering an easy and cost-friendly alternative to conventional epitope tag detections.


Assuntos
Engenharia de Proteínas/métodos , Anticorpos/genética , Anticorpos/imunologia , Afinidade de Anticorpos , Especificidade de Anticorpos , Epitopos/genética , Epitopos/imunologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Ribossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/imunologia , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA