Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Front Immunol ; 15: 1454857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39263222

RESUMO

An oral Controlled Human Infection Model (CHIM) with wild-type S. Typhi was re-established allowing us to explore the development of immunity. In this model, ~55% of volunteers who received the challenge reached typhoid diagnosis criteria (TD), while ~45% did not (NoTD). Intestinal macrophages are one of the first lines of defense against enteric pathogens. Most organs have self-renewing macrophages derived from tissue-resident progenitor cells seeded during the embryonic stage; however, the gut lacks these progenitors, and all intestinal macrophages are derived from circulating monocytes. After infecting gut-associated lymphoid tissues underlying microfold (M) cells, S. Typhi causes a primary bacteremia seeding organs of the reticuloendothelial system. Following days of incubation, a second bacteremia and clinical disease ensue. S. Typhi likely interacts with circulating monocytes or their progenitors in the bone marrow. We assessed changes in circulating monocytes after CHIM. The timepoints studied included 0 hours (pre-challenge) and days 1, 2, 4, 7, 9, 14, 21 and 28 after challenge. TD participants provided extra samples at the time of typhoid diagnosis, and 48-96 hours later (referred as ToD). We report changes in Classical Monocytes -CM-, Intermediate Monocytes -IM- and Non-classical Monocytes -NCM-. Changes in monocyte activation markers were identified only in TD participants and during ToD. CM and IM upregulated molecules related to interaction with bacterial antigens (TLR4, TLR5, CD36 and CD206). Of importance, CM and IM showed enhanced binding of S. Typhi. Upregulation of inflammatory molecules like TNF-α were detected, but mechanisms involved in limiting inflammation were also activated (CD163 and CD354 downregulation). CM upregulated molecules to interact/modulate cells of the adaptive immunity, including T cells (HLA-DR, CD274 and CD86) and B cells (CD257). Both CM and IM showed potential to migrate to the gut as integrin α4ß7 was upregulated. Unsupervised analysis revealed 7 dynamic cell clusters. Five of these belonged to CM showing that this is the main population activated during ToD. Overall, we provide new insights into the changes that diverse circulating monocyte subsets undergo after typhoid diagnosis, which might be important to control this disease since these cells will ultimately become intestinal macrophages once they reach the gut.


Assuntos
Monócitos , Salmonella typhi , Febre Tifoide , Humanos , Febre Tifoide/diagnóstico , Febre Tifoide/imunologia , Salmonella typhi/imunologia , Monócitos/imunologia , Masculino , Adulto , Feminino , Adulto Jovem , Macrófagos/imunologia
2.
Front Immunol ; 15: 1457785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39257585

RESUMO

Controlled human infection model (CHIM) studies, which involve deliberate exposure of healthy human volunteers to an infectious agent, are recognised as important tools to advance vaccine development. These studies not only facilitate estimates of vaccine efficacy, but also offer an experimental approach to study disease pathogenesis and profile vaccine immunogenicity in a controlled environment, allowing correlation with clinical outcomes. Consequently, the data from CHIMs can be used to identify immunological correlates of protection (CoP), which can help accelerate vaccine development. In the case of invasive Salmonella infections, vaccination offers a potential instrument to prevent disease. Invasive Salmonella disease, caused by the enteric fever pathogens Salmonella enterica serovar Typhi (S. Typhi) and S. Paratyphi A, B and C, and nontyphoidal Salmonella (iNTS), remains a significant cause of mortality and morbidity in low- and middle-income countries, resulting in over 200,000 deaths and the loss of 15 million DALYs annually. CHIM studies have contributed to the understanding of S. Typhi infection and provided invaluable insight into the development of vaccines and CoP following vaccination against S. Typhi. However, CoP are less well understood for S. Paratyphi A and iNTS. This brief review focuses on the contribution of vaccine-CHIM trials to our understanding of the immune mechanisms associated with protection following vaccines against invasive Salmonella pathogens, particularly in relation to CoP.


Assuntos
Infecções por Salmonella , Vacinas contra Salmonella , Humanos , Vacinas contra Salmonella/imunologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/prevenção & controle , Salmonella typhi/imunologia , Vacinação , Eficácia de Vacinas , Febre Tifoide/prevenção & controle , Febre Tifoide/imunologia , Salmonella/imunologia
3.
Medicina (Kaunas) ; 60(9)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39336445

RESUMO

Background and Objectives: In the undertaken study, proteomics alterations of blood-borne XDR S. Typhi isolated from Pakistan were investigated using mass spectrometry. Materials and Methods: MDR and XDR S. Typhi total protein lysates were fractionated, digested, and processed for nanoflow LC-LTQ-Orbitrap MS analysis. Results: Among the 1267 identified proteins, 37 were differentially regulated, of which 28 were up-regulated, and 9 were down-regulated in XDR S. Typhi as compared to MDR S. Typhi. Based on the functional annotation, proteins found up-regulated are involved mainly in metabolic pathways (ManA, FadB, DacC, GpmA, AphA, PfkB, TalA, FbaB, OtsA, 16504242), the biosynthesis of secondary metabolites (ManA, FadB, GlpB, GpmA, PfkB, TalA, FbaB, OtsA), microbial metabolism in diverse environments (FadB, GpmA, PfkB, NfnB, TalA, FbaB), and ABC transporters (PstS, YbeJ, MglB, RbsB, ArtJ). Proteins found down-regulated are involved mainly in carbon metabolism (FadB, GpmA, PfkB, FalA, FbaB) and the biosynthesis of amino acids (GpmA, PfkB, TalA, FbaB). Most of the identified differential proteins were predicted to be antigenic, and matched with resistome data. Conclusions: A total of 28 proteins were up-regulated, and 9 were down-regulated in XDR S. Typhi. Further characterization of the identified proteins will help in understanding the molecular signaling involved in the emergence of XDR S. Typhi.


Assuntos
Salmonella typhi , Regulação para Cima , Salmonella typhi/efeitos dos fármacos , Paquistão , Humanos , Proteínas de Bactérias , Farmacorresistência Bacteriana Múltipla/genética , Febre Tifoide/microbiologia , Proteômica/métodos
4.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39338403

RESUMO

The emergence of extensively drug-resistant Salmonella Typhi (XDR-S. Typhi) poses a grave public health threat due to its resistance to fluoroquinolones and third-generation cephalosporins. This resistance significantly complicates treatment options, underscoring the urgent need for new therapeutic strategies. In this study, we synthesized pyrazine carboxamides (3, 5a-5d) in good yields through the Suzuki reaction. Afterward, we evaluate their antibacterial activities against XDR-S. Typhi via the agar well diffusion method; 5d has the strongest antibacterial activity with MIC 6.25 (mg/mL). Moreover, in vitro Alkaline Phosphatase inhibitor activity was also determined; 5d is the most potent compound, with an IC50 of 1.469 ± 0.02 µM. Further, in silico studies were performed to find the type of interactions between synthesized compounds and target proteins.

5.
Front Immunol ; 15: 1384642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39328410

RESUMO

Despite decades of intense research, our understanding of the correlates of protection against Salmonella Typhi (S. Typhi) infection and disease remains incomplete. T follicular helper cells (TFH), an important link between cellular and humoral immunity, play an important role in the development and production of high affinity antibodies. While traditional TFH cells reside in germinal centers, circulating TFH (cTFH) (a memory subset of TFH) are present in blood. We used specimens from a typhoid controlled human infection model whereby participants were immunized with Ty21a live attenuated S. Typhi vaccine and then challenged with virulent S. Typhi. Some participants developed typhoid disease (TD) and some did not (NoTD), which allowed us to assess the association of cTFH subsets in the development and prevention of typhoid disease. Of note, the frequencies of cTFH were higher in NoTD than in TD participants, particularly 7 days after challenge. Furthermore, the frequencies of cTFH2 and cTFH17, but not cTFH1 subsets were higher in NoTD than TD participants. However, we observed that ex-vivo expression of activation and homing markers were higher in TD than in NoTD participants, particularly after challenge. Moreover, cTFH subsets produced higher levels of S. Typhi-specific responses (cytokines/chemokines) in both the immunization and challenge phases. Interestingly, unsupervised analysis revealed unique clusters with distinct signatures for each cTFH subset that may play a role in either the development or prevention of typhoid disease. Importantly, we observed associations between frequencies of defined cTFH subsets and anti-S. Typhi antibodies. Taken together, our results suggest that circulating TFH2 and TFH17 subsets might play an important role in the development or prevention of typhoid disease. The contribution of these clusters was found to be distinct in the immunization and/or challenge phases. These results have important implications for vaccines aimed at inducing long-lived protective T cell and antibody responses.


Assuntos
Salmonella typhi , Células T Auxiliares Foliculares , Febre Tifoide , Vacinas Tíficas-Paratíficas , Humanos , Salmonella typhi/imunologia , Febre Tifoide/imunologia , Febre Tifoide/prevenção & controle , Vacinas Tíficas-Paratíficas/imunologia , Vacinas Tíficas-Paratíficas/administração & dosagem , Células T Auxiliares Foliculares/imunologia , Masculino , Feminino , Adulto , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Adulto Jovem , Polissacarídeos Bacterianos/imunologia , Imunização , Administração Oral , Adolescente
6.
J Glob Antimicrob Resist ; 39: 69-72, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39173740

RESUMO

OBJECTIVES: The United States Centers for Disease Control and Prevention (CDC) conducts active surveillance for typhoid fever cases caused by Salmonella enterica serovar Typhi (Typhi). Here we describe the characteristics of the first two cases of mph(A)-positive azithromycin-resistant Typhi identified through US surveillance. METHODS: Isolates were submitted to public health laboratories, sequenced, and screened for antimicrobial resistance determinants and plasmids, as part of CDC PulseNet's routine genomic surveillance. Antimicrobial susceptibility testing and long-read sequencing were also performed. Basic case information (age, sex, travel, outcome) was collected through routine questionnaires; additional epidemiological data was requested through follow-up patient interviews. RESULTS: The patients are related and both reported travel to India (overlapping travel dates) before illness onset. Both Typhi genomes belong to the GenoTyphi lineage 4.3.1.1 and carry the azithromycin-resistance gene mph(A) on a PTU-FE (IncFIA/FIB/FII) plasmid. These strains differ genetically from mph(A)-positive Typhi genomes recently reported from Pakistan, suggesting independent emergence of azithromycin resistance in India. CONCLUSIONS: Cases of typhoid fever caused by Typhi strains resistant to all available oral treatment options are cause for concern and support the need for vaccination of travellers to Typhi endemic regions. US genomic surveillance serves as an important global sentinel for detection of strains with known and emerging antimicrobial resistance profiles, including strains from areas where routine surveillance is not conducted.

7.
Infect Genet Evol ; 123: 105632, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964564

RESUMO

OBJECTIVES: The aim of this study was to understand the status of extensively drug-resistance (XDR) genotype in Salmonella enterica serotype Typhi (S. Typhi) recovered during the pre to post COVID-19 pandemic period using Multiplex PCR. METHODS: A longitudinal descriptive study was carried out during five years. Antibiotic susceptibility testing was performed according to the Clinical Laboratory Standards Institute antimicrobial susceptibility testing guidelines. The identification of S. Typhi, the detection of their high-risk lineages and XDR genotype was done using single nucleotide polymorphism-based multiplex PCR. RESULTS: A total of four hundred nine (n = 409) S. Typhi isolates were recovered during pre to post COVID-19 pandemic period. Among them, 30.81% belonged to the pre COVID-19 period while 69.19% to the post COVID-19 period. Different trends in antibiotic resistance in S. Typhi isolates with high prevalence of XDR-S. Typhi were observed. However, there was comparatively different frequency of their occurrence among the S. Typhi isolates recovered during pre to post COVID-19 pandemic period. Multiplex PCR showed that the majority of S. Typhi isolates were the H58 haplotype or genotype 4.3.1 which contained XDR genotype. CONCLUSIONS: The increasing episodes of XDR-S. Typhi causing typhoid fever in endemic areas is alarming. The antibiotic resistance in food and water borne pathogens greatly contribute to the dissemination of the antimicrobial resistance in pathogenic bacteria, which has now been considered as a global concern.


Assuntos
Antibacterianos , COVID-19 , Salmonella typhi , Febre Tifoide , Humanos , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/genética , COVID-19/epidemiologia , Antibacterianos/farmacologia , Febre Tifoide/epidemiologia , Febre Tifoide/microbiologia , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Adulto , Masculino , Testes de Sensibilidade Microbiana , Estudos Longitudinais , Feminino , Pré-Escolar , Criança , Adulto Jovem , Genótipo , Adolescente , Pessoa de Meia-Idade , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla/genética , Lactente , Reação em Cadeia da Polimerase Multiplex
8.
Cureus ; 16(5): e60217, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38868285

RESUMO

Salmonella typhi (S. typhi) infections typically present with fever and gastrointestinal symptoms. This case report on S. typhi enteritis documents atypical clinical, radiological, and endoscopic findings raising diagnostic challenges. A 31-year-old male in the Kingdom of Saudi Arabia (KSA) presented with severe abdominal pain, vomiting, bloody diarrhea, and no fever. Initial diagnosis included amebiasis and other gastroenteritis infections. Despite treatment with ciprofloxacin and metronidazole, the patient's condition did not improve, and he kept having intractable abdominal pain and vomiting. Subsequent investigations, including abdominal ultrasound and esophagogastroduodenoscopy, revealed extensive and rapidly progressive intestinal inflammation with wall thickening and ascites. Stool culture eventually identified a multidrug-resistant strain of S. typhi, sensitive only to ceftriaxone. Treatment with ceftriaxone and continuous infusion of proton pump inhibitor (PPI) led to significant improvement. The absence of fever in the context of bloody diarrhea, and the rapid development of ascites not improving with first-line treatment of gastroenteritis, led to the search for other diagnoses such as inflammatory bowel syndromes or tuberculosis. The presentation of diffuse intestinal wall thickening with intractable vomiting, bloody diarrhea, and progressively increasing ascites is not frequently encountered with S. typhi. The case also underscores the growing concern of antibiotic-resistant S. typhi strains. The patient's response to targeted antibiotic therapy emphasizes the importance of accurate microbial identification and susceptibility testing in managing infectious diseases. This case report illustrates an atypical presentation of S. typhi enteritis with progressively increasing ascites and increased intestinal wall thickening. The uncommon complicated clinical picture led to challenges in diagnosis and management. It emphasizes the need for high clinical suspicion and comprehensive diagnostic approaches in atypical cases of common infections, especially in the context of increasing antibiotic resistance.

9.
Microb Pathog ; 191: 106676, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710290

RESUMO

Enteric fever, a persistent public health challenge in developing regions, is exacerbated by suboptimal socioeconomic conditions, contaminated water and food sources, and insufficient sanitation. This study delves into the antimicrobial susceptibility of Salmonella Typhi, uncovering the genetic underpinnings of its resistance. Analyzing 897 suspected cases, we identified a significant prevalence of typhoid fever, predominantly in males (58.3 %) and younger demographics. Alarmingly, our data reveals an escalation in resistance to both primary and secondary antibiotics, with cases of multi-drug resistant (MDR) and extensively drug-resistant (XDR) S. Typhi reaching 14.7 % and 43.4 %, respectively, in 2021. The Multiple Antibiotic Resistance (MAR) index exceeded 0.2 in over half of the isolates, signaling widespread antibiotic misuse. The study discerned 47 unique antibiotic resistance patterns and pinpointed carbapenem and macrolide antibiotics as the remaining effective treatments against XDR strains, underlining the critical need to preserve these drugs for severe cases. Molecular examinations identified blaTEM, blaSHV, and blaCTX-M genes in ceftriaxone-resistant strains, while qnrS was specific to ciprofloxacin-resistant variants. Notably, all examined strains exhibited a singular mutation in the gyrA gene, maintaining wild-type gyrB and parC genes. The erm(B) gene emerged as the primary determinant of azithromycin resistance. Furthermore, a distressing increase in resistance genes was observed over three years, with erm(B), blaTEM and qnrS showing significant upward trends. These findings are a clarion call for robust antimicrobial stewardship programs to curtail inappropriate antibiotic use and forestall the burgeoning threat of antibiotic resistance in S. Typhi.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Salmonella typhi , Febre Tifoide , Febre Tifoide/microbiologia , Febre Tifoide/epidemiologia , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/genética , Humanos , Antibacterianos/farmacologia , Masculino , Feminino , Farmacorresistência Bacteriana Múltipla/genética , Adulto , Pré-Escolar , Adolescente , Criança , Adulto Jovem , Pessoa de Meia-Idade , Lactente , Prevalência , Idoso , Farmacorresistência Bacteriana/genética , Mutação , Proteínas de Bactérias/genética
10.
Gene ; 894: 147943, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37956962

RESUMO

Fluoroquinolone resistance in Salmonella has been reported worldwide and poses a serious public health threat in developing countries. Multiple factors contribute to fluoroquinolone resistance, including mutations in DNA gyrase and the acquisition of antimicrobial resistance genes. Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever in humans, which is highly prevalent in counties with poor sanitation and hygiene standards. Here, we reported S. Typhi clinical isolates that showed varying degrees of susceptibility to fluoroquinolones and were characterized by Analytical Profile Index 20E test kit and 16S rRNA sequencing. S. Typhi strain S27 was resistant to fluoroquinolones and had multiple mutations in the gyrA gene. The gyrA lies in the quinolone resistance determining region of S. Typhi and has mutations at codon 83 (Ser83Phe), codon 87 (Asp87Gly), codon 308 (Lys308Glu), and codon 328 (Val328Ile). S. Typhi strain S6 has no gyrA mutations and is sensitive to fluoroquinolones but forms a strong biofilm relative to S. Typhi S27. Transcriptional analysis of biofilm associated genes revealed that the waaG gene was significantly downregulated. The ΔwaaG mutant showed a significant decrease in persister cells and a strong biofilm formation relative to wild type and gyrA mutant. The gyrA tetra mutant persister assay revealed a significant increase in persister cells compared to wild type and ΔwaaG. Collectively, this is the first report of S. Typhi's two key genes and their roles in antibiotic tolerance, biofilm formation, and fluoroquinolone resistance that can help in understanding the mechanism of persister formation and eradication.


Assuntos
Fluoroquinolonas , Salmonella typhi , Humanos , Salmonella typhi/genética , Fluoroquinolonas/farmacologia , RNA Ribossômico 16S , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , DNA Girase/genética , Códon , Farmacorresistência Bacteriana/genética
11.
Heliyon ; 9(11): e22327, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38058621

RESUMO

Purpose: To prove the effect of Miana (M), Quercetin (Q), and the combination as an anti-inflammatory agent and Cefixime (C) as an antibiotic in Balb/c mice infected with Salmonella enterica serovar Typhi (S. Typhi) and related to the dynamics of NF-κB mRNA expression and NF-κB protein levels. Methods: A cohort study on male Balb/c mice with subjects consisted of 8 groups with 5 each group by administration of M, Q, M + Q, M + C, Q + C, M + Q + C, C only and sterile distilled water group as negative control. The statistical significance of the difference group was defined as P values less than 0.05. Results: Decreased mRNA expression of NF-κB, NF-κB protein levels, and bacterial load after administration of M + C, Q + C, or M + Q + C showed significant differences when compared to the negative control. The decline in NF-κB was stronger when M + Q + C was given compared to M, Q, M + Q, or C only. Conclusion: The effects of NF-κB suppression appear to be the same between the administration of M, Q and the M + Q when C added. However, the suppression of NF-κB was not significant without adding C.

12.
Arch Razi Inst ; 78(3): 1115-1130, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-38028837

RESUMO

Typhoid fever is one of the most commonly disseminated diseases and is considered to be linked to poor sanitation. It is responsible for 2-5% of all deaths, and its causative agent is Salmonella typhi. The current study aimed to investigate the antibacterial activity of prebiotics (inulin and starch) and probiotics against multidrug resistance of S. typhi bacterial isolates. Determination of the inhibitory effect of probiotics and prebiotics against S. typhi isolates was performed by agar well diffusion method and minimal inhibitory concentration. Body samples of all eligible patients were collected and cultured. Finally, 50 (25%) out of the total cultured samples were S. Typhi bacteria isolated from different samples. The bacteria were mainly found in blood, followed by stool and fluid (74%, 24%, and 2%, respectively). On differential medium, xylose lysine deoxycholate agar, the colonies appear red with black centers, while on MacConkey agar, the colonies appear smooth, pale, transparent, colorless, and raised. Regarding the inhibition zone values of bacteriocins of Lactobacillus from Yogurt against S. typhi in plate, significant differences were identified between the ones with and without prebiotic addition. Accordingly, the value of the inhibition zone for those without prebiotic addition (13.18±7.403) was significantly lower than that of cutoff values of 20 with a significant difference of -6.820 (t= -6.514, df 49, P=0.000). Moreover, the inhibition effect of prebiotics (inulin and starch) against S. typhi at 37 °C for 24 h in part dish glucose as control, only the mean of inulin was found to be significantly lower than that of the cutoff value of 18 with the mean difference of -3.900 (t=-4.115, df 49, P=0.000). Other prebiotics of glucose and starch in 24 h showed negative inhibition. Probiotics are live microorganisms that have beneficial host effects by enhancing microbial balance in the intestine, whereas prebiotics are indigestible food components having beneficial effects by enhancing the activity and growth of one or more colonic bacteria. Lactobacillus filtrates had considerable effects against the test S. typhi isolates.


Assuntos
Probióticos , Febre Tifoide , Humanos , Prebióticos , Febre Tifoide/prevenção & controle , Inulina , Ágar , Probióticos/farmacologia , Lactobacillus/fisiologia , Glucose
13.
Indian J Med Microbiol ; 41: 33-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36870746

RESUMO

BACKGROUND: Infectious diseases pose many challenges due to increasing threat of antimicrobial resistance, which necessitates continuous research to develop novel strategies for development of new molecules with antibacterial activity. In the era of computational biology there are tools and techniques available to address and solve the disease management issues in the field of clinical microbiology. The sequencing techniques, structural biology and machine learning can be implemented collectively to tackle infectious diseases e.g. for the diagnosis, epidemiological typing, pathotyping, antimicrobial resistance detection as well as the discovery of novel drugs and vaccine biomarkers. OBJECTIVES: The present review is a narrative review representing a comprehensive literature-based assessment regarding the use of whole genome sequencing, structural biology and machine learning for the diagnosis, molecular typing and antibacterial drug discovery. CONTENT: Here, we seek to present an overview of molecular and structural basis of resistance to antibiotics, while focusing on the recent bioinformatics approaches in whole genome sequencing and structural biology. The application of next generation sequencing in management of bacterial infections focusing on investigation of microbial population diversity, genotypic resistance testing and scope for the identification of targets for novel drug and vaccine candidates, has been addressed along with the use of structural biophysics and artificial intelligence.


Assuntos
Antibacterianos , Inteligência Artificial , Humanos , Farmacorresistência Bacteriana , Biologia Computacional , Genótipo
14.
BMC Complement Med Ther ; 23(1): 42, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755237

RESUMO

BACKGROUND: Extensively drug-resistant (XDR) Salmonella enterica serovar Typhi (S. Typhi) poses a grave threat to public health due to increased mortality and morbidity caused by typhoid fever. Honey is a promising antibacterial agent, and we aimed to determine the antibacterial activity of honey against XDR S. Typhi. METHODS: We isolated 20 clinical isolates of XDR S. Typhi from pediatric septicemic patients and determined the minimum inhibitory concentrations (MICs) of different antibiotics against the pathogens using the VITEK 2 Compact system. Antimicrobial-resistant genes carried by the isolates were identified using PCR. The antibacterial efficacy of five Pakistani honeys was examined using agar well diffusion assay, and their MICs and minimum bactericidal concentrations (MBCs) were determined with the broth microdilution method. RESULTS: All 20 isolates were confirmed as S. Typhi. The antibiogram phenotype was confirmed as XDR S. Typhi with resistance to ampicillin (≥ 32 µg/mL), ciprofloxacin (≥ 4 µg/mL), and ceftriaxone (≥ 4 µg/mL) and sensitivity to azithromycin (≤ 16 µg/mL) and carbapenems (≤ 1 µg/mL). Molecular conformation revealed the presence of blaTM-1, Sul1, qnrS, gyrA, gyrB, and blaCTX-M-15 genes in all isolates. Among the five honeys, beri honey had the highest zone of inhibition of 7-15 mm and neem honey had a zone of inhibition of 7-12 mm. The MIC and MBC of beri honey against 3/20 (15%) XDR S. Typhi isolates were 3.125 and 6.25%, respectively, while the MIC and MBC of neem were 3.125 and 6.25%, respectively, against 3/20 (15%) isolates and 6.25 and 12.5%, respectively, against 7/20 (35%) isolates. CONCLUSION: Indigenous honeys have an effective role in combating XDR S. Typhi. They are potential candidates for clinical trials as alternative therapeutic options against XDR S. Typhi isolates.


Assuntos
Antibacterianos , Mel , Antibacterianos/farmacologia , Salmonella typhi/genética , Paquistão , Farmacorresistência Bacteriana
15.
Diagn Microbiol Infect Dis ; 105(4): 115883, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36731197

RESUMO

This study aimed to elucidate differentially expressed proteins in drug resistant Salmonella Typhi. Among 100 samples, S. typhi were identified in 43 samples. In drug susceptibility profile, 95.3% (41/43), 80% (35/43) and 70% (30/43) resistances were observed against Nalidixic acid, Ampicillin, and Chloramphenicol respectively. No resistance was observed against Imipenum and Azithromycin while only 11% (5/43) isolates were found resistant to Ceftriaxone. Mass spectrometric differential analysis resulted in 23 up-regulated proteins in drug resistant isolates. Proteins found up-regulated are involved in virulence (vipB, galU, tufA, and lpp1), translation (rpsF, rpsG, rplJ, and rplR), antibiotic resistance (zwf, phoP, and ompX), cell metabolism (metK, ftsZ, pepD, and secB), stress response (ridA, rbfA, and dps), housekeeping (gapA and eno) and hypothetical proteins including ydfZ, t1802, and yajQ. These proteins are of diverse nature and functions but highly interconnected. Further characterization may be helpful for elucidation of new biomarker proteins and therapeutic drug targets.


Assuntos
Salmonella typhi , Febre Tifoide , Humanos , Salmonella typhi/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Febre Tifoide/tratamento farmacológico , Proteômica , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana , Proteínas de Ligação a RNA/uso terapêutico , Proteínas Mitocondriais/uso terapêutico
16.
Pathog Dis ; 812023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36702520

RESUMO

Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid in humans, shares a high degree of homology with a closely related serovar, S. Typhimurium. Yet, unlike S. Typhimurium, S. Typhi does not establish infection in mice, the reasons for which are not well understood. Here, we present evidence that the response of mice to infection with S. Typhi is marked by early antibacterial activities. Cell-free peritoneal fluids from S. Typhi but not S. Typhimurium-infected mice inhibited the replication of Salmonella ex vivo. The production of this activity was reduced in the presence of the serine protease inhibitor, phenylmethylsulfonlyl fluoride (PMSF). PMSF also inhibited the generation of antibacterial activity released from in vitro S. Typhi-infected peritoneal macrophages in a cell death-dependent manner. Infection with S. Typhimurium but not S. Typhi was associated with reduction in the mRNA levels of iron-regulating molecules, ferroportin and lipocalin. These results suggest that early induction and sustenance of antibacterial activities may contribute to the nonestablishment of infection with S. Typhi in mice.


Assuntos
Salmonella typhi , Salmonella typhimurium , Animais , Humanos , Camundongos , Salmonella typhi/genética , Sustento
17.
Proteins ; 91(3): 363-379, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36193975

RESUMO

The increase of antibiotic-resistant bacterial pathogens has created challenges in treatment and warranted the design of antibiotics against comparatively less exploited targets. The peptidoglycan (PG) biosynthesis delineates unique pathways for the design and development of a novel class of drugs. Mur ligases are an essential component of bacterial cell wall synthesis that play a pivotal role in PG biosynthesis to maintain internal osmotic pressure and cell shape. Inhibition of these enzymes can interrupt bacterial replication and hence, form attractive targets for drug discovery. In the present work, we focused on the PG biosynthesis pathway enzyme, UDP-N-acetylpyruvylglucosamine reductase, from Salmonella enterica serovar Typhi (stMurB). Biophysical characterization of purified StMurB was performed to gauge the molecular interactions and estimate thermodynamic stability for determination of attributes for possible therapeutic intervention. The thermal melting profile of MurB was monitored by circular dichroism and validated through differential scanning calorimetry experiment. Frequently used chemical denaturants, GdmCl and urea, were employed to study the chemical-induced denaturation of stMurB. In the search for natural compound-based inhibitors, against this important drug target, an in silico virtual screening based investigation was conducted with modeled stMurB structure. The three top hits (quercetin, berberine, and scopoletin) returned were validated for complex stability through molecular dynamics simulation. Further, fluorescence binding studies were undertaken for the selected natural compounds with stMurB alone and with NADPH bound form. The compounds scopoletin and berberine, displayed lesser binding to stMurB whereas quercetin exhibited stronger binding affinity than NADPH. This study suggests that quercetin can be evolved as an inhibitor of stMurB enzyme.


Assuntos
Berberina , Salmonella typhi , NADP , Quercetina , Escopoletina , Antibacterianos/farmacologia
18.
Saudi J Biol Sci ; 30(1): 103502, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36458097

RESUMO

Salmonella Typhi, a human-restricted Gram negative enterobacteriaceae, is the causative agent of typhoid fever in human being. The available serodiagnostic tools for the diagnosis of typhoid fever lack sensitivity and/or specificity. This study aimed to identify the immunoreactive proteins of S. Typhi that could help to develop improved diagnostic tools. Here, we performed immunoaffinity-based proteomic approach that uses charged columns to retrieve IgG and IgM antibodies from the plasma of typhoid patients followed by capture of S. Typhi proteins. These proteins were then characterized by mass spectrometry and bioinformatics tools. Using this approach, we identified 28 immunoreactive proteins of S. Typhi, in which 14 proteins were captured by IgG charged column and 4 proteins were captured by IgM column. We also identified 10 proteins (hlyE, rfbH, dapD, argI, glyA, pflB, trxB, groEL, tufA and pepD) captured by both columns. The prediction of antigenicity and immunogenicity resulted that 22 proteins were antigenic while 6 were non-antigenic on the scale of 0.4 threshold value of VaxiJen. These proteins successfully simulated the immune system in silico and in response higher amount of antibodies' titers were recorded in C-IMMSIM, confirming the immunogenic nature of these proteins. The identified proteins are of diverse nature and functions including those involved in virulence and pathogenesis, energy metabolism, cell development, biosynthesis of amino acids, regulatory functions and biosynthesis of cofactors. The findings of this study would be helpful in the development of improved vaccines and diagnostic tools for typhoid fever.

19.
BMC Microbiol ; 22(1): 250, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36253712

RESUMO

BACKGROUND: Infection of Salmonella enterica subsp. enterica serovar Typhi is the primary etiology of typhoid fever globally and is common in many developing countries, especially those with dense populations and poor environmental sanitation. Antibiotic fluoroquinolones were used for the treatment in the 1980s due to the resistance to the first-line antibiotics. However, many cases of treatment failure of fluoroquinolones in typhoidal patients have been reported from numerous countries in Asia, Europe, Africa, and America. Mutations in quinolone resistance determining regions (QRDR) genes, gyrA, gyrB, parC, and parE, are found in fluoroquinolone-resistant Salmonella Typhi. Contrast reports came from the S. Typhi isolates in Indonesia, mainly Jakarta and the surroundings, obtained from patients with typhoid fever, with good sensitivity to the fluoroquinolones, i.e., nalidixic acid, ciprofloxacin, moxifloxacin, and levofloxacin. The present study, therefore, aimed to identify the hotspot sequences of gyrA, gyrB, parC, and parE genes of the local S. Typhi strains based on their susceptibility to fluoroquinolones from patients with typhoid fever in Jakarta and its satellite cities. RESULTS: A total of 28 isolates were identified as S. Typhi. All isolates were susceptible to nalidixic acid, levofloxacin, and moxifloxacin. Twenty-seven isolates (96.4%) were susceptible to ciprofloxacin, with one isolate (3.6%) being intermediate. The hotspot sequences of gyrA, gyrB, parC, and parE genes from all isolates were identical to the fluoroquinolone-sensitive reference sequence Salmonella enterica subsp. enterica serovar Typhi Ty2 (NCBI GenBank AE014613.1), including the isolate with intermediate susceptibility. The mutation was not found, and amino acid deduced from all hotspots in susceptible and intermediate isolates showed no replacement in all reported codons. CONCLUSIONS: This study showed that the local S. Typhi strains from Jakarta and surroundings were susceptible to fluoroquinolones (nalidixic acid, ciprofloxacin, levofloxacin, and moxifloxacin), and the hotspot sequences of the gyrA, gyrB, parC, and parE genes were all identical to the reference sequence. Thus, the hotspot sequences of the gyrA, gyrB, parC, and parE genes seemingly were conserved in Jakarta's local S. Typhi strains and could be considered wild type. The phenotypic susceptibility was consistent with the genotypic characteristic without non-synonymous mutations associated with drug resistance.


Assuntos
Quinolonas , Salmonella enterica , Febre Tifoide , Aminoácidos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ciprofloxacina/farmacologia , DNA Girase/genética , DNA Topoisomerase IV/genética , Farmacorresistência Bacteriana/genética , Fluoroquinolonas/farmacologia , Humanos , Levofloxacino , Testes de Sensibilidade Microbiana , Moxifloxacina , Ácido Nalidíxico , Salmonella , Salmonella typhi
20.
Arch Razi Inst ; 77(2): 771-777, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36284974

RESUMO

Salmonella enteric serovar Typhi (S. typhi) and paratyphi (S. paratyphi) bacteria exclusively found in humans, cause typhoid fever, an acute, and possibly deadly systemic infection. Typhoid fever is caused by a species of rod-shaped, Gram-negative Enterobacteriaceae called S. typhi. The present study aimed to examine the intI gene and investigate the possible relation between this gene and multi-drug resistance in S. typhi. A total of 30 blood samples were obtained from patients who were suspicious of typhoid fever using the direct strategy of inoculation. Each specimen was injected into a culture of a selective medium, such as XLD and SS agar, and then incubated at 37°C for 24 h. The genomic DNA was extracted through a boiling process. Tris-EDTA was used to suspend bacterial colonies cultured on MacConkey agar plates. The suspension of bacterial colonies was centrifuged for 5 min at 8000×g and for 20 min at -20°C which lyses the organisms and extracts the DNA from the buffer. The supernatant is then transferred to a fresh Eppendorf tube. Gel electrophoresis was carried out utilizing a UV transilluminator. The intI gene for S. typhi was found using a PCR test. The antibiotic sensitivity testing showed that the S. typhi isolates were classed as multi-resistant. These results were confirmed using the polymerase chain reaction (PCR) technique using intI gene where twenty specimens isolated from typhoid patients were positive for S. typhi.


Assuntos
Salmonella typhi , Febre Tifoide , Humanos , Ágar , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Ácido Edético , Integrons , Salmonella paratyphi A/genética , Salmonella typhi/genética , Febre Tifoide/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA