Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Ecotoxicology ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39387968

RESUMO

The toxic additives that leach from tire wear particles (TWPs) cause mass die-offs in fish and impact zooplankton as secondary consumers in the aquatic food web. In addition to the direct impacts of TWP leachate on a single generation, there may be potential delayed carryover effects across multiple generations from parental exposure, which may amplify the adverse effects of the leachate on individual reproduction and, consequently, on the entire population. In this study, the single, multiple, and transgenerational effects of TWP leachate at various concentrations on the reproduction and lifespan of the rotifer Brachionus calyciflorus were investigated. The results indicated that the lifespan and reproductive output of rotifers exposed to TWP leachate (0-1500 mg/L) decreased as the concentration increased above 250 mg/L. There was a clear multigenerational effect of TWP leachate on rotifer reproduction. The inhibition rates were consistently greater at 500 mg/L than at 250 mg/L leachate. Although the reproduction of rotifers exposed to 250 mg/L TWP leachate increased in the first two generations (P and F1), it was inhibited in subsequent generations. The inhibitory effect of 500 mg/L TWP leachate persisted across all generations, leading to population extinction by the F4 generation. A significant transgenerational effect of TWP leachate was found on reproduction. The adverse impact of exposure to 250 mg/L leachate for fewer than three generations could be reversed when offspring were transferred to clean media. However, this recovery was not observed after continuous exposure for more than four generations. Exposure to high-dose TWP leachate also caused irreversible damage to reproduction. Therefore, TWP leachate can result in cascading toxicity on zooplankton populations through carryover and cumulative effects on reproduction.

2.
Sci Total Environ ; 955: 177256, 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39477105

RESUMO

Tris (1-chloro-2-propyl) phosphoric acid (TCPP), a widely used organophosphate flame retardant, has been detected in various aquatic environments due to its extensive industrial application. TCPP is well-known to negatively impact large aquatic organisms. However, the effects of TCPP on zooplankton remain poorly understood. This study explored the ecological risk of TCPP in low-trophic marine organisms by evaluating the marine rotifer Brachionus plicatilis at the molecular, biochemical, individual, and population levels after exposure to TCPP concentrations of 14.79, 44.37, and 73.94 µM. Results showed that exposure to TCPP inhibited body size, feeding behavior, life expectancy, generation time, net reproductive rate, reproduction rate, and population growth rate of rotifers, thus impairing their growth, survival, reproduction, and population expansion. Environmental concentrations surpassing 0.031 µM and 0.23 µM adversely impact rotifer reproduction and survival, respectively. Biochemically, TCPP induced oxidative stress, increased amylase activity, decreased lipase activity, and total protein content. Transcriptome analysis revealed that TCPP could induce abnormal mitochondrial function, impaired energy metabolism, programmed cell death by generating excessive reactive oxygen species, and affect cellular DNA replication. Results indicate that TCPP disrupts homeostasis in rotifers by inducing oxidative stress, significantly suppressing individual and population parameters. These findings provide critical insights for assessing the ecological risk posed by TCPP to zooplankton and the stability of aquatic ecosystems.

3.
Sci Total Environ ; 955: 177279, 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39481572

RESUMO

In recent years, there has been a growing demand for high-quality sunscreens that combine high efficacy with ecological characteristics. This trend has led to an increased use of triazine compounds, which represent an emerging class of UV filters. While it is well-established that sunscreens can have significant environmental impacts, there is limited data on the degradation of triazine UV filters, despite available information on their environmental persistence, particularly in relation to disinfection processes. This study investigates the chemical fate of ethylhexyl triazone (EHT) under chlorination conditions, typical of swimming pools. Twelve disinfection byproducts (DBPs) were isolated and fully identified using nuclear magnetic resonance and mass spectrometry, with three of these byproducts being identified for the first time. DBP1-DBP12 were isolated at relative percentages of 1.26, 9.68, 1.05, 0.42, 0.84, 3.37, 3.58, 1.89, 0.84, 1.47, 0.42, and 0.63. Additionally, a mechanism for their formation was proposed. The ecotoxicological assessment of EHT and of byproducts (DBP1-DBP4) was conducted using acute, sub-chronic or chronic toxicity tests in producers and primary consumers of the freshwater trophic chain. The organisms included the alga Raphidocelis subcapitata, the rotifer Brachionus calyciflorus, the crustacean anostracan Thamnocephalus platyurus and the benthic ostracod Heterocypris incongruens. EHT caused a lethal median concentration in rotifers, with values in the range of tens of mg/L. EHT, DBP1, and DBP4 exhibited sub-chronic effects in ostracods at concentrations in the µg/L range, with EC50s of 210, 9, 20 µg/L, respectively. Rotifers were slightly affected by DBP3 with a chronic EC50 of 200 µg/L. Algae were not affected by either EHT or byproducts.

4.
Ecotoxicology ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39446177

RESUMO

Yessotoxin (YTX) is a disulfated toxin produced by harmful dinoflagellates and causes risks to aquatic animals. Polystyrene (PS) microplastics could absorb toxins in seawaters but pose threats to organism growth. In this study, the combined toxic effects of YTX (0, 20, 50, and 100 µg L-1) and PS (0, 5, and 10 µg mL-1) on the survival, reproduction, and population growth of marine rotifer Brachionus plicatilis at 20 °C, 25 °C, and 30 °C were evaluated. Results indicated that the survival time (S), time to first batch of eggs (Ft), total offspring per rotifer (Ot), generational time (T0), net reproduction rate (R0), intrinsic growth rate (rm), and population growth rate (r) of rotifers were inhibited by YTX and PS at 25 °C and 30 °C. Low temperature (20 °C) improved the life-table parameters T0, R0, and rm at YTX concentrations less than 100 µg L-1. Temperature, YTX, and PS had interactive effects on rotifers' S, Ft, Ot, T0, R0, rm, and r. The combined negative effects of YTX and PS on rotifers' survival, reproduction, and population growth were significantly enhanced at 30 °C. These findings emphasized the importance of environmental temperature in studying the interactive effects of microplastics and toxins on the population growth of zooplankton in eutrophic seawaters.

5.
Biotechnol Lett ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235648

RESUMO

Rotifers are small, ubiquitous invertebrate animals found throughout the world and have emerged as a promising model system for studying molecular mechanisms in the fields of experimental ecology, aquatic toxicology, and geroscience. However, the lack of efficient gene expression manipulation techniques has hindered the study of rotifers. In this study, we used the L4440 plasmid with two reverse-oriented T7 promoters, along with RNase-deficient E. coli HT115, to efficiently produce dsRNA and thereby present an efficient feeding-based RNAi method in Brachionus plicatilis. We targeted Bp-Ku70 & Ku80, key proteins in the DNA double-strand breaks repair pathway, and then subjected rotifers to UV radiation. We found that the mRNA expression, fecundity, as well as survival rate diminished significantly as a result of RNAi. Overall, our results demonstrate that the feeding-based RNAi method is a simple and efficient tool for gene knockdown in B. plicatilis, advancing their use as a model organism for biological research.

6.
Sci Rep ; 14(1): 15213, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956158

RESUMO

Microplastic pollution, especially secondary microplastics (MPs), poses a significant threat to marine ecosystems. Despite its prevalence, the impact of natural-aged MPs on marine organisms, hindered by collection challenges, remains poorly understood. This study focused on 1-3 µm natural-aged MPs collected from Japan's coastal sea, investigating their effects on the rotifer Brachionus plicatilis sensu stricto and its reproductive mechanisms. Rotifers exposed to varying MP concentrations (0, 20, and 200 particles/mL) over 14-day batch cultures exhibited reduced population growth and fertilization rates. Down-regulation of reproductive genes and up-regulation of oxidative stress-related genes were observed, indicating MP-induced disruptions. Enhanced activities of superoxide dismutase and acetylcholinesterase and elevated malondialdehyde levels further emphasized oxidative stress. These findings underscore the detrimental impact of MPs on rotifer reproductivity, shedding light on the underlying mechanisms.


Assuntos
Microplásticos , Estresse Oxidativo , Reprodução , Rotíferos , Poluentes Químicos da Água , Animais , Rotíferos/efeitos dos fármacos , Microplásticos/toxicidade , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Malondialdeído/metabolismo
7.
Gen Comp Endocrinol ; 357: 114597, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39084320

RESUMO

Neuropeptides are essential neuronal signaling molecules that orchestrate animal behavior and physiology via actions within the nervous system and on peripheral tissues. Due to the small size of biologically active mature peptides, their identification on a proteome-wide scale poses a significant challenge using existing bioinformatics tools like BLAST. To address this, we have developed NeuroPeptide-HMMer (NP-HMMer), a hidden Markov model (HMM)-based tool to facilitate neuropeptide discovery, especially in underexplored invertebrates. NP-HMMer utilizes manually curated HMMs for 46 neuropeptide families, enabling rapid and accurate identification of neuropeptides. Validation of NP-HMMer on Drosophila melanogaster, Daphnia pulex, Tribolium castaneum and Tenebrio molitor demonstrated its effectiveness in identifying known neuropeptides across diverse arthropods. Additionally, we showcase the utility of NP-HMMer by discovering novel neuropeptides in Priapulida and Rotifera, identifying 22 and 19 new peptides, respectively. This tool represents a significant advancement in neuropeptide research, offering a robust method for annotating neuropeptides across diverse proteomes and providing insights into the evolutionary conservation of neuropeptide signaling pathways.


Assuntos
Neuropeptídeos , Proteoma , Neuropeptídeos/metabolismo , Neuropeptídeos/análise , Neuropeptídeos/genética , Animais , Proteoma/metabolismo , Drosophila melanogaster/metabolismo , Cadeias de Markov , Biologia Computacional/métodos
8.
Biol Lett ; 20(6): 20230546, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38869044

RESUMO

Historical climate data indicate that the Earth has passed through multiple geological periods with much warmer-than-present climates, including epochs of the Miocene (23-5.3 mya BP) with temperatures 3-4°C above present, and more recent interglacial stages of the Quaternary, for example, Marine Isotope Stage 11c (approx. 425-395 ka BP) and Middle Holocene thermal maximum (7.5-4.2 ka BP), during which continental glaciers may have melted entirely. Such warm periods would have severe consequences for ice-obligate fauna in terms of their distribution, biodiversity and population structure. To determine the impacts of these climatic events in the Nordic cryosphere, we surveyed ice habitats throughout mainland Norway and Svalbard ranging from maritime glaciers to continental ice patches (i.e. non-flowing, inland ice subjected to deep freezing overwinter), finding particularly widespread populations of ice-inhabiting bdelloid rotifers. Combined mitochondrial and nuclear DNA sequencing identified approx. 16 undescribed, species-level rotifer lineages that revealed an ancestry predating the Quaternary (> 2.58 mya). These rotifers also displayed robust freeze/thaw tolerance in laboratory experiments. Collectively, these data suggest that extensive ice refugia, comparable with stable ice patches across the contemporary Norwegian landscape, persisted in the cryosphere over geological time, and may have facilitated the long-term survival of ice-obligate Metazoa before and throughout the Quaternary.


Assuntos
Rotíferos , Animais , Regiões Árticas , Noruega , Rotíferos/genética , Rotíferos/classificação , Svalbard , Camada de Gelo , Filogenia , DNA Mitocondrial/genética , Ecossistema
9.
Mar Pollut Bull ; 205: 116527, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852204

RESUMO

Artificial light at night (ALAN) may pose threat to rotifer Brachionus plicatilis. Additionally, the food of rotifer, i.e. algal community composition, often fluctuates. Thus, we selected five wavelengths of ALAN (purple, blue, green, red, white) and a three-colored light flashing mode (3-Flash) to test their impacts on life history traits of B. plicatilis with different food experiences, including those feeding Chlorella vulgaris (RC) or Phaeocystis globosa (RP). Results indicated purple ALAN promoted RC development, white ALAN inhibited RC development, while 3-Flash and white ALAN promoted RP development. Under red and white ALAN, RP increased fecundity but decreased lifespan. High-quality food enhanced rotifer's resistance to the impact of ALAN on lifespan. ALAN and food experience interacted on B. plicatilis. The effect of blue ALAN has less negative effects on B. plicatilis, based on hierarchical cluster analysis. Such findings are helpful to evaluate the potential impact of ALAN on marine zooplankton.


Assuntos
Luz , Rotíferos , Animais , Rotíferos/fisiologia , Características de História de Vida , Chlorella vulgaris , Zooplâncton , Haptófitas
10.
Aquat Toxicol ; 273: 106984, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901220

RESUMO

Oil spills are reported to have conflicting impacts of either injury or resilience on zooplankton communities, and physiological plasticity is speculated to be the possible causative factor. But how? An explanation was sought by exposing the marine rotifer Brachionus plicatilis to a series of water-accommodated fractions (WAFs) of crude oil under controlled laboratory conditions, and population dynamics, which is the core issue for zooplankton facing external stress, were analyzed. The total hydrocarbon concentration of WAFs was quickly degraded from a concentration of 5.0 mg L-1 to half within 24 h and then remained stable. No acute lethality was observed; only motion inhibition was observed in the group treated with 10 %, 50 % and 100 % WAFs, which occurred simultaneously with inhibition of feeding and filtration. However, sublethal exposure to the WAFs concentration series presented stimulation impacts on reproduction and even the population of B. plicatilis. The negative correlation between motion and reproduction seemed to indicate that a shift in the distribution of individual energy toward reproduction rather than motion resulted in increased reproduction after exposure to WAFs. More evidence from transmission electron microscopy (TEM) revealed ultrastructural impairment in both the ovaries and cilia in each treated group, and imbalance in mitochondrial numbers was one of the distinct features of alteration. WAFs stress may alter the energy utilization and storage paradigm, as indicated by the significant elevation in glycogen and the significant decrease in lipid content after WAFs exposure. Further evidence from metabolomics analysis showed that WAFs stress increased the level of lipid metabolism and inhibited some of the pathways in glucose metabolism. Sublethal acute toxicity was observed only in the first 24 h with WAFs exposure, and an energy strategy consisting of changes in the utilization and storage paradigm and reallocation is responsible for the population resilience of B. plicatilis during oil spills.


Assuntos
Petróleo , Rotíferos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Petróleo/toxicidade , Rotíferos/efeitos dos fármacos , Dinâmica Populacional , Reprodução/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Feminino , Poluição por Petróleo
11.
Microorganisms ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38792735

RESUMO

Vibrio species are naturally found in estuarine and marine ecosystems, but are also recognized as significant human enteropathogens, often linked to seafood-related illnesses. In aquaculture settings, Vibrio poses a substantial risk of infectious diseases, resulting in considerable stock losses and prompting the use of antimicrobials. However, this practice contributes to the proliferation of antimicrobial-resistant (AMR) bacteria and resistance genes. Our investigation aimed to explore the potential of biological agents such as bacteriophage CH20 and endolysin LysVPp1 in reducing Vibrio bacterial loads in both rotifer and fish larvae. LysVPp1's lytic activity was assessed by measuring absorbance reduction against various pathogenic Vibrio strains. Phage CH20 exhibited a limited host range, affecting only Vibrio alginolyticus GV09, a highly pathogenic strain. Both CH20 and LysVPp1 were evaluated for their effectiveness in reducing Vibrio load in rotifers or fish larvae through short-setting bioassays. Our results demonstrated the significant lytic effect of endolysin LysVPp1 on strains of Vibrio alginolyticus, Vibrio parahaemolyticus, and Vibrio splendidus. Furthermore, we have showcased the feasibility of reducing the load of pathogenic Vibrio in live feed and fish larvae by using a non-antibiotic-based approach, such as lytic phage and endolysin LysVPp1, thus contributing to the progress of a sustainable aquaculture from a One Health perspective.

12.
Chemosphere ; 358: 142213, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697570

RESUMO

The increasing use of ultraviolet filters has become an emerging contaminant on the coast, posing potential ecological risks. Rotifers are essential components of marine ecosystems, serving as an association between primary producers and higher-level consumers. These organisms frequently encounter ultraviolet filters in coastal waters. This study aimed to assess the comprehensive effects of organic ultraviolet filters, specifically 2-ethylhexyl-4-methoxycinnamate (EHMC), and inorganic ultraviolet filters, namely, titanium dioxide nanoparticles (TiO2 NPs), on the rotifer Brachionus plicatilis. We exposed B. plicatilis to multiple combinations of different concentrations of EHMC and TiO2 NPs to observe changes in life history parameters and the expression of genes related to reproduction and antioxidant responses. Our findings indicated that increased EHMC concentrations significantly delayed the age at first reproduction, reduced the total offspring, and led to considerable alterations in the expression of genes associated with reproduction and stress. Exposure to TiO2 NPs resulted in earlier reproduction and decreased total offspring, although these changes were not synchronised in gene expression. The two ultraviolet filters had a significant interaction on the age at first reproduction and the total offspring of rotifer, with these interactions extending to the first generation. This research offers new insights into the comprehensive effects of different types of ultraviolet filters on rotifers by examining life history parameters and gene expression related to reproduction and stress, highlighting the importance of understanding the impacts of sunscreen products on zooplankton health.


Assuntos
Reprodução , Rotíferos , Titânio , Raios Ultravioleta , Poluentes Químicos da Água , Animais , Rotíferos/genética , Rotíferos/efeitos dos fármacos , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , Reprodução/efeitos dos fármacos , Cinamatos , Protetores Solares/toxicidade , Expressão Gênica/efeitos dos fármacos , Nanopartículas/toxicidade
13.
J Hazard Mater ; 472: 134448, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38728862

RESUMO

Microplastics (MPs) are a major concern in marine ecosystem because MPs are persistent and ubiquitous in oceans and are easily consumed by marine biota. Although many studies have reported the toxicity of MPs to marine biota, the toxicity of environmentally relevant types of MPs is little understood. We investigated the toxic effects of fragmented polyethylene terephthalate (PET) MP, one of the most abundant MPs in the ocean, on the marine rotifer Brachionus koreanus at the individual and molecular level. No significant rotifer mortality was observed after exposure to PET MPs for 24 and 48 h. The ingestion and egestion assays showed that rotifers readily ingested PET MPs in the absence of food but not when food was supplied; thus, there were also no chronic effects of PET MPs. In contrast, intracellular reactive oxygen species levels and glutathione S-transferase activity in rotifers were significantly increased by PET MPs. Transcriptomic and metabolomic analyses revealed that genes and metabolites related to energy metabolism and immune processes were significantly affected by PET MPs in a concentration-dependent manner. Although acute toxicity of PET MPs was not observed, PET MPs are potentially toxic to the antioxidant system, immune system, and energy metabolism in rotifers.


Assuntos
Microplásticos , Polietilenotereftalatos , Espécies Reativas de Oxigênio , Rotíferos , Poluentes Químicos da Água , Animais , Rotíferos/efeitos dos fármacos , Polietilenotereftalatos/toxicidade , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Testes de Toxicidade , Transcriptoma/efeitos dos fármacos , Metabolômica , Ingestão de Alimentos , Multiômica
14.
Gen Comp Endocrinol ; 354: 114519, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677339

RESUMO

Estrogen receptors (ERs) are thought to be the ancestor of all steroid receptors and are present in most lophotrochozoans studied to date, including molluscs, annelids, and rotifers. A number of studies have investigated the functional role of estrogen receptors in invertebrate species, although most are in molluscs, where the receptor is constitutively active. In vitro experiments provided evidence for ligand-activated estrogen receptors in annelids, raising important questions about the role of estrogen signalling in lophotrochozoan lineages. Here, we review the concordant and discordant evidence of estradiol receptor signalling in lophotrochozoans, with a focus on annelids and rotifers. We explore the de novo synthesis of estrogens, the evolution and expression of estrogen receptors, and physiological responses to activation of estrogen receptors in the lophotrochozoan phyla Annelida and Rotifera. Key data are missing to determine if de novo biosynthesis of estradiol in non-molluscan lophotrochozoans is likely. For example, an ortholog for the CYP11 gene is present, but confirmation of substrate conversion and measured tissue products is lacking. Orthologs CYP17 and CYP19 are lacking, yet intermediates or products (e.g. estradiol) in tissues have been measured. Estrogen receptors are present in multiple species, and for a limited number, in vitro data show agonist binding of estradiol and/or transcriptional activation. The expression patterns of the lophotrochozoan ERs suggest developmental, reproductive, and digestive roles but are highly species dependent. E2 exposures suggest that lophotrochozoan ERs may play a role in reproduction, but no strong dose-response relationship has been established. Therefore, we expect most lophotrochozoan species, outside of perhaps platyhelminths, to have an ER but their physiological role remains elusive. Mining genomes for orthologs gene families responsible for steroidogenesis, coupled with in vitro and in vivo studies of the steroid pathway are needed to better assess whether lophotrochozoans are capable of estradiol biosynthesis. One major challenge is that much of the data are divided across a diversity of species. We propose that the polychaetes Capitella teleta or Platyneris dumerilii, and rotifer Brachionus manjavacas may be strong species choices for studies of estrogen receptor signalling, because of available genomic data, established laboratory culture techniques, and gene knockout potential.


Assuntos
Transdução de Sinais , Animais , Transdução de Sinais/fisiologia , Transdução de Sinais/genética , Receptores de Estradiol/metabolismo , Receptores de Estradiol/genética , Anelídeos/metabolismo , Anelídeos/genética , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Rotíferos/metabolismo , Rotíferos/genética , Estradiol/metabolismo
15.
Environ Sci Pollut Res Int ; 31(22): 33086-33097, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38676867

RESUMO

Terrestrial microinvertebrates provide important carbon and nutrient cycling roles in soil environments, particularly in Antarctica where larger macroinvertebrates are absent. The environmental preferences and ecology of rotifers and tardigrades in terrestrial environments, including in Antarctica, are not as well understood as their temperate aquatic counterparts. Developing laboratory cultures is critical to provide adequate numbers of individuals for controlled laboratory experimentation. In this study, we explore aspects of optimising laboratory culturing for two terrestrially sourced Antarctic microinvertebrates, a rotifer (Habrotrocha sp.) and a tardigrade (Acutuncus antarcticus). We tested a soil elutriate and a balanced salt solution (BSS) to determine their suitability as culturing media. Substantial population growth of rotifers and tardigrades was observed in both media, with mean rotifer population size increasing from 5 to 448 ± 95 (soil elutriate) and 274 ± 78 (BSS) individuals over 60 days and mean tardigrade population size increasing from 5 to 187 ± 65 (soil elutriate) and 138 ± 37 (BSS) over 160 days. We also tested for optimal dilution of soil elutriate in rotifer cultures, with 20-80% dilutions producing the largest population growth with the least variation in the 40% dilution after 36 days. Culturing methods developed in this study are recommended for use with Antarctica microinvertebrates and may be suitable for similar limno-terrestrial microinvertebrates from other regions.


Assuntos
Crescimento Demográfico , Rotíferos , Solo , Animais , Regiões Antárticas , Solo/química , Tardígrados
16.
Biotechniques ; 76(5): 174-182, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38425192

RESUMO

Characterizing swimming behavior can provide a holistic assessment of the health, physiology and ecology of microfaunal species when done in conjunction with measuring other biological parameters. However, tracking and quantifying microfauna swimming behavior using existing automated tools is often difficult due to the animals' small size or transparency, or because of the high cost, expertise, or labor needed for the analysis. To address these issues, we created a cost-effective, user-friendly protocol for behavior analysis that employs the free software packages HitFilm and ToxTrac along with the R package 'trajr' and used the method to quantify the behavior of rotifers. This protocol can be used for other microfaunal species for which investigators may face similar issues in obtaining measurements of swimming behavior.


Assuntos
Software , Natação , Natação/fisiologia , Animais , Comportamento Animal/fisiologia , Rotíferos/fisiologia
17.
J Environ Manage ; 356: 120572, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493643

RESUMO

The unfavorable phenomenon of activated sludge bulking that occurs in sewage treatment plants (WWTPs) is caused by the over-proliferation of filamentous bacteria that should be limited by the Lecane rotifers that feed on them; however, predatory, rotiferovorous fungi that often inhabit WWTPs pose a real threat to these organisms. To solve this problem, we investigated the interaction of the fungus Clonostachys rosea, which is a known Biological Control Agent (BCA) and the predacious Zoophagus sp. in simplified laboratory culture conditions. The presence of C. rosea in the cultures reduced the number of active traps, thus translating into a much smaller number of rotifers being caught. The mycelium of C. rosea was labeled with a red fluorescent protein (RFP). The life cycle of C. rosea that were attacking Zoophagus sp. (hunting for rotifers) is described. C. rosea spores germinate into single-celled forms and penetrate the interior of the Zoophagus mycelium where they feed on the cytoplasm. Then is the mycelium produced abundantly and forms conidiophores. This type of life strategy has not been known before. The obtained results demonstrated the potential of C. rosea as a BCA that can be used to protect rotifers in the event of an infection of activated sludge by the predatory fungi that threaten the rotifer population.


Assuntos
Rotíferos , Purificação da Água , Animais , Esgotos , Comportamento Predatório , Bactérias
18.
Aquat Toxicol ; 268: 106853, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330652

RESUMO

Hexabromocyclododecane (HBCD), third-generation brominated flame retardants (BRFs), has aroused worldwide concern because of its wide application and potentially negative impacts on marine ecosystems, but an information gap still exists regarding marine low-trophic organisms. Brachionus plicatilis, the model marine zooplankton, was used in the present study, and its reproductive responses were used as the endpoint to indicate HBCD-induced toxicity. HBCD was suggested to be extremely highly toxic compounds regarding the 96 h-LC50 of 0.58 mg L-1. The sublethal exposure of HBCD injured the reproduction of B. plicatilis: The total number of offspring per female and the key population index calculated from the life table, including the intrinsic rate of population increase (rm) and net reproductive rate (R0), were significantly influenced in a concentration-dependent manner. The reproductive process was also altered, as indicated by the first spawning time, first hatching time and oocyst development time. At the same time, individual survival and growth (body length) were also negatively affected by HBCD. Reactive oxygen species (ROS) were suggested to be responsible for reproductive toxicity mainly because the total ROS contents as well as the main components of •OH and H2O2 greatly increased and resulted in the oxidative imbalance that presented as malondialdehyde (MDA) elevation. Simultaneous activation of the glutathione antioxidant system was accompanied by the apoptosis marker enzymes Caspase-3 and 9, as well as the correlation between ROS content, physiological alteration and cell apoptosis, providing further evidence for this. The integrated biomarker response (IBR) and adverse outcome pathway (AOP) showed that HBCD had a significant toxic effect on B. plicatilis near the concentration range of 96 h-LC50. The establishment of this concentration range will provide a reliable reference for future environmental concentration warning of HBCD in marine.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Rotíferos , Poluentes Químicos da Água , Animais , Feminino , Espécies Reativas de Oxigênio/metabolismo , Ecossistema , Peróxido de Hidrogênio , Poluentes Químicos da Água/toxicidade , Hidrocarbonetos Bromados/toxicidade , Reprodução , Retardadores de Chama/toxicidade
19.
Mar Pollut Bull ; 200: 116121, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354590

RESUMO

While wastewater discharged from in-water cleaning process of ship hulls on rotifer consistently released into aquatic ecosystem, its detrimental effects on non-target animals are largely unclear. In this study, we provide evidence on detrimental effects of hull cleaning wastewater in the monogonont rotifer Brachionus manjavacas by analyzing biochemical and physiological parameters in its oxidative status, survival, lifespan, growth, fecundity, and population. The wastewater contained high concentrations of metals (Zn and Cu) and metal-based antifoulants (CuPT and ZnPT). Significant oxidative stress was observed in response to two wastewater samples [1) raw wastewater (RW) and 2) mechanical filtrated in the cleaning system (MF)]. Higher detrimental effects in survival, lifespan, fecundity, and population growth for 10 days were measured in the RW-exposed rotifers than those results analyzed in the MF-exposed rotifers. Two growth parameters, lorica length and width were also significantly modulated by both wastewater samples. These results indicate that even filtered hull cleaning wastewater would have deleterious effects on the maintenance of the rotifer population when they exposed constantly.


Assuntos
Rotíferos , Poluentes Químicos da Água , Animais , Águas Residuárias , Crescimento Demográfico , Ecossistema , Estágios do Ciclo de Vida , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade
20.
BMC Genomics ; 25(1): 119, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281016

RESUMO

BACKGROUND: Organisms from many distinct evolutionary lineages acquired the capacity to enter a dormant state in response to environmental conditions incompatible with maintaining normal life activities. Most studied organisms exhibit seasonal or annual episodes of dormancy, but numerous less studied organisms enter long-term dormancy, lasting decades or even centuries. Intriguingly, many planktonic animals produce encased embryos known as resting eggs or cysts that, like plant seeds, may remain dormant for decades. Herein, we studied a rotifer Brachionus plicatilis as a model planktonic species that forms encased dormant embryos via sexual reproduction and non-dormant embryos via asexual reproduction and raised the following questions: Which genes are expressed at which time points during embryogenesis? How do temporal transcript abundance profiles differ between the two types of embryos? When does the cell cycle arrest? How do dormant embryos manage energy? RESULTS: As the molecular developmental kinetics of encased embryos remain unknown, we employed single embryo RNA sequencing (CEL-seq) of samples collected during dormant and non-dormant embryogenesis. We identified comprehensive and temporal transcript abundance patterns of genes and their associated enriched functional pathways. Striking differences were uncovered between dormant and non-dormant embryos. In early development, the cell cycle-associated pathways were enriched in both embryo types but terminated with fewer nuclei in dormant embryos. As development progressed, the gene transcript abundance profiles became increasingly divergent between dormant and non-dormant embryos. Organogenesis was suspended in dormant embryos, concomitant with low transcript abundance of homeobox genes, and was replaced with an ATP-poor preparatory phase characterized by very high transcript abundance of genes encoding for hallmark dormancy proteins (e.g., LEA proteins, sHSP, and anti-ROS proteins, also found in plant seeds) and proteins involved in dormancy exit. Surprisingly, this period appeared analogous to the late maturation phase of plant seeds. CONCLUSIONS: The study highlights novel divergent temporal transcript abundance patterns between dormant and non-dormant embryos. Remarkably, several convergent functional solutions appear during the development of resting eggs and plant seeds, suggesting a similar preparatory phase for long-term dormancy. This study accentuated the broad novel molecular features of long-term dormancy in encased animal embryos that behave like "animal seeds".


Assuntos
Rotíferos , Animais , Rotíferos/genética , Perfilação da Expressão Gênica , Transcriptoma , Proteínas/metabolismo , Sementes , Dormência de Plantas , Germinação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA