Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Talanta ; 281: 126920, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39306943

RESUMO

The capability to detect a small number of miRNAs in clinical samples with simplicity, selectivity, and sensitivity is immensely valuable, yet it remains a daunting task. Here, we described a novel Mango II aptamers-based sensor for the one-pot, sensitive and specific detection of miRNAs. Target miRNA-initiated mediated catalyzed hairpin assembly (CHA) would allow for the production of plenty of DNA duplexes and the formation of the complete T7 promoter, motivating the rolling circle transcription (RCT). Then, the subsequent RCT process efficiently generates a huge number of repeating RNA Mango II aptamers, brightened by the incorporation of fluorescent dye TO1-B for miRNA quantification, realizing label-free and high signal-to-background ratio. Moreover, this assay possesses a remarkable ability to confer high selectivity, enabling the distinction of miRNAs among family members with mere 1- or 2- nucleotide (nt) differences. By employing the proposed assay, we have successfully achieved a sensitive evaluation of miR-21 content in diverse cell lines and clinical serum samples. This offers a versatile approach for the sensitive assay of miRNA biomarkers in molecular diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Corantes Fluorescentes , MicroRNAs , MicroRNAs/análise , MicroRNAs/sangue , Humanos , Corantes Fluorescentes/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Mangifera/química , Limite de Detecção
2.
Talanta ; 282: 126960, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39362038

RESUMO

Accurate analysis of multiple microRNA (miRNA) levels is significantly valuable for early diagnosis of colorectal cancer noninvasively considering the miRNA expression is highly relevant to the occurrence and progression of cancer. However, the low abundance and high sequence homology of miRNAs make their precise determination extremely challenging. Here, we developed a universal and programmable diagnostic strategy allowing for analyzing multiple colorectal cancer-associated miRNAs. The system combined sequentially programmable rolling circle transcription (RCT) and the CRISPR/Cas12a system with high trans-cleavage activity to achieve highly sensitive and specific detection of four target miRNAs. Owing to the remarkable performance of universal RCT-Cas12a strategy, this biosensor could detect miR-21, miR-17, miR-31 and miR-92a with a LOD of 2.1, 1.6, 3.7 and 1.0 pM, respectively. This strategy had a unique advantage in distinguishing human normal colon epithelial cells lines (NCM460) from human colon cancer cells (HT29). In particular, the designed system exhibited superior analytical capability in distinguishing paracancerous and colorectal cancer tissues from patients undergoing colorectal cancer surgery. This arbitrarily programmable, scalable, fast and specific strategy potentially offered an attractive alternative to handle varied challenges encountered with CRISPR-based systems, and held immense promise in scientific research and clinical applications.

3.
Small ; 20(43): e2401437, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38932671

RESUMO

Fluorophores with color-shifting characteristics have attracted enormous research interest in the quantitative application of RNA sensors. It reports here a simple synthesis, luminescent properties, and co-transcription ability of de-conjugated triphenylmethane leucomalachite green (LMG). This novel clusteroluminescence fluorophore is rapidly synthesized from malachite green (MG) in reductive transcription system containing dithiothreitol, emitting fluorescence in the UV region through space conjugation. The co-transcribed MG RNA aptamer (MGA) bound to the ligand, resulting in red fluorescence from the through-bond conjugation. Given the equilibrated color-shifting fluorophores, they are rationally employed in a 3WJ-based rolling circle transcription switch, with the target-aptamer acting as an activator to achieve steric allosterism. This one-pot system allows the target to compete continuously for allosteric sites, and the activated transcription switches continue to amplify MGA forward, achieving accurate Aflatoxin 1 quantification at the picomolar level in 1 h. Due to the programmability of this RNA sensor, the design method of target-competitive aptamers is standardized, making it universally applicable.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Corantes Fluorescentes , RNA , Compostos de Sulfidrila , Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Compostos de Sulfidrila/química , Técnicas Biossensoriais/métodos , RNA/química , Cor , Corantes de Rosanilina
4.
Talanta ; 274: 125944, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537347

RESUMO

In this study, we present a one-pot, one-step, label-free miRNA detection method through a structural transition of a specially designed dumbbell-shape probe, initiating a rolling circle transition (RCT). In principle, target miRNA binds to right loop of the dumbbell probe (DP), which allows structural change of the DP to circular form, exposing a sequence complementary to the T7 promoter (T7p) previously hidden within the stem. This exposure allows T7 RNA polymerase to initiate RCT, producing a repetitive Mango aptamer sequence. TO1-biotin, fluorescent dye, binds to the aptamer, inducing a detectable enhancement of fluorescence intensity. Without miR-141, the DP stays closed, RCT is prevented, and the fluorescence intensity remains low. By employing this novel strategy, target miRNA was successfully identified with a detection of 73 pM and a dynamic linear range of 0-10 nM. Additionally, the method developed enables one-pot, one-step, and label-free detection of miRNA, demonstrating potential for point-of-care testing (POCT) applications. Furthermore, the practical application of the designed technique was demonstrated by reliably detecting the target miRNA in the human serum sample. We also believe that the conceived approach could be widely used to detect not only miRNAs but also diverse biomolecules by simply replacing the detection probe.


Assuntos
Aptâmeros de Nucleotídeos , MicroRNAs , Proteínas Virais , MicroRNAs/análise , MicroRNAs/sangue , Humanos , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Limite de Detecção , Conformação de Ácido Nucleico , Espectrometria de Fluorescência , RNA Polimerases Dirigidas por DNA/química
5.
ACS Nano ; 18(11): 7972-7988, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445578

RESUMO

RNA nanotechnology, including rolling circle transcription (RCT), has gained increasing interest as a fascinating siRNA delivery nanoplatform for biostable and tumor-targetable RNA-based therapies. However, due to the lack of fine-tuning technologies for RNA nanostructures, the relationship between physicochemical properties and siRNA efficacy of polymeric siRNA nanoparticles (PRNs) with different sizes has not yet been fully elucidated. Herein, we scrutinized the effects of size/surface chemistry-tuned PRNs on the biological and physiological interactions with tumors. PRNs with adjusted size and surface properties were prepared using sequential engineering processes: RCT, condensation, and nanolayer deposition of functional biopolymers. Through the RCT process, nanoparticles of three sizes with a diameter of 50-200 nm were fabricated and terminated with three types of biopolymers: poly-l-lysine (PLL), poly-l-glutamate (PLG), and hyaluronic acid (HA) for different surface properties. Among the PRNs, HA-layered nanoparticles with a diameter of ∼200 nm exhibited the most effective systemic delivery, resulting in superior anticancer effects in an orthotopic breast tumor model due to the CD44 receptor targeting and optimized nanosized structure. Depending on the type of PRNs, the in vivo siRNA delivery with protein expression inhibition differed by up to approximately 20-fold. These findings indicate that the types of layered biopolymers and the PRNs size mediate efficient polymeric siRNA delivery to the targeted tumors, resulting in high RNAi-induced therapeutic efficacy. This RNA-nanotechnology-based size/surface editing can overcome the limitations of siRNA therapeutics and represents a potent built-in module method to design RNA therapeutics tailored for targeted cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Distribuição Tecidual , Linhagem Celular Tumoral , RNA Interferente Pequeno/genética , Nanopartículas/química , Polímeros/metabolismo , Biopolímeros/metabolismo , Neoplasias/tratamento farmacológico
6.
Anal Chim Acta ; 1289: 342187, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38245202

RESUMO

The abnormal expression levels of miRNAs have been proven to be highly related to the generation of various diseases and are also closely associated with the stages and types of disease development. The novel RNA aptamers-based homogenous fluorescent methods were simple, with low background signal and high signal-to-noise ratio, but lacked effective signal amplification technology to achieve sensitive detection of trace miRNA markers. There is an urgent need for combining effective nucleic acid amplification technology with RNA aptamer to achieve highly sensitive and accurate detection of miRNA. For this purpose, a new DNA multi-arm nanostructure-based dual rolling circle transcription machinery for the generation of lighting-up MG RNA aptamers is constructed for label-free and highly sensitive sensing of miRNA-21. In this system, the target miRNA-21 induces a structural transformation of the DNA multi-arm nanostructure probe to recycle miRNA-21 and trigger two independent rolling circle transcription reactions to generate two long RNAs, which can partially hybridize with each other to generate large amounts of complete MG RNA aptamers. These RNA aptamers can associate with organic MG dye to produce significantly enhanced fluorescence signals to accomplish ultrasensitive miRNA-21 detection down to 0.9 fM. In addition, this method exhibits high selectivity to distinguish miRNA-21 even with single nucleotide mismatch, and also has potential application capability to monitor different expression levels of miRNA-21 from different cancer cells. The effective collaboration between MG RNA aptamer and rolling circle transcription reaction makes this fluorescent method show the significant advantages of low background signal, high signal-to-noise ratio and high detection sensitivity. It has great potential to be a promising means to achieve label-free and highly sensitive monitoring of other trace biological markers via a simple change of target sequence.


Assuntos
Aptâmeros de Nucleotídeos , MicroRNAs , Neoplasias , MicroRNAs/genética , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/química , Limite de Detecção , DNA/química , Sondas de DNA/química , Corantes Fluorescentes/química , Neoplasias/diagnóstico , Neoplasias/genética
7.
Pestic Biochem Physiol ; 197: 105680, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072537

RESUMO

We applied a new RNA interference (RNAi) system using rolling circle transcription (RCT) technology to generate RNA microspheres (RMS) for targeting two key chitin synthetic pathway genes [chitin synthase A (CHSA), chitin synthase B (CHSB)] in the larvae of the oriental armyworm (Mythimna separate), a RNAi-unsusceptible agriculturally important lepidopteran pest. Feeding the third-instar larvae with the RMS-CHSA- or RMS-CHSB-treated corn leaf discs suppressed the expression of CHSA by 81.7% or CHSB by 88.1%, respectively, at 72 h. The silencing of CHSA consequently affected the larval development, including the reduced body weight (54.0%) and length (41.3%), as evaluated on the 7th day, and caused significant larval mortalities (51.1%) as evaluated on the 14th day. Similar results were obtained with the larvae fed RMS-CHSB. We also compared RNAi efficiencies among different strategies: 1) two multi-target RMS [i.e., RMS-(CHSA + CHSB), RMS-CHSA + RMS-CHSB], and 2) multi-target RMS and single-target RMS (i.e., either RMS-CHSA or RMS-CHSB) and found no significant differences in RNAi efficiency. By using Cy3-labeled RMS, we confirmed that RMS can be rapidly internalized into Sf9 cells (<6 h). The rapid cellular uptake of RMS accompanied with significant RNAi efficiency through larval feeding suggests that the RCT-based RNAi system can be readily applied to study the gene functions and further developed as bio-pesticides for insect pest management. Additionally, our new RNAi system takes the advantage of the microRNA (miRNA)-mediated RNAi pathway using miRNA duplexes generated in vivo from the RMS by the target insect. The system can be used for RNAi in a wide range of insect species, including lepidopteran insects which often exhibit extremely low RNAi efficiency using other RNAi approaches.


Assuntos
MicroRNAs , Mariposas , Animais , Interferência de RNA , Quitina Sintase/genética , Quitina Sintase/metabolismo , Microesferas , Mariposas/genética , Mariposas/metabolismo , Insetos/genética , Larva/metabolismo , RNA de Cadeia Dupla
8.
RNA ; 29(11): 1691-1702, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37536954

RESUMO

Double-stranded RNA (dsRNA) has aroused widespread interest due to its effects on immunity and applications based on RNAi. However, the in vitro preparation of dsRNA is costly and laborious. In this study, we have developed a novel and interesting method designated as pfRCT (promoter-free rolling-circle transcription) for direct, facile, and efficient dsRNA preparation. This method generates equal amounts of sense and antisense strands simultaneously from a single circular dsDNA template. To initiate transcription by T7 RNA polymerase without directional preference, a 9-15-bp bubble (mismatched duplex with strong sequence symmetry) is introduced into the template. During RCT, all the necessary reagents, including the template, NTPs, RNA polymerase, RNase H, and Helpers, are present in one pot; and the just-transcribed RNA is immediately truncated by RNase H to monomers with the desired size. The ends of the dsRNA product can also be simply sealed by T4 RNA ligase 1 after pfRCT. This new approach is expected to promote the applications of dsRNA.


Assuntos
RNA de Cadeia Dupla , Ribonuclease H , Ribonuclease H/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , Transcrição Gênica
9.
Biomaterials ; 301: 122241, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451000

RESUMO

As the up-and-comer in the development of RNA nanotechnology, RNA nanomaterials based on functionalized rolling circle transcription (RCT) have become promising carriers for drug production and delivery. This is due to RCT technology can self-produce polyvalent tandem nucleic acid prodrugs for intervention in intracellular gene expression and protein production. RNA component strands participating in de novo assembly enable RCT-based nanomaterials to exhibit good mechanical properties, biostability, and biocompatibility as delivery carriers. The biostability makes it to suitable for thermodynamically/kinetically favorable assembly, enzyme resistance and efficient expression in vivo. Controllable RCT system combined with polymers enables customizable and adjustable size, shape, structure, and stoichiometry of RNA building materials, which provide groundwork for the delivery of advanced drugs. Here, we review the assembly strategies and the dynamic regulation of RCT-based nanomaterials, summarize its functional properties referring to the bottom-up design philosophy, and describe its advancements in tumor gene therapy, synergistic chemotherapy, and immunotherapy. Last, we elaborate on the unique and practical value of RCT-based nanomaterials, namely "self-production and self-sale", and their potential challenges in nanotechnology, material science and biomedicine.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Nanoestruturas/química , RNA/uso terapêutico , Nanotecnologia , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico
10.
Biosens Bioelectron ; 237: 115513, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419074

RESUMO

ß-glucosyltransferase (ß-GT) can specifically catalyze the conversion of 5-hydroxymethylcytosine (5-hmC) to 5-glucosylhydroxy methylcytosine (5-ghmC), and it is associated with the control of phage-specific gene expression by affecting transcription process in vivo and in vitro. The current strategies for ß-GT assay usually involve expensive equipment, laborious treatment, radioactive hazard, and poor sensitivity. Here, we report a Spinach-based fluorescent light-up biosensor for label-free measurement of ß-GT activity by utilizing 5-hmC glucosylation-initiated rolling circle transcription amplification (RCTA). We design a 5-hmC-modified multifunctional circular detection probe (5-hmC-MCDP) that integrates the functions of target-recognition, signal transduction, and transcription amplification in one probe. The introduction of ß-GT catalyzes 5-hmC glucosylation of 5-hmC-MCDP probe, protecting the glucosylated 5-mC-MCDP probe from the cleavage by MspI. The remaining 5-hmC-MCDP probe can initiate RCTA reaction with the aid of T7 RNA polymerase, generating tandem Spinach RNA aptamers. The tandem Spinach RNA aptamers can be lightened up by fluorophore 3,5-difluoro-4-hydroxybenzylidene imidazolinone, facilitating label-free measurement of ß-GT activity. Notably, the high specificity of MspI-catalyzed cleavage of nonglucosylated probe can efficiently inhibit nonspecific amplification, endowing this assay with a low background. Due to the higher efficiency of RCTA than the canonical promoter-initiated RNA synthesis, the signal-to-noise ratio of RCTA is 4.6-fold higher than that of linear template-based transcription amplification. This method is capable of sensitively detecting ß-GT activity with a limit of detection of 2.03 × 10-5 U/mL, and it can be used for the screening of inhibitors and determination of kinetic parameters, with great potential in epigenetic research and drug discovery.

11.
J Nanobiotechnology ; 21(1): 182, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37280622

RESUMO

Due to its complicated pathophysiology, propensity for metastasis, and poor prognosis, colon cancer is challenging to treat and must be managed with a combination of therapy. Using rolling circle transcription (RCT), this work created a nanosponge therapeutic medication system (AS1411@antimiR-21@Dox). Using the AS1411 aptamer, this approach accomplished targeted delivery to cancer cells. Furthermore, analysis of cell viability, cell apoptosis, cell cycle arrest, reactive oxygen species (ROS) content, and mitochondrial membrane potential (MMP) levels revealed that functional nucleic acid nanosponge drug (FND) can kill cancer cells. Moreover, transcriptomics uncovered a putative mechanism for the FND anti-tumor effect. These pathways, which included mitotic metaphase and anaphase as well as the SMAC-mediated dissociation of the IAP: caspase complexes, were principally linked to the cell cycle and cell death. In conclusion, by triggering cell cycle arrest and apoptosis, the nano-synergistic therapeutic system allowed for the intelligent and effective targeted administration of RNA and chemotherapeutic medicines for colon cancer treatment. The system allowed for payload efficiency while being customizable, targeted, reliable, stable, and affordable.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias do Colo , Nanopartículas , Ácidos Nucleicos , Humanos , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Ácidos Nucleicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Portadores de Fármacos/uso terapêutico , Aptâmeros de Nucleotídeos/uso terapêutico , Oligodesoxirribonucleotídeos , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral
12.
Talanta ; 262: 124684, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37220689

RESUMO

Uracil-DNA glycosylase (UDG) is pivotal in maintaining genome integrity and aberrant expressed UDG is highly relevant to numerous diseases. Sensitive and accurate detecting UDG is critically significant for early clinical diagnosis. In this research, we demonstrated a sensitive UDG fluorescent assay based on rolling circle transcription (RCT)/CRISPR/Cas12a-assisted bicyclic cascade amplification strategy. Target UDG catalyzed to remove uracil base of DNA dumbbell-shape substrate probe (SubUDG) to produce an apurinic/apyrimidinic (AP) site, at which SubUDG was cleaved by apurinic/apyrimidinic endonuclease (APE1) subsequently. The exposed 5'-PO4 was ligated with the free 3'-OH terminus to form an enclosed DNA dumbbell-shape substrate probe (E-SubUDG). E-SubUDG functioned as a template can actuate T7 RNA polymerase-mediated RCT signal amplification, generating multitudes of crRNA repeats. The resultant Cas12a/crRNA/activator ternary complex activated the activity of Cas12a, causing a significantly enhanced fluorescence output. In this bicyclic cascade strategy, target UDG was amplified via RCT and CRISPR/Cas12a, and the whole reaction was completed without complex procedures. This method enabled sensitive and specific monitor UDG down to 0.0005 U/mL, screen corresponding inhibitors, and analyze endogenous UDG in A549 cells at single-cell level. Importantly, this assay can be extended to analyze other DNA glycosylase (hAAG and Fpg) by altering the recognition site in DNA substrates probe rationally, thereby offering a potent tool for DNA glycosylase-associated clinical diagnosis and biomedical research.


Assuntos
Técnicas Biossensoriais , Uracila-DNA Glicosidase , Uracila-DNA Glicosidase/metabolismo , Sistemas CRISPR-Cas , Limite de Detecção , DNA/genética , Sondas de DNA , Técnicas Biossensoriais/métodos
13.
J Control Release ; 345: 770-785, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367477

RESUMO

There has been a growing interest in RNA therapeutics globally, and much progress has been made in this area, which has been further accelerated by the clinical applications of RNA-based vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Following these successful clinical trials, various technologies have been developed to improve the efficacy of RNA-based drugs. Multimerization of RNA therapeutics is one of the most attractive approaches to ensure high stability, high efficacy, and prolonged action of RNA-based drugs. In this review, we offer an overview of the representative approaches for generating repetitive functional RNAs by chemical conjugation, structural self-assembly, enzymatic elongation, and self-amplification. The therapeutic and vaccine applications of engineered multimeric RNAs in various diseases have also been summarized. By outlining the current status of multimeric RNAs, the potential of multimeric RNA as a promising treatment strategy is highlighted.


Assuntos
COVID-19 , Vacinas , COVID-19/prevenção & controle , Humanos , RNA/uso terapêutico , SARS-CoV-2/genética
14.
Trends Biotechnol ; 39(11): 1160-1172, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33715868

RESUMO

Rolling circle replication (RCR), including rolling circle amplification (RCA) and rolling circle transcription (RCT), is an isothermal enzymatic reaction. Because of its high amplification efficiency, RCR is a powerful biosensing tool for detecting biomolecules. In recent years, RCR has also been extended to the field of bioimaging to better understand biological pathways. Furthermore, RCR provides a simple technique to design and generate DNA/RNA structures with unique advantages in delivering drugs and enhanced targeting ability. In this review, we introduce the fundamentals of RCR and describe the most recent advances in RCR-based detection methods and delivery vehicles for biosensing, bioimaging, and biomedicine. Finally, some challenges and further opportunities of RCR-based biotechnology are discussed.


Assuntos
Técnicas Biossensoriais , Técnicas de Amplificação de Ácido Nucleico , DNA , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA
15.
Biomaterials ; 261: 120304, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32882528

RESUMO

Spherical and porous nanoparticles are ideal nanostructures for drug delivery. But currently they are mainly composed of non-degradable inorganic materials, which hinder clinical applications. Here, biological porous nanospheres using RNA as the building blocks and cyclodextrin as the adhesive were synthesized. The RNA contained the aptamer of EpCAM for targeting delivery and siRNA for gene silencing of EpCAM, while cyclodextrin could load insoluble sorafenib, the core drug of targeted therapy for hepatocellular carcinoma (HCC), through its hydrophobic cavity. After being internalized into targeted HCC cells under the assistance of the aptamer, the porous nanospheres could be degraded by the cytoplasmic Dicer enzymes, releasing siRNA and sorafenib for synergistic therapy. The synergistic efficacy of the porous RNA nanospheres has been validated at in vitro function assay, subcutaneous tumor bearing mice, and orthotopic tumor bearing mice in vivo models. In view of the broad prospects of synergy of gene therapy with chemotherapy, and the fact that RNA and cyclodextrin of the porous nanospheres can be extended to load various types of siRNA and small molecule drugs, respectively, this form of biological porous nanospheres offers opportunities for targeted delivery of suitable drugs for treatment of specific tumors.


Assuntos
Carcinoma Hepatocelular , Ciclodextrinas , Neoplasias Hepáticas , Nanosferas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Porosidade , RNA Interferente Pequeno
16.
Carbohydr Polym ; 247: 116684, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829812

RESUMO

Surface-modified cellulose nanocrystals (CNCs) were developed for efficient delivery of polymeric siRNA in cancer cells. Cationic CNCs were synthesized using the sequential process of hydrothermal desulfation and chemical modification following which, polymeric siRNA obtained using from a two-step process of rolling circle transcription and Mg2+ chelation was complexed with the modified CNCs by electrostatic interaction. The complexation efficiency was optimized for high drug loading and release in the cytoplasmic environment. The resultant nanocomplex showed significantly enhanced enzymatic stability, gene knockdown efficacy, and apoptosis-induced in vitro therapeutic effect. Our results suggest CNCs as a promising carbohydrate-based delivery platform which could be utilized for RNAi-mediated cancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Cátions/química , Celulose/química , Preparações de Ação Retardada/farmacologia , Nanopartículas/química , Polímeros/síntese química , RNA Interferente Pequeno/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/uso terapêutico , Liberação Controlada de Fármacos , Técnicas de Silenciamento de Genes/métodos , Humanos , Neoplasias/tratamento farmacológico , Polímeros/química , RNA Interferente Pequeno/síntese química , Eletricidade Estática , Propriedades de Superfície
17.
Anal Chim Acta ; 1102: 84-90, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32043999

RESUMO

Sensitive imaging of intracellular microRNAs (miRNAs) in cells is of great significance in clinical diagnoses and disease treatments, and it remains a major challenge to achieve this goal. Herein, we report a new in situ rolling circle transcription synchronization machinery (RCTsm) of lighting-up RNA aptamer strategy for highly sensitive imaging and selective differentiation of miRNA expression levels in cells. Such a RCTsm approach utilizes a DNA promoter to recycle the target miRNAs to trigger the initiation of multiple RCT process for the yield of many lighting-up RNA aptamers. The malachite green dye further binds these aptamers to show significantly enhanced fluorescence for completely label-free detection of the target miRNAs with a high sensitivity in vitro with a low femtomolar detection limit. More importantly, sensitive detection of under-expressed miRNAs in cells and distinct differentiation of the miRNA expression variations in different cells can also be realized with this RCTsm approach in a washing-free format, making it a versatile and useful tool for imaging trace miRNAs in single cells with the great potential for early cancer diagnosis as well as biomedical research.


Assuntos
Aptâmeros de Nucleotídeos/química , MicroRNAs/análise , Sequência de Bases , Linhagem Celular Tumoral , DNA/química , DNA/genética , Sondas de DNA/química , Sondas de DNA/genética , Corantes Fluorescentes/química , Humanos , Limite de Detecção , MicroRNAs/genética , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Hibridização de Ácido Nucleico , Corantes de Rosanilina/química
18.
ACS Nano ; 14(2): 1550-1559, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31922721

RESUMO

Cells often spatially organize biomolecules to regulate biological interactions. Synthetic mimicry of complex spatial organization may provide a route to similar levels of control for artificial systems. As a proof-of-principle, we constructed an RNA-extruding nanofactory using a DNA-origami barrel with an outer diameter of 60 nm as a chassis for integrated rolling-circle transcription and processing of RNA through spatial organization of DNA templates, RNA polymerases, and RNA endonucleases. The incorporation efficiency of molecular components was quantified to be roughly 50% on designed sites within the DNA-origami chassis. Each integrated nanofactory with RNA-producing units, composed of DNA templates and RNA polymerases, produced 100 copies of target RNA in 30 min on average. Further integration of RNA endonucleases that cleave rolling-circle transcripts from concatemers into monomers resulted in 30% processing efficiency. Disabling spatial organization of molecular components on DNA origami resulted in suppression of RNA production as well as processing.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , DNA/metabolismo , Endorribonucleases/metabolismo , Nanotecnologia , RNA/biossíntese , DNA/química , Tamanho da Partícula , RNA/química , Propriedades de Superfície
19.
Biosens Bioelectron ; 147: 111788, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31671380

RESUMO

The sensitive imaging of telomerase RNA (TR) in living cells is crucial for improved guidance in cancer clinical diagnosis because its expression level is closely related to malignant diseases. The efficient delivery of multiple nucleic acid probes to target cells is critical for nucleic acid-based methods to successfully image low-abundance TR in living cells. While novel nanomaterials enhance delivery efficiency, uncontrolled loading and slow intracellular release remain major challenges for multiple-probe delivery. Here, we designed a facile DNA/RNA nanoflower (NF) to perform the controlled loading of multiple probes and rapid intracellular release based on the "zipper lock-and-key" strategy. First, a long RNA generated by rolling circle transcription acts as both the "smart zipper lock" and the delivery carrier to alternately lock multiple functional DNAs through DNA-RNA base pairing, and the resulting RNA/DNA hybrids self-assemble into packed NFs. The functional DNAs include the fluorescence molecular beacon H1 for TR recognition, H2 for hybrid chain reaction (HCR) and DNA-cholesterol for size control. After NF internalization by the cells, the intracellular RNase H acts as the "key" to specifically open the DNA/RNA NFs by cleaving the RNA in the DNA/RNA hybrid, releasing high amounts of H1 and H2 in a confined space and thereby facilitating the HCR amplification analysis of cytoplasmic TR. With the addition of a DNA-nuclear localization peptide component in the same NF, nuclear TR can also be sensitively detected. Compared with the regular H1/H2 mixture, the DNA/RNA NFs produced a higher-contrast fluorescence signal. This indicated that the proposed strategy allowed the side arms of H1/H2 to be sealed into the RNA sequence-programmed "zipper lock" by controlled loading, avoiding mutual nonspecific H1/H2 hybridization. In addition, due to the fast kinetics of the RNase endonuclease reaction, the loaded H1/H2 was quickly released. Furthermore, the strategy was successfully used to assay the expression levels of TR in HeLa, HepG2 and HL-7702 cells, demonstrating that this approach holds the potential for the sensitive detection of low-abundance biomarkers in living cells.


Assuntos
Técnicas Biossensoriais , DNA/química , RNA/química , Telomerase/isolamento & purificação , Aptâmeros de Nucleotídeos/química , Células HeLa , Humanos , Limite de Detecção , Nanocompostos/química , Hibridização de Ácido Nucleico , RNA/isolamento & purificação , Espectrometria de Fluorescência , Telomerase/química
20.
Acta Pharm Sin B ; 9(4): 832-842, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31384542

RESUMO

Oncogenic microRNAs are essential components in regulating the gene expression of cancer cells. Especially miR21, which is a major player involved of tumor initiation, progression, invasion and metastasis in several cancers. The delivery of anti-miR21 sequences has significant potential for cancer treatment. Nevertheless, since anti-miR21 sequences are extremely unstable and they need to obtain certain concentration to function, it is intensely difficult to build an effective delivery system for them. The purpose of this work is to construct a self-assembled glutathione (GSH)-responsive system with tumor accumulation capacity for effective anti-miR21 delivery and cancer therapy. A novel drug delivery nanosphere carrying millions of anti-miR21 sequences was developed through the rolling circle transcription (RCT) method. GSH-responsive cationic polymer polyethyleneimine (pOEI) was synthesized to protect the nanosphere from degradation by Dicer or other RNase in normal cells and optimize the pompon-like nanoparticle to suitable size. Dehydroascorbic acid (DHA), a targeting molecule, which is a substrate of glucose transporter 1 (GLUT 1) and highly expressed on malignant tumor cells, was connected to pOEI through PEG, and then the polymer was used for contracting a RNA nanospheres into nanopompons. The anti-miR21 nanopompons showed its potential for effective cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA