RESUMO
The purpose of this study was to investigate the effects of dietary saccharin sodium supplementation on production performance, serum biochemical indicators, and rumen fermentation of dairy goats in summer. Twelve Guanzhong dairy goats with similar body weight, days in milk, and milk yield were randomly divided into two dietary treatments: (1) CON: basal diet; (2) SS: basal diet + 150 mg/kg saccharin sodium on the basis of dry matter. The experiment lasted 35 d, including 7 d for adaptation and 28 d for dietary treatments, sampling and data collection. Each dairy goat was housed individually in a clean separate pen with ad libitum access to diet and water. The goats fed SS diet had increased dry matter intake (DMI; P = 0.037), 4% fat corrected milk yield (P = 0.049), energy corrected milk yield (P = 0.037), milk protein yield (P = 0.031), and total solids yield (P = 0.036). Serum activity of aspartate aminotransferase (P = 0.047) and concentrations of 70-kDa heat shock protein (P = 0.090), malondialdehyde (P = 0.092), and total protein (P = 0.057) were lower in goats fed SS diet than those fed CON diet. Supplementation of saccharin sodium tended to increase activity of glutathione peroxidase in serum (P = 0.079). The concentrations of rumen total volatile fatty acid (P = 0.042) and butyrate (P = 0.038) were increased by saccharin sodium supplementation. Dietary supplementation of saccharin sodium increased the relative abundance of Lachnobacterium (P = 0.022), Pseudoramibacter (P = 0.022), Shuttleworthia (P = 0.025), and Syntrophococcus (P = 0.037), but reduced the relative abundance of Prevotella_1 (P = 0.037) and Lachnospiraceae_UCG_008 (P = 0.037) in rumen. Saccharin sodium was observed in feces and urine of goats fed diet supplemented with saccharin sodium, but saccharin sodium was undetectable in the milk of goats receiving SS diet. In conclusion, administration of saccharin sodium was effective in increasing fat and energy corrected milk yield by increasing DMI and improving rumen fermentation and antioxidant capacity of dairy goats in summer. In addition, saccharin sodium residue was undetectable in the milk.
RESUMO
The aim of this study was to investigate the effects of ensiled agricultural byproducts from Qinghai-Tibet plateau on growth performance, rumen microbiota, ruminal epithelium morphology, and nutrient transport-related gene expression in Tibetan sheep. Fourteen male Tibetan sheep were randomly assigned to one of two diets: an untreated diet (without silage inoculum, CON, nâ =â 7) or an ensiled diet (with silage inoculum, ESD, nâ =â 7). The total experimental period lasted for 84 d, including early 14 d as adaption period and remaining 70 d for data collection. The ESD increased average daily gain (Pâ =â 0.046), dry matter intake (Pâ <â 0.001), ammonia nitrogen (Pâ =â 0.045), microbial crude protein (Pâ =â 0.034), and total volatile fatty acids concentration (Pâ <â 0.001), and decreased ruminal pH value (Pâ =â 0.014). The proportion of propionate (Pâ =â 0.006) and the copy numbers of bacteria (Pâ =â 0.01) and protozoa (Pâ =â 0.002) were higher, while the proportion of acetate (Pâ =â 0.028) was lower in the sheep fed ESD compared to CON. Pyrosequencing of the 16S ribosomal RNA gene revealed that ESD increased the relative abundance of Firmicutes, Ruminococcus, Lachnospiraceae_AC2044_group, Lachnospiraceae_XPB1014_group, and Christensenellaceae_R-7_group in the rumen (Pâ <â 0.05), while decreased the relative abundance of Bacteroidota, Prevotellaceae_UCG-003, and Veillonellaceae_UCG-001 (Pâ <â 0.05). Analyses with PICRUSt2 and STAMP indicated that the propionate metabolism pathway was enriched in the sheep fed ESD (Pâ =â 0.026). The ESD increased the rumen papillae height (Pâ =â 0.012), density (Pâ =â 0.036), and surface area (Pâ =â 0.001), and improved the thickness of the total epithelia (Pâ =â 0.018), stratum corneum (Pâ =â 0.040), stratum granulosum (Pâ =â 0.042), and stratum spinosum and basale (Pâ =â 0.004). The relative mRNA expression of cyclin-dependent Kinase 2, CyclinA2, CyclinD2, zonula occludens-1, Occludin, monocarboxylate transporter isoform 1 (MCT1), MCT4, sodium/potassium pump, and sodium/hydrogen antiporter 3 were higher in the rumen epithelial of sheep fed ESD than CON (Pâ <â 0.05). Conversely, the relative mRNA expressions of Caspase 3 and B-cell lymphoma-2 were lower in the sheep fed ESD than CON (Pâ <â 0.05). In conclusion, compared with an untreated diet, feeding an ensiled diet altered the rumen microbial community, enhanced nutrient transport through rumen epithelium, and improved the growth performance of Tibetan sheep.
Tibetan sheep on the Qinghai-Tibet Plateau experience significant nutrient stress while a substantial amount of agricultural byproducts in the region go discarded and wasted. In this study, agricultural byproducts were ensiled and fed to the Tibetan sheep to investigate their effects on growth performance, rumen microorganisms, and nutrient transport through rumen epithelial tissues. Fourteen male Tibetan sheep were randomly assigned to one of two diets: untreated diet (without silage inoculum, CON, nâ =â 7) or ensiled diet (with silage inoculum, ESD, nâ =â 7). After 70 d of feeding, the ESD-fed sheep had a higher body weight than CON. The ensiled diet changed the rumen microbial community and increased the relative abundance of cellulolytic bacteria in the rumen. In addition, the ensiled diet also promoted the development of rumen epithelia and improved the relative expression of gene related to nutrient transport. Overall, the ensiled diet optimized the use of agricultural byproducts and significantly contributed to the production of Tibetan sheep.
Assuntos
Ração Animal , Dieta , Rúmen , Silagem , Animais , Rúmen/microbiologia , Ovinos/fisiologia , Ovinos/crescimento & desenvolvimento , Masculino , Dieta/veterinária , Ração Animal/análise , Silagem/análise , Tibet , Microbioma Gastrointestinal/efeitos dos fármacos , Epitélio , Fenômenos Fisiológicos da Nutrição Animal , Distribuição Aleatória , Bactérias/classificaçãoRESUMO
In this work, the corn straw (CS) with concentrations of 3%, 6%, and 9% (w/v) were pretreated by rumen fluid (RF) and then used for batched mesophilic biogas production. The results showed that after a 6-day pretreatment, volatile fatty acid (VFAs) production of 3.78, 8.27, and 10.4 g/L could be found in 3%, 6%, and 9%, respectively. When concerning with biogas production, the highest accumulative methane production of 149.1 mL CH4/g volatile solid was achieved by 6% pretreated CS, which was 22% and 45% higher than 3% and 9%, respectively. Also, it was 3.6 times higher than the same concentration of unpretreated CS. The results of the microbial community structure analysis revealed that the 6% CS pretreatment not only maintained a microbial community with the highest richness and diversity, but also exhibited the highest relative abundance of Firmicutes (45%) and Euryarchaeota (3.9%). This high abundance was conducive to its elevated production of VFAs and methane. These findings provide scientific reference for the utilization of CS and support the development of agricultural waste resource utilization and environmental protection.
RESUMO
This experiment aimed to investigate whether supplementation of calves with different doses of oregano essential oil (OEO) could promote the development of the gastrointestinal tract and enhance the immune ability of calves by regulating the rumen microbiota. Twenty-four 70-day-old healthy and disease-free Holstein male calves were randomly divided into four groups, with the control group fed a basal diet, and the treatment group provided 4 g, 6 g, and 8 g of oregano essential oil per day in addition to the basal diet. After the 14-day pre-test, a 56-day formal test was conducted. At days 0 and 56 of the standard test period, calves were weighed, the average daily weight gain of calves during the test period was calculated, and serum samples were collected to measure the concentration of immunoglobulins (IgA, IgG, and IgM) in the serum; at day 56 of the formal test period, rumen fluid was collected from the calves, and 16SrRNA was sequenced to analyze changes in the rumen microbiota of the calves. The changes in the rumen microbiota of calves were analyzed by 16SrRNA sequencing. The results of the study showed that (1) OEO supplementation in calves significantly increased end weight and average daily gain (p < 0.05); (2) OEO supplementation in calves significantly increased serum concentrations of immunoglobulins IgA and IgM (p < 0.05); (3) OEO supplementation in calves significantly increased the abundance and diversity of rumen microbial organisms (p < 0.05); (4) OEO supplementation in calves significantly regulates the relative abundance of some species, and biomarkers with significant differences were screened by LEfSe analysis: g_Turicibacter, g_Romboutsia, f_Peptostreptococcaceae, f_Clostridiaceae, g_Clostridium_sensu_stricto_1, o_Clostridiales, g_unclassified_f_Synergistaceae, c_Coriobacteriia, o_Coriobacteriales, f_Atopobiaceae, g_Olsenella, p_Actinobacteriota, g_Defluviitaleaceae_UCG-011, f_Defluviitaleaceae, o_Corynebacteriales, g_Corynebacterium, f_Corynebacteriaceae, g_Shuttleworthia, f_Hungateiclostridiaceae, o_norank_c_Clostridia, g_Saccharofermentans, g_Streptococcus, f_Streptococcaceae, g_unclassified_o_Oscillospirales, and f_unclassified_o_Oscillospirales (p < 0.05, LDA ≥ 3); and (5) OEO supplementation in calves significantly enriched the metabolism of cofactors and vitamins pathway (p < 0.05). (6) Using Superman's correlation analysis, we screened unclassified_c_Clostridia, Shuttleworthia, and Christensenellaceae_R-7_group, three beneficial strains for calves. (7) Daily supplementation with 8g of OEO significantly affected rumen microbiota regulation in calves.
RESUMO
Inositol is a bioactive factor that is widely found in nature; however, there are few studies on its use in ruminant nutrition. This study investigated the effects of different inositol doses and fermentation times on rumen fermentation and microbial diversity, as well as the levels of rumen and blood metabolites in sheep. Rumen fermentation parameters, microbial diversity, and metabolites after different inositol doses were determined in vitro. According to the in vitro results, six small-tailed Han sheep fitted with permanent rumen fistulas were used in a 3 × 3 Latin square feeding experiment where inositol was injected into the rumen twice a day and rumen fluid and blood samples were collected. The in vitro results showed that inositol could increase in vitro dry matter digestibility, in vitro crude protein digestibility, NH3-N, acetic acid, propionic acid, and rumen microbial diversity and affect rumen metabolic pathways (p < 0.05). The feeding experiment results showed that inositol increased the blood concentration of high-density lipoprotein and IgG, IgM, and IL-4 levels. The rumen microbial composition was significantly affected (p < 0.05). Differential metabolites in the rumen were mainly involved in ABC transporters, biotin metabolism, and phenylalanine metabolism, whereas those in the blood were mainly involved in arginine biosynthesis and glutathione and tyrosine metabolism. In conclusion, inositol improves rumen function, affects rumen microorganisms and rumen and blood metabolites and may reduce inflammation, improving animal health.
RESUMO
Introduction: The primary objective of the current study was to evaluate the effects of Flammulina velutipes mushroom residue (FVMR) in a fermented total mixed ration (FTMR) diet on the fattening effect and rumen microorganisms in Guizhou black male goats. Methods: A total of 22 Guizhou black male goats were allocated into two groups using the Randomized Complete Block Design (RCBD) experimental design. The average initial weight was 22.41 ± 0.90 kg and with 11 goats in each group. The control group (group I) was fed the traditional fermentation total mixed ration (FTMR) diet without FVMR. Group II was fed the 30% FVMR in the FTMR diet. Results: The results showed that compared with group I, the addition of FVMR in the goat diet could reduce the feed cost and feed conversion ratio (FCR) of group II (p < 0.01). Notably, the apparent digestibility of crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), and dry matter (DM) were higher in group II (p < 0.01). The levels of growth hormone (GH), immunoglobulin A (IgA), and immunoglobulin M (IgM) in group II were higher than that of group I (p < 0.01), which the level of glutamic oxalacetic transaminase (ALT) and interleukin-6 (IL-6) was noticeably lower than that of group I (p < 0.01). 30% FVMR in FTMR diets had no effect on rumen fermentation parameters and microbial composition at the phylum level of Guizhou black male goats (p > 0.05). However, at the genus level, the relative abundance of bacteroidal_bs11_gut_group, Christensenellaceae_R-7_group and Desulfovibrio in group II was lower than in group I (p < 0.05), and the relative abundance of Lachnospiraceae_ND3007_group was higher than in group I (p < 0.01). Discussion: In conclusion, the results of the current study indicated that 30% FVMR in the FTMR diet improves rumen fermentation and rumen microbial composition in Guizhou black male goats, which improves growth performance, apparent digestibility, and immunity.
RESUMO
Rumen microorganisms can efficiently degrade lignocellulosic wastes to produce volatile fatty acids (VFAs). pH is a key factor in controlling the type and yield of VFAs by affecting the microorganisms involved in rumen fermentation. However, the effects of different pH on rumen microbial diversity, communities, and mechanisms are unclear. In this study, the hydrolysis and acidogenesis of corn straw and diversity, communities, and mechanisms of rumen microorganisms were explored at different initial pHs. Results showed that the highest hemicellulose, cellulose, and lignin degradation efficiency of corn straw was 55.2 %, 38.3 %, and 7.01 %, respectively, and VFA concentration was 10.2 g/L at pH 7.0. Low pH decreased the bacterial diversity and increased the fungal diversity. Rumen bacteria and fungi had different responses to initial pHs, and the community structure of bacteria and fungi had obviously differences at the genus level. The core genera Succiniclasticum, Treponema, and Neocallimastix relative abundance at initial pH 7.0 samples were significantly higher than that at lower initial pHs, reaching 6.01 %, 1.61 %, and 5.35 %, respectively. The bacterial network was more complex than that of fungi. pH, acetic acid, and propionic acid were the main factors influencing the bacterial and fungal community structure. Low pH inhibited the expression of functional genes related to hydrolysis and acidogenesis, explaining the lower hydrolysis and acidogenesis efficiency. These findings will provide a better understanding for rumen fermentation to produce VFAs.
Assuntos
Lignina , Rúmen , Animais , Lignina/metabolismo , Anaerobiose , Rúmen/metabolismo , Rúmen/microbiologia , Hidrólise , Biomassa , Fermentação , Ácidos Graxos Voláteis/metabolismo , Zea mays/metabolismo , Bactérias/metabolismoRESUMO
Soil ingestion by livestock is common in grazing ecosystems, but few studies have been conducted to assess its effect on the animal organism. The topic is worthy of attention because these potential effects are likely to be enriched in the food chain and interfere with animal and human health. In this study, we present an indoor feeding trial conducted based on a completely randomized design to comprehensively evaluate the effects of simulated soil ingestion during grazing on nutrient digestibility, rumen fermentation, and microflora, and mineral deposition in the organs and tissues of sheep. Eighteen Mutton Merino crossbred sheep (42.7 ± 2.34 kg) were randomly allotted to three treatments and fed diets containing 0% (Control), 5% (SOIL5), and 10% (SOIL10) for 62 d, including a 7-d metabolism trial. It was found that soil intake altered the rumen fermentation in sheep, as evidenced by a decrease in total volatile fatty acids (VFA) and acetate concentrations in rumen fluid of 50.6% and 51.3%, respectively (p < 0.01), with soil proportion in the diet increased from 0% to 10%. Soil ingestion also reduced the species richness of rumen bacteria, with the relative abundance of Bacteroidetes decreasing significantly (p < 0.01), while that of Firmicutes and Proteobacteria increased considerably (p < 0.05). In terms of mineral elements deposition, higher levels of iron (Fe) were detected in the spleen and liver, and a higher concentration of copper (Cu) and zinc (Zn) in the liver were found in sheep fed a diet containing 5% soil compared to the other two groups (p < 0.05). Moreover, the concentrations of lead (Pb) in the liver and kidney, and arsenic (As) in the heart were also clearly increased after ingestion of soil (p < 0.05). Our findings indicate that although soil intake had no significant effect on the growth performance of sheep, it altered ruminal fermentation and increased the risk of excessive Fe, Pb, and As in their organism. This study supplies a theoretical basis for risk assessment of soil ingestion in grazing livestock.
Assuntos
Arsênio , Ecossistema , Animais , Ferro , Chumbo , Minerais , Rúmen , OvinosRESUMO
Palm kernel meal (PKM) has been shown to be a high-quality protein source in ruminant feeds. This study focused on the effects of feed, supplemented with different amounts of PKM (ZL-0 as blank group, and ZL-15, ZL-18, and ZL-21 as treatment group), on the quality and flavor profile of Tibetan sheep meat. Furthermore, the deposition of beneficial metabolites in Tibetan sheep and the composition of rumen microorganisms on underlying regulatory mechanisms of meat quality were studied based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry as well as 16S rDNA sequencing. The results of the study showed that Tibetan sheep in the ZL-18 group exhibited superior eating quality and flavor profile while depositing more protein and fat relative to the other groups. The ZL-18 group also changed significantly in terms of the concentration and metabolic pathways of meat metabolites, as revealed by metabolomics. Metabolomics and correlation analyses finally showed that PKM feed mainly affected carbohydrate metabolism in muscle, which in turn affects meat pH, tenderness, and flavor. In addition, 18% of PKM increased the abundance of Christensenellaceae R-7 group, Ruminococcaceae UCG-013, Lachnospiraceae UCG-002, and Family XIII AD3011 group in the rumen but decreased the abundance of Prevotella 1; the above bacteria groups regulate meat quality by regulating rumen metabolites (succinic acid, DL-glutamic acid, etc.). Overall, the addition of PKM may improve the quality and flavor of the meat by affecting muscle metabolism and microorganisms in the rumen.
RESUMO
The purpose of this study is to reveal the effects of different particle sizes of rice straw on the rumen protozoa count, nutrient disappearance rate, rumen fermentation, and microbial community in a rumen simulation technique (RUSITEC) system. In this experiment, a single-factor random trial design was adopted. According to the different particle sizes of rice straw, there were three treatments with three replies in each treatment. Three kinds of goat total mixed ration (TMR), with the same nutrients were used to carry out a 10 days in vitro fermentation experiment using the rumen simulation system developed by Hunan Agricultural University, including 6 days the pretrial period and 4 days formal period. This study found that the organic matter disappearance rate, concentrations of total volatile fatty acids (VFAs), acetate, propionate, and iso-butyrate were greatest in the 4 mm group (p < 0.05). There were no significant differences in the alpha diversity, among the three groups (p > 0.05). The relative abundance of Treponema and Ruminococcus of the 2 mm group increased; the relative abundance of Butyrivibrio and Prevotella in samples increased in the 4 mm group. In addition, the results of correlation analysis showed that Prevotella and Ruminococcus was positively correlated with butyrate, ammonia-N, dOM and d ADF (p < 0.05) and negatively correlated with valerate (p < 0.05); Oscillospira was positively correlated with valerate (p < 0.01) and negatively correlated with propionate, butyrate, ammonia-N, dOM and dADF (p < 0.05). The present results imply that compared to the other groups, rice straw particle size of 4 mm may improve the disappearance rate of nutrients and promote the production of volatile fatty acids by regulating ruminal microorganisms.
RESUMO
Recently, returning straw to the fields has been proved as a direct and effective method to tackle soil nutrient loss and agricultural pollution. Meanwhile, the slow decomposition of straw may harm the growth of the next crop. This study aimed to determine the effects of rumen microorganisms (RMs) on straw decomposition, bacterial microbial community structure, soil properties, and soil enzyme activity. The results showed that RMs significantly enhanced the degradation rate of straw in the soil, reaching 39.52%, which was 41.37% higher than that of the control on the 30th day after straw return. After 30 d, straw degradation showed a significant slower trend in both the control and the experimental groups. According to the soil physicochemical parameters, the application of rumen fluid expedited soil matter transformation and nutrient buildup, and increased the urease, sucrase, and cellulase activity by 10%â20%. The qualitative analysis of straw showed that the hydroxyl functional group structure of cellulose in straw was greatly damaged after the application of rumen fluid. The analysis of soil microbial community structure revealed that the addition of rumen fluid led to the proliferation of Actinobacteria with strong cellulose degradation ability, which was the main reason for the accelerated straw decomposition. Our study highlights that returning rice straw to the fields with rumen fluid inoculation can be used as an effective measure to enhance the biological value of recycled rice straw, proposing a viable solution to the problem of sluggish straw decomposition.
Assuntos
Microbiota , Oryza , Animais , Rúmen/metabolismo , Agricultura/métodos , Solo/química , Bactérias/metabolismo , Oryza/metabolismo , Microbiologia do Solo , CeluloseRESUMO
A close association exists among testicular function, gut microbiota regulation, and organismal metabolism. In this study, serum and seminal plasma metabolomes, and the rumen microbiome of sheep with significant differences in sperm viability, were explored. Serum and seminal plasma metabolomes differed significantly between high-motility (HM) and low-motility (LM) groups of sheep, and 39 differential metabolites closely related to sperm motility in sheep were found in seminal plasma metabolomes, while 35 were found in serum samples. A 16S rRNA sequence analysis showed that the relative abundance of HM and LM rumen microorganisms, such as Ruminococcus and Quinella, was significantly higher in the HM group, whereas genera such as Rikenellaceae_RC9_gut_group and Lactobacillus were enriched in the mid-LM group. Serum hormone assays revealed that serum follicle-stimulating hormone (FSH) and MT levels were significantly lower in the LM group than in the HM group, whereas serum glucocorticoid (GC) levels were higher in the LM group than in the HM group, and they all affected sperm motility in sheep. Ruminococcus and other rumen microorganisms were positively correlated with sperm motility, whereas Lactobacillus was negatively correlated with FSH and GCs levels. Our findings suggest that rumen microbial activity can influence the host metabolism and hormone levels associated with fertility in sheep.
RESUMO
This experiment was conducted to investigate the effects of different dosages and types of medium-chain fatty acids (MCFAs) on rumen fermentation in vitro under low- and high-concentrate diets. For this purpose, two in vitro experiments (Exp.) were conducted. In Exp. 1, the concentrate-roughage ratio of the fermentation substrate [total mixed rations (TMR), dry matter (DM) basis] was 30:70 (low-concentrate diet), while in Exp. 2, it was 70:30 (high-concentrate diet). Three types of MCFAs with octanoic acid (C8 ), capric acid (C10 ), and lauric acid (C12 ) were added accounting for 1.5%, 6%, 9%, and 15% of the in vitro fermentation substrate weight (200 mg or 1 g, DM basis) based on control group, respectively. The results showed that the addition of MCFAs all could significantly reduce methane (CH4 ) production and the number of rumen protozoa, methanogens, and methanobrevibacter under the two diets with the dosages increased (p < 0.05). In addition, MCFAs had a certain degree of improvement on rumen fermentation and influenced in vitro digestibility under low- and high-concentrate diets, and their effects were related to the dosages and types of MCFAs. This study provided a theoretical basis for the selection of types and dosages of MCFAs in ruminants production.
Assuntos
Ácidos Graxos , Rúmen , Animais , Fermentação , Dieta/veterinária , Nutrientes , MetanoRESUMO
This study examined the influences of coated folic acid (CFA) and coated riboflavin (CRF) on bull performance, nutrients digestion and ruminal fermentation. Forty-eight Angus bulls based on a randomised block and 2 × 2 factorial design were assigned to four treatments. The CFA of 0 or 6 mg of folic acid/kg DM was supplemented in diets with CRF 0 or 60 mg riboflavin (RF)/kg DM. Supplementation of CRF in diets with CFA had greater increase in daily weight gain and feed efficiency than in diets without CFA. Supplementation with CFA or CRF enhanced digestibility of DM, organic matter, crude protein, neutral-detergent fibre and non-fibre carbohydrate. Ruminal pH and ammonia N content decreased and total volatile fatty acids concentration and acetate to propionate ratio elevated for CFA or CRF addition. Supplement of CFA or CRF increased the activities of fibrolytic enzymes and the numbers of total bacteria, protozoa, fungi, dominant fibrolytic bacteria and Prevotella ruminicola. The activities of α-amylase, protease and pectinase and the numbers of Butyrivibrio fibrisolvens and Ruminobacter amylophilus were increased by CFA but were unaffected by CRF. Blood concentration of folate elevated and homocysteine decreased for CFA addition. The CRF supplementation elevated blood concentrations of folate and RF. These findings suggested that CFA or CRF inclusion had facilitating effects on performance and ruminal fermentation, and combined addition of CFA and CRF had greater increase in performance than CFA or CRF addition alone in bulls.
Assuntos
Ácido Fólico , Rúmen , Animais , Bovinos , Masculino , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais , Digestão , Fermentação , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Nutrientes/metabolismo , Rúmen/metabolismoRESUMO
The fermentation substrate was supplemented with 0% guanidinoacetic acid (GAA) (control group, CON), 0.2% GAA (GAA02), 0.4% GAA (GAA04), 0.6% GAA (GAA06) and 0.8% GAA (GAA08) for 48 h of in vitro fermentation. Gas production was recorded at 2, 4, 6, 8, 12, 24, 36, and 48 h of fermentation. The gas was collected, and the proportions (%, v/v) of H2, CH4 and CO2 were determined. The rumen fermentation parameters, including pH, ammonia nitrogen (NH3-N), microbial protein (MCP) and volatile fatty acids (VFAs), were also determined. Furthermore, the bacterial community structure was analyzed through 16S rRNA high-throughput sequencing. The gene functions were predicted using PICRUSt1 according to the Kyoto Encyclopedia of Genes and Genomes (KEGG). The results showed that with the increase in GAA supplementation levels, the MCP and the concentration of rumen propionate were significantly increased, while the concentration of isovalerate was significantly decreased (p < 0.05). The results of microbial diversity and composition showed that the Shannon index was significantly decreased by supplementation with GAA at different levels (p < 0.05), but the relative abundance of norank_f_F082 and Papillibacter in the GAA06 group was significantly increased (p < 0.05). Especially in group GAA08, the relative abundances of Bacteroidota, Prevotella and Prevotellaceae_UCG-001 were significantly increased (p < 0.05). The results of gene function prediction showed that the relative abundances of the functions of flagellar assembly, bacterial chemotaxis, plant-pathogen interaction, mismatch repair and nucleotide excision repair were significantly decreased (p < 0.05), but the relative abundances of bile secretion and protein digestion and absorption were significantly increased (p < 0.05). In conclusion, supplementation with 0.8% GAA enhanced in vitro rumen fermentation parameters, increased the relative abundance of Prevotella and Prevotellaceae_UCG-001 in the rumen, and increased the metabolic pathways of bile secretion and protein digestion and absorption.
RESUMO
All organisms have a biological clock system which is strongly tied to how well an organism digests food and develops. This study aimed to understand the effects of circadian rhythm and feeding modes on rumen fermentation and microorganisms in Hu sheep. Forty-five healthy Hu sheep were randomly divided into three treatment groups of 15 sheep in each group, wherein they were fed the same concentrate and roughage. Under the condition that the nutrient-feeding amount was consistent throughout the day, the concentrate-to-forage ratio was dynamically adjusted during the day and night. Rumen fluid collected after the feeding experiment was used to determine the study parameters; the results showed a connection between rumen fermentation and the circadian clock. Volatile fatty acids (VFAs), pH, and NH3-N were significantly influenced by the fermentation duration (p < 0.05). The activities of digestive enzymes also showed a relationship with nutrition and circadian rhythm, and there were differences in the digestive enzyme activities of amylase, lipase, and cellulase (p < 0.05). Dominant microorganisms, such as Saccharomycetes and Mucor, were more abundant in the daytime of the high-concentrate fed group. The correlation among the study objectives was evident from the differences in enzyme activity and microbial diversity among the treatment groups. On the basis of the circadian rhythm characteristics of Hu sheep, changes in the feeding mode of Hu sheep and only adjusting the proportion of concentrate and forage in the morning and evening showed that feeding diets with the high-concentrate ratio in the day significantly reduced rumen PH and increased NH3-N concentration (p < 0.05). Under this feeding pattern, the activities of major digestive enzymes in the rumen, such as amylase and lipase, were significantly increased (p < 0.05), and the microbial diversity was also improved.
RESUMO
Ruminal microflora is closely correlated with the ruminant's diet. However, information regarding the effect of high concentrate diets on rumen microflora in yaks is lacking. In the current study, 24 healthy male yaks were randomly assigned to two groups, each fed with different diets: less concentrate (LC; concentrate: coarse = 40: 60) and high concentrate (HC; concentrate: coarse = 80: 20) diets. Subsequently, a 21-day feeding trial was performed with the yaks, and rumen fluid samples were collected and compared using 16 s rRNA sequencing. The results showed that NH3-N, total VFA, acetate, butyrate, isobutyrate, and isovalerate were significantly higher in the HC group than that in the LC group (p < 0.05), while microbial diversity and richness were significantly lower in the HC group (p < 0.05). Principal coordinate analysis indicated that rumen microflora was significantly different in LC and HC groups (p < 0.05). In the rumen, phyla Firmicutes and Bacteroidota were the most abundant bacteria, with Firmicutes being more abundant, and Bacteroidota being less abundant in the HC group than those found in the LC group. Christensenellaceae_R-7_group and Prevotella are the highest abundant ones at the genus level. The relative abundance of Acetitomaculum, Ruminococcus, and Candidatus_Saccharimonas were significantly higher in the HC group than that in the LC group (p < 0.05), while the relative abundance of Olsenella was significantly lower in the HC group than in the LC group (p < 0.05). Compared to the LC group, the relative abundance of Prevotella, Ruminococcus, and Candidatus_Saccharimonas was significantly higher in the HC group. The relative abundances of Prevotella, Prevotellaceae_UCG-003, Olsenella, Ruminococcus, Acetitomaculum, Candidatus_Saccharimonas, and NK4A214_group were correlated with ruminal fermentation parameters (p < 0.05). Furthermore, PICRUSt 2 estimation indicated that microbial genes associated with valine, leucine, and isoleucine biosynthesis were overexpressed in the rumen microflora of yaks in the HC group (p < 0.05). Conclusively, our results suggest that high concentrate diets affect the microflora composition and fermentation function in yak rumen. The present findings would provide new insights into the health of yaks under high concentrate feeding conditions and serve as a potent reference for the short-term fattening processes of yaks.
RESUMO
Rumen microorganisms have the ability to efficiently hydrolyze and acidify lignocellulosic biomass. The effectiveness of long-term rumen microorganism fermentation of lignocellulose in vitro for producing volatile fatty acids (VFAs) is unclear. The feasibility of long-term rumen microorganism fermentation of lignocelluose was evaluated in this study, and a stable VFA production was successfully realized for 120 d. Results showed that VFA concentration reached to 5.32-8.48 g/L during long-term fermentation. Hydrolysis efficiency of hemicellulose and cellulose reached 36.5%-52.2% and 29.4%-38.4%, respectively. A stable bacterial community was mainly composed of Prevotella, Rikenellaceae_RC9_gut_group, Ruminococcus, and Succiniclasticum. VFA accumulation led to a pH decrease, which caused the change of bacterial community structure. Functional prediction showed that the functional genes related to hydrolysis and acidogenesis of corn stover were highly expressed during long-term fermentation. The successful long-term rumen fermentation to produce VFAs is of great significance for the practical application of rumen microorganisms.
Assuntos
Rúmen , Zea mays , Animais , Biomassa , Ácidos Graxos Voláteis , Fermentação , Rúmen/microbiologia , Zea mays/químicaRESUMO
Bioaugmenting lignocellulose digestion with potent lignocellulolytic microbiomes (LMs) facilitates efficient biomethanation. Assessing the metabolic roles of microbial communities of the LMs and their complex interactions with the indigenous anaerobic digester microbiome is pivotal in implementing bioaugmentation. Multiple meta-omics are the frontline approaches to investigating gene functions, metabolic roles, and the ecological niches of LMs.
Assuntos
Lignina , Microbiota , Anaerobiose , Lignina/metabolismoRESUMO
Rumen microorganisms turn small N-containing compounds into amino acids (AA) and contribute considerably to the supply of AA absorbed from the small intestine. Previous studies summarized the literature on microbial AA patterns, most recently in 2017 (Sok et al. Journal of Dairy Science, 100, 5241-5249). The present study intended to identify the microbial AA pattern typical when feeding Central European diets and a maximum proportion of concentrate (PCO; dry matter (DM) basis) of 0.60. Data sets were created from the literature for liquid (LAB)- and particle (PAB)-associated bacteria, total bacteria and protozoa, including 16, 9, 27 and 8 studies and 36, 21, 60 and 18 diets respectively. Because the only differences detected between LAB and PAB were slightly higher Phe and lower Thr percentages in PAB (p < 0.05), results for bacteria were pooled. A further data set evaluated AA-N (AAN) as a proportion of total N in microbial fractions and a final data set estimated protozoal contributions to total microbial N (TMN) flow to the duodenum, which were used to calculate weighted TMN AA patterns. Protozoa showed higher Lys, Asp, Glu, Ile and Phe and lower Ala, Arg, Gly, Met, Ser, Thr and Val proportions than bacteria (p < 0.05). The AAN percentage of total N in bacteria and protozoa showed large, unexplained variations, averaging 79.0% and 70.6% (p > 0.05) respectively. Estimation of protozoal contribution to TMN resulted in a cattle-specific mixed model including PCO and DM intake (DMI) per unit of metabolic body size (kg0.75 ) as fixed effects (RMSE = 3.77). With moderate PCO and DMI between 80 and 180 g/kg0.75 , which corresponds to a DMI of approximately 10 to 25 kg in a cow with 650 kg body weight, protozoal contribution ranged between 9% and 26% of TMN. Within this range, the estimated protozoal contribution to TMN resulted in minor effects on the total microbial AA pattern.