Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 646
Filtrar
1.
Biochem Soc Trans ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984866

RESUMO

Metabolic factors are essential for developmental biology of an organism. In plants, roots fulfill important functions, in part due to the development of specific epidermal cells, called hair cells that form root hairs (RHs) responsible for water and mineral uptake. RH development consists in (a) patterning processes involved in formation of hair and non-hair cells developed from trichoblasts and atrichoblasts; (b) RH initiation; and (c) apical (tip) growth of the RH. Here we review how these processes depend on pools of different amino acids and what is known about RH phenotypes of mutants disrupted in amino acid biosynthesis. This analysis shows that some amino acids, particularly aromatic ones, are required for RH apical (tip) growth, and that not much is known about the role of amino acids at earlier stages of RH formation. We also address the role of amino acids in rhizosphere, inhibitory and stimulating effects of amino acids on RH growth, amino acids as N source in plant nutrition, and amino acid transporters and their expression in the RHs. Amino acids form conjugates with auxin, a hormone essential for RH growth, and respective genes are overviewed. Finally, we outline missing links and envision some perspectives in the field.

2.
Front Plant Sci ; 15: 1412540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966148

RESUMO

Introduction: Expansins (EXPs) are essential components of the plant cell wall that function as relaxation factors to directly promote turgor-driven expansion of the cell wall, thereby controlling plant growth and development and diverse environmental stress responses. EXPs genes have been identified and characterized in numerous plant species, but not in sweetpotato. Results and methods: In the present study, a total of 59 EXP genes unevenly distributed across 14 of 15 chromosomes were identified in the sweetpotato genome, and segmental and tandem duplications were found to make a dominant contribution to the diversity of functions of the IbEXP family. Phylogenetic analysis showed that IbEXP members could be clustered into four subfamilies based on the EXPs from Arabidopsis and rice, and the regularity of protein motif, domain, and gene structures was consistent with this subfamily classification. Collinearity analysis between IbEXP genes and related homologous sequences in nine plants provided further phylogenetic insights into the EXP gene family. Cis-element analysis further revealed the potential roles of IbEXP genes in sweetpotato development and stress responses. RNA-seq and qRT-PCR analysis of eight selected IbEXPs genes provided evidence of their specificity in different tissues and showed that their transcripts were variously induced or suppressed under different hormone treatments (abscisic acid, salicylic acid, jasmonic acid, and 1-aminocyclopropane-1-carboxylic acid) and abiotic stresses (low and high temperature). Discussion: These results provide a foundation for further comprehensive investigation of the functions of IbEXP genes and indicate that several members of this family have potential applications as regulators to control plant development and enhance stress resistance in plants.

3.
J Hazard Mater ; 476: 135092, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964040

RESUMO

Methylisothiazolinone (MIT) is a widely used preservative and biocide to prevent product degradation, yet its potential impact on plant growth remains poorly understood. In this study, we investigated MIT's toxic effects on Arabidopsis thaliana root growth. Exposure to MIT significantly inhibited Arabidopsis root growth, associated with reduced root meristem size and root meristem cell numbers. We explored the polar auxin transport pathway and stem cell regulation as key factors in root meristem function. Our findings demonstrated that MIT suppressed the expression of the auxin efflux carrier PIN1 and major root stem cell regulators (PLT1, PLT2, SHR, and SCR). Additionally, MIT hindered root regeneration by downregulating the quiescent center (QC) marker WOX5. Transcriptome analysis revealed MIT-induced alterations in gene expression related to oxidative stress, with physiological experiments confirming elevated reactive oxygen species (ROS) levels and increased cell death in root tips at concentrations exceeding 50 µM. In summary, this study provides critical insights into MIT's toxicity on plant root development and regeneration, primarily linked to modifications in polar auxin transport and downregulation of genes associated with root stem cell regulation.

4.
Plant Cell Rep ; 43(7): 188, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960994

RESUMO

KEY MESSAGE: BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance in Arabidopsis roots. The formative divisions of cortex/endodermis initials (CEIs) and CEI daughter cells (CEIDs) in Arabidopsis roots are coordinately controlled by the longitudinal auxin gradient and the radial SHORT ROOT (SHR) abundance. However, the mechanism underlying this coordination remains poorly understood. In this study, we demonstrate that BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance. Mutations in BIG gene repressed cell cycle progression, delaying the formative divisions within the ground tissues and impairing the establishment of endodermal and cortical identities. In addition, we uncovered auxin's suppressive effect on BIG expression, triggering CYCLIND6;1 (CYCD6;1) activation in an SHR-dependent fashion. Moreover, the degradation of RETINOBLASTOMA-RELATED (RBR) is jointly regulated by BIG and CYCD6;1. The loss of BIG function led to RBR protein accumulation, detrimentally impacting the SHR/SCARECROW (SCR) protein complex and the CEI/CEID formative divisions. Collectively, these findings shed light on a fundamental mechanism wherein BIG intricately coordinates the interplay between SHR/SCR and auxin, steering ground tissue patterning within Arabidopsis root tissue.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Raízes de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/citologia , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Divisão Celular Assimétrica , Mutação/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Ciclinas/metabolismo , Ciclinas/genética , Proteínas de Ligação a Calmodulina , Fatores de Transcrição
5.
Plant J ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824611

RESUMO

Plants possess an outstanding capacity to regenerate enabling them to repair damages caused by suboptimal environmental conditions, biotic attacks, or mechanical damages impacting the survival of these sessile organisms. Although the extent of regeneration varies greatly between localized cell damage and whole organ recovery, the process of regeneration can be subdivided into a similar sequence of interlinked regulatory processes. That is, competence to regenerate, cell fate reprogramming, and the repatterning of the tissue. Here, using root tip regeneration as a paradigm system to study plant regeneration, we provide a synthesis of the molecular responses that underlie both regeneration competence and the repatterning of the root stump. Regarding regeneration competence, we discuss the role of wound signaling, hormone responses and synthesis, and rapid changes in gene expression observed in the cells close to the cut. Then, we consider how this rapid response is followed by the tissue repatterning phase, where cells experience cell fate changes in a spatial and temporal order to recreate the lost stem cell niche and columella. Lastly, we argue that a multi-scale modeling approach is fundamental to uncovering the mechanisms underlying root regeneration, as it allows to integrate knowledge of cell-level gene expression, cell-to-cell transport of hormones and transcription factors, and tissue-level growth dynamics to reveal how the bi-directional feedbacks between these processes enable self-organized repatterning of the root apex.

6.
Plant Sci ; 346: 112160, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38908800

RESUMO

Vegetative propagation through cutting is a widely used clonal approach for maintaining desired genotypes. However, some woody species have difficulty forming adventitious roots (ARs) with this approach, including yellow camellia (YC) C. nitidissima. Yellow camellias, prized for their ornamental value and potential health benefits in tea, remain difficult to propagate clonally due to this rooting recalcitrance. As part of the efforts to understand YC cuttings' recalcitrance, we conducted a detailed investigation into AR formation in yellow camellia cuttings via histology and endogenous phytohormone dynamics during this process. We also compared YC endogenous phytohormone and metabolite phytohormone profiles with those of easy-to-root poplar and willow cuttings. Our results indicate that the induction of ARs in YC cuttings is achievable through auxin treatment, and YC ARs are initiated from cambial derivatives and develop a vascular system connected with that of the stem. During AR induction, endogenous hormones showed a dynamic profile, with IAA continuing to increase starting 9 days after auxin induction. JA, JA-Ile, and OPDA showed a similar trend as IAA but decreased by the 45th day. Cytokinin first decreased to its lowest level by the 18th day and then increased. SA largely exhibited an increasing trend with a drop on the 36th day, while ABA first increased to its peak level by the 18th day and then decreased. Compared to poplar, YC cuttings had a low level of IAA, IAA-Asp, and OPDA, and a high level of cytokinin and SA. Metabolite profiling highlighted significant down-accumulation of compounds associated with AR formation in yellow camellias, such as citric and ascorbic acid, fructose, sucrose, flavonoids, and phenolic acid derivatives. Our study reveals the unfavorable endogenous hormone and metabolite profiles underlying the rooting recalcitrance of YC cuttings, providing valuable knowledge for addressing this challenge in clonal propagation.


Assuntos
Camellia , Reguladores de Crescimento de Plantas , Raízes de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Camellia/metabolismo , Camellia/genética , Camellia/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo
7.
Plant Physiol Biochem ; 213: 108827, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38875779

RESUMO

Salvia miltiorrhiza is a widely utilized medicinal herb in China. Its roots serve as crucial raw materials for multiple drugs. The root morphology is essential for the quality of this herb, but little is known about the molecular mechanism underlying the root development in S. miltiorrhiza. Previous study reveals that the polar auxin transport is critical for lateral root development in S. miltiorrhiza. Whether the auxin efflux carriers PIN-FORMEDs (PINs) are involved in this process is worthy investigation. In this study, we identified nine SmPIN genes in S. miltiorrhiza, and their chromosome localization, physico-chemical properties, and phylogenetic relationship were analyzed. SmPINs were unevenly distributed across four chromosomes, and a variety of hormone responsive elements were detected in their promoter regions. The SmPIN proteins were divided into three branches according to the phylogenetic relationship. SmPINs with close evolutionary distance showed similar conserved motif features. The nine SmPINs showed distinct tissue-specific expression patterns and most of them were auxin-inducible genes. We generated SmPIN3 overexpression S. miltiorrhiza seedlings to investigate the function of SmPIN3 in the root development in this species. The results demonstrated that SmPIN3 regulated the root morphogenesis of S. miltiorrhiza by simultaneously affecting the lateral root development and the root anatomical structure. The root morphology, patterns of root xylem and phloem as well as the expressions of genes in the auxin signaling pathway all altered in the SmPIN3 overexpression lines. Our findings provide new insights for elucidating the regulatory roles of SmPINs in the auxin-mediated root development in S. miltiorrhiza.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Raízes de Plantas , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Salvia miltiorrhiza/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Genes de Plantas
8.
Plant Physiol Biochem ; 213: 108833, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879984

RESUMO

Root plays an important role in plant drought tolerance, especially in horticultural crops like apples. However, the crucial regulator and molecular mechanism in root development of apple trees under drought are not well unknown. Cys2/His2-type Zinc-finger proteins are essential for plant response to drought, while the members of C2H2 Zinc-finger proteins in apple are largely unknown. In this study, we identified the members of the C1-2i subclass family of C2H2 Zinc-finger proteins in apple (Malus × domestica). Among them, MdZAT5 is significantly induced in apple roots under drought conditions and positively regulates apple root development under drought. Further investigation revealed that MdZAT5 positively regulates root development and root hydraulic conductivity by mediating the transcription level of MdMYB88 under drought stress. Taken together, our results demonstrate the importance of MdZAT5 in root development under drought in apple trees. This finding provides a new candidate direction for apple breeding for drought resistance.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Malus , Proteínas de Plantas , Raízes de Plantas , Malus/genética , Malus/crescimento & desenvolvimento , Malus/metabolismo , Malus/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
9.
Plant Physiol Biochem ; 213: 108858, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924907

RESUMO

Cytokinins are growth-regulating plant hormones that are considered to adjust plant development under environmental stresses. During sole ammonium nutrition, a condition known to induce growth retardation of plants, altered cytokinin content can contribute to the characteristic ammonium toxicity syndrome. To understand the metabolic changes in cytokinin pools, cytokinin biosynthesis and degradation were analyzed in the leaves and roots of mature Arabidopsis plants. We found that in leaves of ammonium-grown plants, despite induction of biosynthesis on the expression level, there was no active cytokinin build-up because they were effectively routed toward their downstream catabolites. In roots, cytokinin conjugation was also induced, together with low expression of major synthetic enzymes, resulting in a decreased content of the trans-zeatin form under ammonium conditions. Based on these results, we hypothesized that in leaves and roots, cytokinin turnover is the major regulator of the cytokinin pool and does not allow active cytokinins to accumulate. A potent negative-regulator of root development is trans-zeatin, therefore its low level in mature root tissues of ammonium-grown plants may be responsible for occurrence of a wide root system. Additionally, specific cytokinin enhancement in apical root tips may evoke a short root phenotype in plants under ammonium conditions. The ability to flexibly regulate cytokinin metabolism and distribution in root and shoot tissues can contribute to adjusting plant development in response to ammonium stress.


Assuntos
Compostos de Amônio , Arabidopsis , Citocininas , Folhas de Planta , Raízes de Plantas , Arabidopsis/metabolismo , Citocininas/metabolismo , Citocininas/biossíntese , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Compostos de Amônio/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Int J Biol Macromol ; 274(Pt 2): 133446, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945337

RESUMO

Panax ginseng C.A. Mey., known for its medicinal and dietary supplement properties, primarily contains pharmacologically active ginsenosides. However, the regulatory mechanisms linking ginseng root development with ginsenoside biosynthesis are still unclear. Root meristem growth factors (RGFs) are crucial for regulating plant root growth. In our study, we identified five ginseng RGF peptide sequences from the ginseng genome and transcriptome libraries. We treated Arabidopsis and ginseng adventitious roots with exogenous Panax ginseng RGFs (PgRGFs) to assess their activities. Our results demonstrate that PgRGF1 influences gravitropic responses and reduces lateral root formation in Arabidopsis. PgRGF1 has been found to restrict the number and length of ginseng adventitious root branches in ginseng. Given the medicinal properties of ginseng, We determined the ginsenoside content and performed transcriptomic analysis of PgRGF1-treated ginseng adventitious roots. Specifically, the total ginsenoside content in ginseng adventitious roots decreased by 19.98 % and 63.71 % following treatments with 1 µM and 10 µM PgRGF1, respectively, compared to the control. The results revealed that PgRGF1 affects the accumulation of ginsenosides by regulating the expression of genes associated with auxin transportation and ginsenoside biosynthesis. These findings suggest that PgRGF1, as a peptide hormone regulator in ginseng, can modulate adventitious root growth and ginsenoside accumulation.

11.
Plant Physiol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865442

RESUMO

The roots of plants play multiples functions that are essential for growth and development, including anchoring to the soil and water and nutrient acquisition. These underground organs exhibit the plasticity to modify their root system architecture in response to environmental cues allowing adaptation to change in water and nutrient availability. In addition, roots enter in mutualistic interactions with soil microorganisms, e.g. the root nodule symbiosis established between a limited group of plants and nitrogen fixing soil bacteria and the arbuscular mycorrhiza symbiosis involving most land plants and fungi of the Glomeromycetes phylum. In the past 20 years, genetic approaches allowed the identification and functional characterization of genes required for the specific programs of root development, root nodule and arbuscular mycorrhiza symbioses. These genetic studies provided evidence that the program of root nodule symbiosis recruited components of the arbuscular mycorrhiza symbiosis and the root developmental programs. The execution of these programs is strongly influenced by epigenetic changes -DNA methylation and histone post-translational modifications- that alter chromatin conformation modifying the expression of key genes. In this review, we summarize recent advances that highlighted how DNA methylation and histone post-translational modifications, as well as chromatin remodeling factors and long non-coding RNAs, shape the root system architecture and allow the successful establishment of both root nodule and arbuscular mycorrhiza symbioses. We anticipate that the analysis of dynamic epigenetic changes and chromatin 3D structure in specific single-cells or tissue types of root organs will illuminate our understanding of how root developmental and symbiotic programs are orchestrated, opening exciting questions and new perspectives to modulate agronomical and ecological traits linked to nutrient acquisition.

12.
Plants (Basel) ; 13(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891290

RESUMO

Numerous studies have shown that the endophytic fungus Piriformospora indica has a broad range of promoting effects on root development and plant growth in host plants. However, there are currently no reports on the application of this fungus on Cerasus humilis. This study first compared the colonization ability of P. indica on 11 C. humilis varieties and found that the colonization rate of this fungus on these varieties ranged from 90% to 100%, with the colonization rate of the varieties '09-01' and 'Nongda 7' being as high as 100%. Subsequently, the effect of P. indica on root development and plant growth of C. humilis was investigated using cuttings of '09-01' and 'Nongda 7' as materials. P. indica colonization was found to increase the biomass of '09-01' and 'Nongda 7' plants; root activity, POD enzymes, and chlorophyll content were also significantly increased. In addition, indole-3-acetic acid (IAA) content in the roots of C. humilis plants increased after colonization, while jasmonic acid (JA) and 1-aminocyclopropane-1-car- boxylic acid (ACC) content decreased. In conclusion, it has been demonstrated that P. indica can promote the growth of C. humilis plants by accelerating biomass accumulation, promoting rooting, and enhancing the production of photosynthetic pigments, as well as regulating hormone synthesis.

13.
Plant Cell Rep ; 43(7): 165, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861173

RESUMO

KEY MESSAGE: SmSAUR4, SmSAUR18, SmSAUR28, SmSAUR37, and SmSAUR38 were probably involved in the auxin-mediated root development in Salvia miltiorrhiza. Salvia miltiorrhiza is a widely utilized medicinal plant in China. Its roots and rhizomes are the main medicinal portions and are closely related to the quality of this herb. Previous studies have revealed that auxin plays pivotal roles in S. miltiorrhiza root development. Whether small auxin-up RNA genes (SAURs), which are crucial early auxin response genes, are involved in auxin-mediated root development in S. miltiorrhiza is worthy of investigation. In this study, 55 SmSAUR genes in S. miltiorrhiza were identified, and their physical and chemical properties, gene structure, cis-acting elements, and evolutionary relationships were analyzed. The expression levels of SmSAUR genes in different organs of S. miltiorrhiza were detected using RNA-seq combined with qRT‒PCR. The root development of S. miltiorrhiza seedlings was altered by the application of indole-3-acetic acid (IAA), and Pearson correlation coefficient analysis was conducted to screen SmSAURs that potentially participate in this physiological process. The diameter of primary lateral roots was positively correlated with SmSAUR4. The secondary lateral root number was positively correlated with SmSAUR18 and negatively correlated with SmSAUR4. The root length showed a positive correlation with SmSAUR28 and SmSAUR37 and a negative correlation with SmSAUR38. The fresh root biomass exhibited a positive correlation with SmSAUR38 and a negative correlation with SmSAUR28. The aforementioned SmSAURs were likely involved in auxin-mediated root development in S. miltiorrhiza. Our study provides a comprehensive overview of SmSAURs and provides the groundwork for elucidating the molecular mechanism underlying root morphogenesis in this species.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Raízes de Plantas , Salvia miltiorrhiza , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Filogenia , Genes de Plantas , Genoma de Planta , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos
14.
Plant Cell Rep ; 43(7): 169, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864921

RESUMO

KEY MESSAGE: The study unveils Si's regulatory influence by regulating DEGs, TFs, and TRs. Further bHLH subfamily and auxin transporter pathway elucidates the mechanisms enhancing root development and nodulation. Soybean is a globally important crop serving as a primary source of vegetable protein for millions of individuals. The roots of these plants harbour essential nitrogen fixing structures called nodules. This study investigates the multifaceted impact of silicon (Si) application on soybean, with a focus on root development, and nodulation employing comprehensive transcriptomic analyses and gene regulatory network. RNA sequence analysis was utilised to examine the change in gene expression and identify the noteworthy differentially expressed genes (DEGs) linked to the enhancement of soybean root nodulation and root development. A set of 316 genes involved in diverse biological and molecular pathways are identified, with emphasis on transcription factors (TFs) and transcriptional regulators (TRs). The study uncovers TF and TR genes, categorized into 68 distinct families, highlighting the intricate regulatory landscape influenced by Si in soybeans. Upregulated most important bHLH subfamily and the involvement of the auxin transporter pathway underscore the molecular mechanisms contributing to enhanced root development and nodulation. The study bridges insights from other research, reinforcing Si's impact on stress-response pathways and phenylpropanoid biosynthesis crucial for nodulation. The study reveals significant alterations in gene expression patterns associated with cellular component functions, root development, and nodulation in response to Si.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Glycine max , Nodulação , Raízes de Plantas , Silício , Fatores de Transcrição , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Nodulação/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Silício/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética
15.
Genes (Basel) ; 15(6)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38927696

RESUMO

Small auxin-upregulated RNAs (SAURs), as the largest family of early auxin-responsive genes, play important roles in plant growth and development processes, such as auxin signaling and transport, hypocotyl development, and tolerance to environmental stresses. However, the functions of few SAUR genes are known in the root development of sweet potatoes. In this study, an IbSAUR36 gene was cloned and functionally analyzed. The IbSAUR36 protein was localized to the nucleus and plasma membrane. The transcriptional level of this gene was significantly higher in the pencil root and leaf.This gene was strongly induced by indole-3-acetic acid (IAA), but it was downregulated under methyl-jasmonate(MeJA) treatment. The promoter of IbSAUR36 contained the core cis-elements for phytohormone responsiveness. Promoter ß-glucuronidase (GUS) analysis in Arabidopsis showed that IbSAUR36 is highly expressed in the young tissues of plants, such as young leaves, roots, and buds. IbSAUR36-overexpressing sweet potato roots were obtained by an efficient Agrobacterium rhizogenes-mediated root transgenic system. We demonstrated that overexpression of IbSAUR36 promoted the accumulation of IAA, upregulated the genes encoding IAA synthesis and its signaling pathways, and downregulated the genes encoding lignin synthesis and JA signaling pathways. Taken together, these results show that IbSAUR36 plays an important role in adventitious root (AR) development by regulating IAA signaling, lignin synthesis, and JA signaling pathways in transgenic sweet potatoes.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Ipomoea batatas , Proteínas de Plantas , Raízes de Plantas , Plantas Geneticamente Modificadas , Ipomoea batatas/genética , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/genética , Regiões Promotoras Genéticas , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo
16.
Front Plant Sci ; 15: 1397337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835859

RESUMO

Currently, the control of rhizosphere selection on farms has been applied to achieve enhancements in phenotype, extending from improvements in single root characteristics to the dynamic nature of entire crop systems. Several specific signals, regulatory elements, and mechanisms that regulate the initiation, morphogenesis, and growth of new lateral or adventitious root species have been identified, but much more work remains. Today, phenotyping technology drives the development of root traits. Available models for simulation can support all phenotyping decisions (root trait improvement). The detection and use of markers for quantitative trait loci (QTLs) are effective for enhancing selection efficiency and increasing reproductive genetic gains. Furthermore, QTLs may help wheat breeders select the appropriate roots for efficient nutrient acquisition. Single-nucleotide polymorphisms (SNPs) or alignment of sequences can only be helpful when they are associated with phenotypic variation for root development and elongation. Here, we focus on major root development processes and detail important new insights recently generated regarding the wheat genome. The first part of this review paper discusses the root morphology, apical meristem, transcriptional control, auxin distribution, phenotyping of the root system, and simulation models. In the second part, the molecular genetics of the wheat root system, SNPs, TFs, and QTLs related to root development as well as genome editing (GE) techniques for the improvement of root traits in wheat are discussed. Finally, we address the effect of omics strategies on root biomass production and summarize existing knowledge of the main molecular mechanisms involved in wheat root development and elongation.

17.
Front Plant Sci ; 15: 1351436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911974

RESUMO

In crops like wheat, terminal drought is one of the principal stress factors limiting productivity in rain-fed systems. However, little is known about root development after heading, when water uptake can be critical to wheat crops. The impact of water-stress on root growth was investigated in two wheat cultivars, Scout and Mace, under well-watered and post-anthesis water stress in three experiments. Plants were grown outside in 1.5-m long pots at a density similar to local recommended farming practice. Differences in root development were observed between genotypes, especially for water stress conditions under which Scout developed and maintained a larger root system than Mace. While under well-watered conditions both genotypes had shallow roots that appeared to senesce after heading, a moderate water stress stimulated shallow-root growth in Scout but accelerated senescence in Mace. For deep roots, post-heading biomass growth was observed for both genotypes in well-watered conditions, while under moderate water stress, only Scout maintained net growth as Mace deep roots senesced. Water stress of severe intensity affected both genotypes similarly, with root senescence at all depths. Senescence was also observed above ground. Under well-watered conditions, Scout retained leaf greenness (i.e. stay-green phenotype) for slightly longer than Mace. The difference between genotypes accentuated under moderate water stress, with rapid post-anthesis leaf senescence in Mace while Scout leaf greenness was affected little if at all by the stress. As an overall result, grain biomass per plant ('yield') was similar in the two genotypes under well-watered conditions, but more affected by a moderate stress in Mace than Scout. The findings from this study will assist improvement in modelling root systems of crop models, development of relevant phenotyping methods and selection of cultivars with better adaptation to drought.

18.
Plant Commun ; : 100978, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38783601

RESUMO

Single-cell RNA-sequencing datasets of Arabidopsis roots have been generated, but related comprehensive gene co-expression network analyses are lacking. We conducted a single-cell gene co-expression network analysis with publicly available scRNA-seq datasets of Arabidopsis roots using a SingleCellGGM algorithm. The analysis identified 149 gene co-expression modules, which we considered to be gene expression programs (GEPs). By examining their spatiotemporal expression, we identified GEPs specifically expressed in major root cell types along their developmental trajectories. These GEPs define gene programs regulating root cell development at different stages and are enriched with relevant developmental regulators. As examples, a GEP specific for the quiescent center (QC) contains 20 genes regulating QC and stem cell niche homeostasis, and four GEPs are expressed in sieve elements (SEs) from early to late developmental stages, with the early-stage GEP containing 17 known SE developmental regulators. We also identified GEPs for metabolic pathways with cell-type-specific expression, suggesting the existence of cell-type-specific metabolism in roots. Using the GEPs, we discovered and verified a columella-specific gene, NRL27, as a regulator of the auxin-related root gravitropism response. Our analysis thus systematically reveals GEPs that regulate Arabidopsis root development and metabolism and provides ample resources for root biology studies.

19.
EMBO J ; 43(12): 2486-2505, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38698215

RESUMO

The Casparian strip is a barrier in the endodermal cell walls of plants that allows the selective uptake of nutrients and water. In the model plant Arabidopsis thaliana, its development and establishment are under the control of a receptor-ligand mechanism termed the Schengen pathway. This pathway facilitates barrier formation and activates downstream compensatory responses in case of dysfunction. However, due to a very tight functional association with the Casparian strip, other potential signaling functions of the Schengen pathway remain obscure. In this work, we created a MYB36-dependent synthetic positive feedback loop that drives Casparian strip formation independently of Schengen-induced signaling. We evaluated this by subjecting plants in which the Schengen pathway has been uncoupled from barrier formation, as well as a number of established barrier-mutant plants, to agar-based and soil conditions that mimic agricultural settings. Under the latter conditions, the Schengen pathway is necessary for the establishment of nitrogen-deficiency responses in shoots. These data highlight Schengen signaling as an essential hub for the adaptive integration of signaling from the rhizosphere to aboveground tissues.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nitrogênio , Brotos de Planta , Transdução de Sinais , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Nitrogênio/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Solo/química , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Parede Celular/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
20.
Cell Rep ; 43(5): 114179, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38691455

RESUMO

Plant pathogens manipulate host development, facilitating colonization and proliferation. Ralstonia solanacearum is a soil-borne bacterial pathogen that penetrates roots and colonizes plants through the vascular system, causing wilting and death. Here, we find that RipAC, an effector protein from R. solanacearum, alters root development in Arabidopsis, promoting the formation of lateral roots and root hairs. RipAC interacts with CELLULOSE SYNTHASE (CESA)-INTERACTIVE PROTEIN 1 (CSI1), which regulates the activity of CESA complexes at the plasma membrane. RipAC disrupts CESA-CSI1 interaction, leading to a reduction in cellulose content, root developmental alterations, and a promotion of bacterial pathogenicity. We find that CSI1 also associates with the receptor kinase FERONIA, forming a complex that negatively regulates immunity in roots; this interaction, however, is not affected by RipAC. Our work reveals a bacterial virulence strategy that selectively affects the activities of a host target, promoting anatomical alterations that facilitate infection without causing activation of immunity.


Assuntos
Arabidopsis , Parede Celular , Doenças das Plantas , Raízes de Plantas , Ralstonia solanacearum , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/microbiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Ralstonia solanacearum/patogenicidade , Ralstonia solanacearum/crescimento & desenvolvimento , Ralstonia solanacearum/metabolismo , Doenças das Plantas/microbiologia , Parede Celular/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Microbiologia do Solo , Glucosiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA