Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Glob Chang Biol ; 30(6): e17358, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822590

RESUMO

Human activities and climate change cause abiotic factors to fluctuate through time, sometimes passing thresholds for organismal reproduction and survival. Multiple stressors can independently or interactively impact organisms; however, few studies have examined how they interact when they overlap spatially but occur asynchronously. Fluctuations in salinity have been found in freshwater habitats worldwide. Meanwhile, heatwaves have become more frequent and extreme. High salinity pulses and heatwaves are often decoupled in time but can still collectively impact freshwater zooplankton. The time intervals between them, during which population growth and community recovery could happen, can influence combined effects, but no one has examined these effects. We conducted a mesocosm experiment to examine how different recovery times (0-, 3-, 6-week) between salt treatment and heatwave exposure influence their combined effects. We hypothesized that antagonistic effects would appear when having short recovery time, because previous study found that similar species were affected by the two stressors, but effects would become additive with longer recovery time since fully recovered communities would respond to heatwave similar to undisturbed communities. Our findings showed that, when combined, the two-stressor joint impacts changed from antagonistic to additive with increased recovery time between stressors. Surprisingly, full compositional recovery was not achieved despite a recovery period that was long enough for population growth, suggesting legacy effects from earlier treatment. The recovery was mainly driven by small organisms, such as rotifers and small cladocerans. As a result, communities recovering from previous salt exposure responded differently to heatwaves than undisturbed communities, leading to similar zooplankton communities regardless of the recovery time between stressors. Our research bolsters the understanding and management of multiple-stressor issues by revealing that prior exposure to one stressor has long-lasting impacts on community recovery that can lead to unexpected joint effects of multiple stressors.


Assuntos
Mudança Climática , Salinidade , Estresse Fisiológico , Zooplâncton , Animais , Zooplâncton/fisiologia , Fatores de Tempo , Água Doce , Temperatura Alta/efeitos adversos , Ecossistema
2.
Sci Total Environ ; 941: 173726, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38839006

RESUMO

Road salt (commonly NaCl, CaCl2, and MgCl2) is widely used in the northern United States as a deicing agent for roadways and other byways. Millions of tons of road salt are used annually in the United States, resulting in drastic increases in freshwater salinity. This study aims to determine the chloride optima and tolerance ranges of macroinvertebrates using publicly accessible stream monitoring data from the US EPA. We assigned taxa region-specific tolerance values, which we then used to calculate the Salt Belt Index (SBI). In addition to the SBI, we determined new, region-specific, chronic Cl- thresholds, determined using threshold indicator taxa analysis (TITAN). Using generalized linear models, we found the SBI was highly accurate at estimating chloride concentration (mg/L Cl-) across the salt belt states. Macroinvertebrate community richness exhibited a significant negative relationship with increasing chloride concentrations. Newly proposed chloride thresholds, based on the richness-chloride relationship, were far lower than current thresholds. The SBI was able to differentiate between Low-, Medium-, and High-Impact sites, grouped based on proposed chloride thresholds. Based on our findings, it is clear current salinity thresholds are too high, and management practices should factor in regional variability, taxon-specific physiology, and historical instream chemistry when implementing salinity thresholds.

3.
Sci Total Environ ; 931: 172948, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703853

RESUMO

Anthropogenic activities such as the over-application of road deicers are causing an increase in the concentration of salts in historically fresh waters. Experimental and field investigations demonstrate that freshwater salinization disrupts ecosystem functions and services, causing the death of freshwater organisms and changes to nutrient conditions. Wetland habitats are one system negatively affected by salt pollution, including ephemeral wetlands (vernal pools) that fill with salt-polluted water after snowmelt. In urbanized areas, the degradation of these ecosystems could result in irreversible ecological damage including reduced water quality and a reduction in biodiversity. To investigate the effects of freshwater salinization on vernal pool communities, we exposed soils from vernal pools to water containing no salt (control), or four concentrations of three salts standardized by chloride concentration (50 mg Cl- L-1, 100 mg Cl- L-1, 200 mg Cl- L-1, and 400 mg Cl- L-1; magnesium chloride, calcium chloride, and sodium chloride). The results of this experiment suggest that emerging zooplankton communities in vernal pools are sensitive to low concentrations of salt pollution, and that alternative salts such as magnesium chloride and calcium chloride are more toxic than sodium chloride. We did not find positive or negative changes in the abundance of eukaryotic phytoplankton but did find negative effects of salt on cyanobacteria abundance, possibly due to corresponding reductions in turbidity which might be needed as a fixation site for cyanobacteria to form heterocysts. Finally, we found that salt pollution likely caused flocculation of Dissolved Organic Matter (DOM), resulting in reduced concentrations of DOM which could alter the buffering capacity of freshwater systems, light attenuation, and the populations of planktonic heterotrophs.


Assuntos
Cianobactérias , Áreas Alagadas , Poluentes Químicos da Água/análise , Água Doce/química , Monitoramento Ambiental , Cloreto de Sódio , Salinidade , Fitoplâncton/efeitos dos fármacos
4.
Chemosphere ; 357: 141978, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608774

RESUMO

Human impacts on wild populations are numerous and extensive, degrading habitats and causing population declines across taxa. Though these impacts are often studied individually, wild populations typically face suites of stressors acting concomitantly, compromising the fitness of individuals and populations in ways poorly understood and not easily predicted by the effects of any single stressor. Developing understanding of the effects of multiple stressors and their potential interactions remains a critical challenge in environmental biology. Here, we focus on assessing the impacts of two prominent stressors associated with anthropogenic activities that affect many organisms across the planet - elevated salinity (e.g., from road de-icing salt) and temperature (e.g. from climate change). We examined a suite of physiological traits and components of fitness across populations of wood frogs originating from ponds that differ in their proximity to roads and thus their legacy of exposure to pollution from road salt. When experimentally exposed to road salt, wood frogs showed reduced survival (especially those from ponds adjacent to roads), divergent developmental rates, and reduced longevity. Family-level effects mediated these outcomes, but high salinity generally eroded family-level variance. When combined, exposure to both temperature and salt resulted in very low survival, and this effect was strongest in roadside populations. Taken together, these results suggest that temperature is an important stressor capable of exacerbating impacts from a prominent contaminant confronting many freshwater organisms in salinized habitats. More broadly, it appears likely that toxicity might often be underestimated in the absence of multi-stressor approaches.


Assuntos
Salinidade , Animais , Mudança Climática , Ecossistema , Poluentes Químicos da Água/toxicidade , Temperatura , Anuros/fisiologia , Estresse Fisiológico , Lagoas , Cloreto de Sódio/toxicidade
5.
Evol Appl ; 17(3): e13668, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38524683

RESUMO

The increasing application of road deicing agents (e.g., NaCl) has caused widespread salinization of freshwater environments. Chronic exposure to toxic NaCl levels can impact freshwater biota at genome to ecosystem scales, yet the degree of harm caused by road salt pollution is likely to vary among habitats and populations. The background ion chemistry of freshwater environments may strongly impact NaCl toxicity, with greater harm occurring in ion-poor, soft water conditions. In addition, populations exposed to salinization may evolve increased NaCl tolerance. Notably, if organisms are adapted to the water chemistry of their natal environment, toxicity responses may also vary among populations in a given test medium. We examined the potential for this evolutionary and environmental context to interact in shaping NaCl toxicity with a pair of laboratory reciprocal transplant toxicity experiments, using natural populations of the water flea Daphnia ambigua collected from three lakes that vary in ion availability and composition. We observed a strong effect of the lake water environment on NaCl toxicity in both trials. NaCl caused a much greater decline in reproduction and r in lake water from a low-ion/calcium-poor environment (20 µS/cm specific conductance; 1.7 mg/L Ca2+) compared with water from both a Ca2+-rich lake (55 µS/cm; 7.2 mg/L Ca2+) and an ion-rich coastal lake (420 µS/cm; 3.4 mg/L Ca2+). Daphnia from this coastal lake were most robust to the effects of NaCl on reproduction and r. A significant interaction between the population and lake water environment shaped survival in both trials, suggesting that local adaptation to the test waters used may have contributed to toxicity responses. Our findings that the lake water environment, adaptation to that environment, and adaptation to a contaminant of interest may shape toxicity demonstrate the importance of considering environmental and biological complexity in mitigating pollution impacts.

6.
Environ Sci Pollut Res Int ; 30(54): 115805-115819, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37889416

RESUMO

Freshwater salinization, due to road salt and other increased anthropogenic activities, has become a significant threat to freshwater organisms. However, whether freshwater salinization affects the response of aquatic organisms to their predators, especially prey that have been acclimated to salinity environments for a long time, remains unclear. In the present study, we investigated the changes in anti-predator defense of Daphnia magna with and without salinity acclimation at five different salinities (0, 0.6, 0.8, 0.10, and 0.12 M). Results showed that freshwater salinization weakened the induced defense response of D. magna, regardless of whether it had undergone long-term salinity acclimation. Specifically, induced defense traits such as smaller body size, higher relative spine length, more relative reproductive output, and smaller body size neonates disappeared at ≥ 0.08 M salinities. In addition, there were no significant differences in most traits of induced defense strength between D. magna with and without salinity acclimation at the same salinity. Importantly, the integrated induced defense response index decreased with increasing salinity. Our study showed that salinity-tolerant organisms do not recover their induced defense at high salinities, underlining the importance of incorporating interspecific interactions when estimating the effects of freshwater salinization on organisms.


Assuntos
Daphnia , Salinidade , Animais , Aclimatação , Cloreto de Sódio/farmacologia , Água Doce , Organismos Aquáticos
7.
Sci Total Environ ; 889: 164138, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182763

RESUMO

Ongoing salinization and alkalinization in U.S. rivers have been attributed to inputs of road salt and effects of human-accelerated weathering in previous studies. Salinization poses a severe threat to human and ecosystem health, while human derived alkalinization implies increasing uncertainty in the dynamics of terrestrial sequestration of atmospheric carbon dioxide. A mechanistic understanding of whether and how human activities accelerate weathering and contribute to the geochemical changes in U.S. rivers is lacking. To address this uncertainty, we compiled dissolved sodium (salinity proxy) and alkalinity values along with 32 watershed properties ranging from hydrology, climate, geomorphology, geology, soil chemistry, land use, and land cover for 226 river monitoring sites across the coterminous U.S. Using these data, we built two machine-learning models to predict monthly-aggregated sodium and alkalinity fluxes at these sites. The sodium-prediction model detected human activities (represented by population density and impervious surface area) as major contributors to the salinity of U.S. rivers. In contrast, the alkalinity-prediction model identified natural processes as predominantly contributing to variation in riverine alkalinity flux, including runoff, carbonate sediment or siliciclastic sediment, soil pH and soil moisture. Unlike prior studies, our analysis suggests that the alkalinization in U.S. rivers is largely governed by local climatic and hydrogeological conditions.


Assuntos
Ecossistema , Rios , Humanos , Rios/química , Solo , Cloreto de Sódio , Sódio
8.
Materials (Basel) ; 16(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36769973

RESUMO

The pavement structure during the colder seasons (winter) or in regions located above sea level is commonly affected and deteriorated by many environmental factors. Two prominent factors are water and frost (weather) or road salt (maintenance). According to the article's literature review, there are only a few studies related to water and frost or road salt impact on mineral asphalt mixes considering fatigue. Most of the tests were performed on mixes containing common road asphalt or only one binder content level was investigated. There are no articles that investigate this problem comprehensively including new asphalt, its content levels, or production technology. Based on the literature review, the main problem regarding degradation impact on mixtures fatigue life was stated. The investigation was performed using two proprietary experimental methods allowing approximates in situ conditions regarding environmental impacts. A dynamic four-point bending fatigue test was applied to evaluate degradation considering fatigue. The investigation was performed using four coarse-graded asphalt mixtures (asphalt concrete AC 22) which differed in binder type (35/50 WMA, 35/50, 25/55-60, and 25/55-80 HIMA), content level (4.24%, 4.03%, 3.82%), and production technology (hot and warm). Regarding the results obtained, the authors proposed a degradation ratio regarding fatigue life variability. Based on the obtained results and ratio used, it was found that both interactions caused a significant fatigue life decrease-in the worst case, over tens of percent. Furthermore, it was found that asphalt mixture resistance to environmental factors depends on binder type, its content level, air void content, and discussed impact. Moreover, asphalt mixtures' susceptibility to degradation (fatigue) is extreme at lower binder content levels and accelerates due to air void content increase. In the article, it was also stated that the highest resistance was reached by a mixture with highly modified asphalt (25/55-80 HIMA). It was also found that the SBS polymer dosage increase in the asphalt matrix enhances asphalt mixture resistance to environmental impacts. The least resistant to the environmental degradation mixture was WMA (35/50 WMA).

9.
J Environ Manage ; 328: 116903, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36502708

RESUMO

Winter deicers, though essential for maintaining safe pavement conditions in winter, increase chloride (Cl-) concentrations in receiving water bodies above recommended environmental guidelines. Zero-exfiltration or lined permeable pavement is an important technological innovation for controlling particulate-bound pollutants at the source. As stormwater does not infiltrate into the ground, soluble pollutants like Cl- are ultimately discharged into receiving water bodies. Our aim was to examine Cl- concentrations in effluents from three zero-exfiltration permeable pavement cells (Permeable Interlocking Concrete Pavement (PICP), Pervious Concrete (PC), Porous Asphalt (PA)) and compare them with runoff from a Conventional Asphalt (ASH) cell. The study conducted at a parking lot in St. Catharines, Ontario, Canada, from January 2016 to May 2017 observed that the permeable pavements provided only temporary attenuation of Cl- during winter but exhibited a quick release during spring melt. Cl- concentrations and loadings were different for each permeable pavement system in terms of timing and magnitude. Cl- concentration in ASH runoff frequently had very high spikes (21,780 mg/L); however, the median winter Cl- concentration in ASH runoff was lower than Cl- levels in the permeable pavements' effluents and later declined drastically after spring melt, but in few instances, was above the chronic water quality guideline (120 mg/L). The average event mean concentration (EMC) of Cl- was 1600 and 120 mg/L in the permeable pavements' effluents during salting and non-salting season, respectively. In one year, each permeable pavement system released approximately 67-81 kg of Cl- with significant differences being observed in Cl- loads between the 2016 and 2017 seasons. Therefore, a multi-year data collection and monitoring plan captured the variability in winter conditions. The study provided insights into the behaviour, retention and release of Cl- from traditional and permeable hardscape surfaces and possible avenues for Cl- attenuation, source control and aquatic habitat conservation.


Assuntos
Cloretos , Monitoramento Ambiental , Qualidade da Água , Ontário
10.
Environ Pollut ; 315: 120349, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36206892

RESUMO

Road deicing salts are frequently used in northern regions of the world during the winter and early spring months. As a result, a significant portion of road runoff into surrounding aquatic habitats contains road deicing salts. Previous studies found road salt contaminations in vernal pools that pond-breeding amphibians commonly use, including spotted salamanders (Ambystoma maculatum) and wood frogs (Lithobates sylvaticus). Studies have examined the impact of road salt on both amphibian species, but to our knowledge no previous studies have examined how road salt impacts the interspecific competition between both amphibians. We hypothesized that road salt would negatively impact growth and survivorship of both amphibian species. During the spring and summer of 2017, we conducted an outdoor mesocosm experiment in which we created eight experimental conditions with three main factors: presence/absence of NaCl (1000 mg/L Cl-), presence/absence of interspecific competition between the two amphibian species (A. maculatum and L. sylvaticus), and presence/absence of predatory dragonfly larvae (Family Libellulidae). Our experiment revealed that salt delayed hatching and increased deformity in spotted salamander hatchlings. Additionally, salt reduced salamander survivorship by 62% and frog survivorship by 30%. Wood frog tadpoles and road salt interacted to diminish salamander survivorship a further 80% beyond salt alone, likely through an increase in interspecific competition. Road salt increased the larval period of salamanders and decreased the proportion metamorphosed by the end of the experiment. Dragonfly larvae reduced salamander survivorship by 35%, whereas they increased wood frog tadpole development rates. Dragonfly larvae and salt interacted to alter tadpole denticle size, with salt negating the impact of dragonfly larvae. Thus, we found that salt interfered with aquatic predatory chemical cues. Overall, the results of this study suggest that management strategies should be implemented in order to reduce the impact of road salts on freshwater aquatic ecosystems.


Assuntos
Ambystoma , Odonatos , Animais , Cloreto de Sódio/farmacologia , Comportamento Predatório , Ecossistema , Sais , Ranidae , Larva , Urodelos
11.
Environ Sci Technol ; 56(19): 13761-13773, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36129683

RESUMO

Domestic wells serve as the primary drinking-water source for rural residents in the northern Appalachian Basin (NAB), despite a limited understanding of contaminant distributions in groundwater sources. We employ a newly collected dataset of 216 water samples from domestic wells in Ohio and West Virginia and an integrated contaminant-source attribution method to describe water quality in the western NAB and characterize key agents influencing contaminant distributions. Our results reveal arsenic and nitrate concentrations above federal maximum contaminant levels (MCLs) in 6.8 and 1.3% of samples and manganese concentrations above health advisory in 7.3% of samples. Recently recharged groundwaters beneath upland regions appear vulnerable to surface-related impacts, including nitrate pollution from agricultural activities and salinization from road salting and domestic sewage sources. Valley regions serve as terminal discharge points for long-residence-time groundwaters, where mixing with basin brines is possible. Arsenic impairments occurred in alkaline groundwaters with major-ion compositions altered by ion exchange and in low-oxygen metal-rich groundwaters. Mixing with as much as 4-10% of mine discharge-like waters was observed near coal mining operations. Our study provides new insights into key agents of groundwater impairment in an understudied region of the NAB and presents an integrated approach for contaminant-source attribution applicable to other regions of intensive resource extraction.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Monitoramento Ambiental , Manganês , Nitratos , Compostos Orgânicos , Oxigênio , Esgotos , Poluentes Químicos da Água/análise
12.
Water Res ; 225: 119128, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36162296

RESUMO

High methane and salt levels in groundwater have been the most widely cited unconventional oil and gas development (UOGD) related water impairments. The attribution of these contaminants to UOGD is usually complex, especially in regions with mixed land uses. Here, we compiled a large hydrogeochemistry dataset containing 13 geochemical analytes for 17,794 groundwater samples from rural northern Appalachia, i.e., 19 counties located on the boundary between Pennsylvania (PA; UOGD is permitted) and New York (NY; UOGD is banned). With this dataset, we explored if statistical and geospatial tools can help shed light on the sources of inorganic solutes and methane in groundwater in regions with mixed land uses. The traditional Principal Component Analysis (PCA) indicates salts in NY and PA groundwater are mainly from the Appalachian Basin Brine (ABB). In contrast, the machine learning tool - Non-negative Matrix Factorization (NMF) highlights that road salts (in addition to ABB) account for 36%-48% of total chloride in NY and PA groundwaters. The PCA fails to identify road salts as one water/salt source, likely due to its geochemical similarity with ABB. Neither PCA nor NMF detects a regional impact of UOGD on groundwater quality. Our geospatial analyses further corroborate (1) road salting is the major salt source in groundwater, and its impact is enhanced in proximity to highways; (2) UOGD-related groundwater quality deterioration is only limited to a few localities in PA.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Sais , Campos de Petróleo e Gás , Cloretos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Metano/análise , Gases , Região dos Apalaches , Água/análise , Gás Natural
13.
Oecologia ; 199(4): 1021-1033, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35984505

RESUMO

On a changing planet, amphibians must respond to weather events shifting in frequency and magnitude, and to how those temperature and precipitation changes interact with other anthropogenic disturbances that modify amphibian habitat. To understand how drastic changes in environmental conditions affect wood frog tadpoles, we tested five temperature manipulations, including Ambient (water temperatures tracking daily air temperatures), Elevated (+ 3 °C above ambient), Nightly (removal of nightly lows), Spike (+ 6 °C above ambient every third week), and Flux (alternating ambient and + 3 °C weekly) crossed with Low Salt (specific conductivity: 109-207 µS-cm) and High Salt (1900-2000 µS-cm). We replicated each of the ten resulting treatments four times. High-salinity conditions produced larger metamorphs than low-salinity conditions. Tadpole survival was reduced only by the Spike treatment (P = 0.017). Elevated temperatures did not shorten larval periods; time to metamorphosis did not differ among temperature treatments (P = 0.328). We retained 135 recently metamorphosed frogs in outdoor terrestrial enclosures for 10 months to investigate larval environment carryover effects. Juvenile frogs grew larger in low-density terrestrial enclosures than high density (P = 0.015) and frogs from Ambient Low Salt larval conditions grew and survived better than frogs from manipulated larval conditions. Frogs from High Salt larval conditions had lower survival than frogs from Low Salt conditions. Our results suggest that anthropogenic disturbances to larval environmental conditions can affect both larval and post-metamorphic individuals, with detrimental carryover effects of high-salinity larval conditions not emerging until the juvenile life stage.


Assuntos
Salinidade , Áreas Alagadas , Animais , Humanos , Larva , Metamorfose Biológica , Ranidae , Cloreto de Sódio , Temperatura
14.
Sci Total Environ ; 851(Pt 2): 157933, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987233

RESUMO

Roadway deicing agents, including rock salt and brine containing NaCl, have had a profound impact on the water quality and aquatic health of rivers and streams in urbanized areas with temperate climates. Yet, few studies evaluate impacts to watersheds characterized by relatively low impervious surface cover (ISC; < 15 %). Here, we use long-term (1997-2019), monthly streamwater quality data combined with daily streamflow for six exurban and suburban watersheds in southeastern Pennsylvania to examine the relations among chloride (Cl-) concentrations and ISC. Both flow-normalized Cl- concentrations and ISC increased over time in each of the six watersheds, consistent with changes in watershed management (e.g., ISC, road salt application, etc.). The watersheds that experienced the greatest changes in percent ISC (e.g., agriculture replaced by residential and commercial development) experienced the greatest changes in flow-normalized Cl- concentrations. We also utilized a comprehensive mass-balance model (2011-2018) that indicated Cl- inputs exceeded the outputs for the study watersheds. Road salt applied to state roads, non-state roads, and other impervious surfaces accounted for the majority of Cl- inputs to the six watersheds. Furthermore, increasing Cl- concentrations during baseflow conditions confirm impacts to shallow groundwater. Although flow-normalized Cl- concentrations are below the U.S. Environmental Protection Agency's chronic threshold value for impacts to aquatic organisms, year-round exceedances may result before the end of this century based on current trends. Though reduced Cl- loading to streams may be achieved by limiting the expansion of impervious surfaces in exurban and suburban watersheds, changes in baseflow concentrations are likely to be gradual because of the accumulated Cl- in groundwater.


Assuntos
Cloretos , Poluentes Químicos da Água , Cloretos/análise , Monitoramento Ambiental , Cloreto de Sódio/análise , Poluentes Químicos da Água/análise , Rios
15.
Environ Entomol ; 51(2): 313-321, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35348654

RESUMO

The salinization of freshwater habitats from winter road salt application is a growing concern. Understanding how taxa exposed to road salt run-off respond to this salinity exposure across life history transitions will be important for predicting the impacts of increasing salinity. We show that Leucorrhinia intacta Hagen, 1861 (Odonata: Libellulidae) dragonflies are robust to environmentally relevant levels of salt pollution across intrinsically stressful life history transitions (hatching, growth, and metamorphosis). Additionally, we observed no carry-over effects into adult dragonfly morphology. However, in a multiple-stressor setting, we see negative interactive effects of warming and salinity on activity, and we found that chronically warmed dragonfly larvae consumed fewer mosquitoes. Despite showing relatively high tolerance to salinity individually, we expect that decreased dragonfly performance in multiple-stressor environments could limit dragonflies' contribution to ecosystem services such as mosquito pest control in urban freshwater environments.


Assuntos
Odonatos , Salinidade , Animais , Ecossistema , Insetos , Cloreto de Sódio/farmacologia
16.
Environ Pollut ; 296: 118757, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34973378

RESUMO

Organisms that rely on aquatic habitats in roaded landscapes face a growing array of consequences from pollution, especially due to freshwater salinization. Critically, these consequences can vary from population to population depending on exposure histories and evolutionary responses. Prior studies using transplant and common garden experiments have found that aquatic-stage wood frogs (Rana sylvatica) from roadside populations are less fit in the wild and more sensitive to road salt than their counterparts from woodland populations away from roads. While this pattern is consistent with local maladaptation, unresolved insights into the timing and duration of these effects leave open the possibility that negative outcomes are countered during development. Here, we asked whether the survival disadvantage of roadside wood frogs is stage-specific, and whether this disadvantage reverses before metamorphosis. We used a common garden road salt exposure experiment and a field-based reciprocal transplant experiment to examine differences in survival across life-history stage and with respect to population type. In each experimental context, roadside embryos showed a survival disadvantage relative to woodland embryos, and this disadvantage was not reversed prior to metamorphosis. We also found that salt exposure delayed metamorphosis more strongly for roadside than woodland populations. Together, these results suggest that local maladaptation in aquatic-stage wood frogs is driven by embryonic sensitivity to salt and that roadside populations are further compromised by delayed developmental rates. Future studies should consider which embryonic traits fail to adapt to salt toxicity, and how those traits might correlate with terrestrial trait variation.


Assuntos
Lagoas , Ranidae , Animais , Larva , Metamorfose Biológica , Cloreto de Sódio
17.
Environ Pollut ; 296: 118770, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974088

RESUMO

The salinization of the global freshwater system caused by various human activities and climate change has become a common problem threatening freshwater biodiversity and resources, which may affect a variety of species of cladocerans at individual and population levels. In order to comprehensively evaluate the impact of salinization on different-sized cladocerans at individual and population levels, we exposed two species of cladocerans with obvious body size difference, Daphnia magna and Moina macrocopa, to seven salinities (0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12 M), recorded individual life history traits and population growth dynamics, and used multiple mechanistic models to fit the data. At the individual level, the median effect concentration of survival time, total offspring per female, and number of broods of D. magna were significantly higher than those of M. macrocopa. At the population level, the decrease in carrying capacity of D. magna with increasing salinity was significantly less than that of M. macrocopa. At the same salinity treatment, the integrated biomarker response indexes value of M. macrocopa is higher than that of D. magna. Therefore, it was further inferred that the sensitivity of small-sized species M. macrocopa to salinity stress is significantly higher than that of big-sized species D. magna. Thus, freshwater salinization may result in the replacement of smaller salt-intolerant cladocerans with larger salt-tolerant cladocerans, which may have dramatic effects on freshwater communities and ecosystems. Additionally, the increase of salinity had a greater impact on the population level of D. magna and M. macrocopa than on the individual level, indicating that population level of cladocerans was more susceptible to salinity stress. Experiments only based on individuals may underestimate the ecologically related changes in populations and communities, thus understanding the impact of salinization on freshwater systems needs to consider multiple ecological levels.


Assuntos
Cladocera , Poluentes Químicos da Água , Animais , Daphnia , Ecossistema , Feminino , Água Doce , Humanos , Dinâmica Populacional , Poluentes Químicos da Água/toxicidade
18.
Sci Total Environ ; 805: 150289, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34536879

RESUMO

Road salt (mainly NaCl) is commonly used during the winter to ensure road and pavement safety; however, the long-term application of NaCl has negative consequences on soil and the water environment. The aims of the present review were to evaluate the impact of road salt on catchment processes which accelerate the eutrophication of waters, and to identify a possible approach for reducing the impact of winter salt treatments of roads and sidewalks, on water body quality. The objectives were implemented in accordance with the ecohydrological approach, which recommends using hierarchical steps to solve problems. The first step was the monitoring of threats, in which the causes of high chloride (Cl) concentrations in groundwater and surface water were identified. The results indicate that long-term winter application of road salt increases the annual mean concentrations of Cl in rivers and lakes, due to Cl entering groundwater. The second step was a cause-effect analysis of the impact of NaCl on the abiotic processes in soil and water, and on the biotic response to chloride exposure. Chlorides appear to decrease the biodiversity of aquatic animals and plants but favour the growth of phytoplankton, especially cyanobacteria. Moreover, Cl reduces the self-purification processes of water by decreasing nutrient accumulation in macrophytes, decreasing the denitrification rate and reducing organic matter decomposition. The third step was to evaluate possible solutions for reducing the negative impact of NaCl on the environment, and to improve the effectiveness of alternative de-icing agents. An analysis of available literature indicates that a system-based approach integrating engineering knowledge with an understanding of biological and hydrological processes is necessary to indicate solutions for reducing environmental risks from road salt use.


Assuntos
Cloretos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Lagos , Cloreto de Sódio/análise , Poluentes Químicos da Água/análise
19.
Environ Pollut ; 292(Pt B): 118441, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34728326

RESUMO

Across the planet, winter de-icing practices have caused secondary salinization of freshwater habitats. Many amphibians are vulnerable because of permeable skin and reliance on small ponds, where salinity can be high. Early developmental stages of amphibians are especially sensitive to salt, and larvae developing in salt-polluted environments must osmoregulate through ion exchange in gills. Though ionoregulation in amphibian gills is generally understood, the role of gill morphology remains poorly described. Yet gill structure should affect ionoregulatory capacity, for instance in terms of available surface area. As larval amphibian gills also play critical roles in gas exchange and foraging, changes in gill morphology from salt pollution potentially affect not only osmoregulation, but also respiration and feeding. Here, we used an exposure experiment to quantify salinity effects on larval gill morphology in wood frogs (Rana sylvatica). We measured a suite of morphological traits on gill tufts-where ionoregulation and gas exchange occur-and on gill filters used in feeding. Larvae raised in elevated salinity developed larger gill tufts but with lower surface area to volume ratio. Epithelial cells on these tufts were less circular but occurred at higher densities. Gill filters showed increased spacing, likely reducing feeding efficiency. Many morphological gill traits responded quadratically, suggesting that salinity might induce plasticity in gills at intermediate concentrations until energetic demands exceed plasticity. Together, these changes likely diminish ionoregulatory and respiratory functionality of gill tufts, and compromise feeding functionality of gill filters. Thus, a singular change in aquatic environment from a widespread pollutant appears to generate a suite of consequences via changes in gill morphology. Critically, these changes in traits likely compound the severity of fitness impacts in populations dwelling in salinized environments, whereby ionoregulatory energetic demands should increase respiratory and foraging demands, but in individuals who possess structures poorly adapted for these functions.


Assuntos
Brânquias , Cloreto de Sódio , Animais , Humanos , Larva , Osmorregulação , Ranidae
20.
Front Zool ; 18(1): 31, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172063

RESUMO

BACKGROUND: Increases in temperature variability associated with climate change have critical implications for the phenology of wildlife across the globe. For example, warmer winter temperatures can induce forward shifts in breeding phenology across taxa ("false springs"), which can put organisms at risk of freezing conditions during reproduction or vulnerable early life stages. As human activities continue to encroach on natural ecosystems, it is also important to consider how breeding phenology interacts with other anthropogenic stressors (e.g., pollutants). Using 14 populations of a widespread amphibian (wood frog; Rana sylvatica), we compared 1) growth; 2) tolerance to a common wetland contaminant (NaCl); and 3) the ability of tadpoles to acclimate to lethal NaCl exposure following sublethal exposure earlier in life. We evaluated these metrics across two breeding seasons (2018 and 2019) and across populations of tadpoles whose parents differed in breeding phenology (earlier- versus later-breeding cohorts). In both years, the earlier-breeding cohorts completed breeding activity prior to a winter storm and later-breeding cohorts completed breeding activities after a winter storm. The freezing conditions that later-breeding cohorts were exposed to in 2018 were more severe in both magnitude and duration than those in 2019. RESULTS: In 2018, offspring of the later-breeding cohort were larger but less tolerant of NaCl compared to offspring of the earlier-breeding cohort. The offspring of the earlier-breeding cohort additionally were able to acclimate to a lethal concentration of NaCl following sublethal exposure earlier in life, while the later-breeding cohort became less tolerant of NaCl following acclimation. Interestingly, in 2019, the warmer of the two breeding seasons, we did not detect the negative effects of later breeding phenology on responses to NaCl. CONCLUSIONS: These results suggest that phenological shifts that expose breeding amphibians to freezing conditions can have cascading consequences on offspring mass and ability to tolerate future stressors but likely depends on the severity of the freeze event.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA