Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Microbiol Resour Announc ; 12(11): e0064723, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37846982

RESUMO

We announce the genome sequence of the Staphylococcus gallinarum MTR_B001 strain isolated from the breast muscle of a chicken in 2022 in Bangladesh. This assembled genome had an estimated length of 2,889,393 bp (with 50× genome coverage), 15 contigs, 36 predicted antibiotic resistance genes, and 27 predicted virulence factor genes.

2.
Microbiol Resour Announc ; 12(10): e0055523, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37737608

RESUMO

This report describes the genome sequence of the Staphylococcus gallinarum BAU_KME002 strain isolated in Bangladesh in 2021 from a chicken egg surface. Our assembled genome had 50 contigs, an estimated genome length of 2,866,882 bp (with coverage of 90.0×), 36 predicted antibiotic resistance genes, and 28 predicted virulence factor genes.

3.
J Food Sci Technol ; 59(3): 1097-1103, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35153327

RESUMO

Salmonella spp. causes foodborne diseases related to the consumption of contaminated foods, especially poultry products. This study aimed to investigate the occurrence of Salmonella spp. serovars in raw eggs from supermarkets and street food markets in southern Brazil, to analyze virulence genes, resistance profiling to antimicrobials and sanitizers, and to determine the susceptibility of the isolates to Butia odorata extract. Among 160 samples analyzed, just two (1.25%) were positive for Salmonella spp.. One positive sample was from egg yolk (S. enterica serovar Gallinarum, isolate S28), and another one was from eggshell (S. enterica serovar Panama, isolate S37). Regarding the virulence genes, the isolate S37 harbored all the genes evaluated (hilA, invA, spvC, sefA, and pefA), while the isolate S28 did not harbor the pefA gene. The isolate S28 was resistant to tobramycin, azithromycin, and trimethoprim, while the isolate S37 showed resistance profile just to nalidixic acid. However, none of the resistance genes evaluated were identified. Both isolates showed resistance to benzalkonium chloride, chlorhexidine digluconate, sodium hypochlorite, and peracetic acid, presenting high MIC values for these sanitizers. In contrast, B. odorata extract showed antimicrobial activity against the isolates S28 and S37, however, more studies are needed to prove its potential as a natural antimicrobial compound.

4.
Front Vet Sci ; 9: 1058844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619954

RESUMO

In order to prevent pullorum disease and fowl typhoid in breeders, the use of oregano essential oil (OEO) was tested for the prevention and treatment of infections of multidrug-resistant Salmonella pullorum (SP) and Salmonella gallinarum (SG) in commercial Yellow-chicken breeders. In the challenge-protection experiment, commercial Hongguang-Black 1-day-old breeder chicks were randomly divided into four groups, including A (challenged, preventive dose), B (challenged, treatment dose), C (challenged, untreated), and D (unchallenged, untreated). Group A was supplemented with 200 µL/L OEO in the drinking water during the whole trial (1-35 days of age) and group B was supplemented with 400 µL/L OEO during 8-12 days of age, while groups C and D were kept as untreated controls. At 7 days of age, birds of groups A, B, and C were divided into two subgroups with equal number of birds (A1-A2, B1-B2, and C1-C2), and then subgroups A1, B1, and C1 were challenged with SP, while subgroups A2, B2, and C2 were challenged with SG. Clinical symptoms and death were observed and recorded daily. Every week during the experiment, serum antibodies against SP and SG of all the groups were detected by the plate agglutinate test (PAT). At the age of 35 days, all birds were weighed and necropsied, lesions were recorded and the challenging pathogens were isolated. The results showed that the positive rates of SP and SG isolation in groups A1, A2 and B1, B2 were significantly lower (P < 0.05) than those of groups C1 and C2, respectively, while groups A1 and A2 were slightly lower (P > 0.05) than those of groups B1 and B2. The average body weight (BW) of groups A1 and A2 were significantly higher (P < 0.05) than those of groups B1, B2 and C1, C2, respectively, but there was no significant difference (P > 0.05) with that of group D. The r-value between PAT positive and the recovery rates of Salmonella was 0.99, which means they are highly positively correlated. The results of this study demonstrated that the prevention dose (200µL/L) and the treatment dose (400 µL/L) of OEO supplemented in the drinking water could all effectively decrease infections of SP and SG and that the effect of the prevention was greater than that of the treatment and finally that the prevention could also significantly reduce the BW decline of birds challenged with SP and SG.

5.
Pathogens ; 9(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076485

RESUMO

Salmonella enterica serovar Gallinarum (S. Gallinarum) is the cause of typhoid in chickens but the immune factors that may facilitate the development of typhoid have not been fully elucidated. We show that, in contrast to non-typhoid S. Enteritidis infection, S. Gallinarum significantly reduced nitrite ion production and expression of mRNA for heterophil granulocyte chemoattractants CXCLi2 and IL-6 in chicken monocyte-derived macrophages (chMDMs) (p < 0.05) at 6 h post-infection (pi). S. Gallinarum also reduced IFN-γ and IL-17 expression by CD4+ lymphocytes cultured with infected chMDMs for 5 days but did not induce a Th2 phenotype or anergy. In vivo, S. Gallinarum also induced significantly lower expression of CXCLi1, CXCLi2, IL-1ß, IL-6 and iNOS mRNA in the caecal tonsil by day 2 pi (p < 0.05-0.01) and consistently lower levels of IFN-γ, IL-18, IL-12, and IL-17. In the spleen, S. Gallinarum induced significantly lower levels of iNOS and IFN-γ (p < 0.01 and 0.05 respectively) and consistently lower levels of IL-18 and IL-12 but significantly greater (p < 0.01) expression of anti-inflammatory IL-10 at day 4 and 5 pi when compared to S. Enteritidis. This immune phenotype was associated with transit from the intestinal tissues to the liver by S. Gallinarum, not observed following S. Enteritidis infection. In conclusion, we report an immune mechanism that may facilitate typhoid disease in S. Gallinarum-infected chickens. However, down-regulation of inflammatory mediators, upregulation of IL-10, and associated liver colonisation are also characteristic of human typhoid, suggesting that this may also be a useful model of typhoid in humans.

6.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548317

RESUMO

Most Salmonella serovars cause disease in many host species, while a few serovars have evolved to be host specific. Very little is known about the mechanisms that contribute to Salmonella host specificity. We compared the interactions between chicken primary macrophages (CDPM) and host-generalist serovar Salmonella enterica serovar Typhimurium, host-adapted Salmonella enterica serovar Dublin, and avian host-specific Salmonella enterica serovar Gallinarum. S Gallinarum was taken up in lower numbers by CDPM than S Typhimurium and S Dublin; however, a higher survival rate was observed for this serovar. In addition, S Typhimurium and S Dublin caused substantially higher levels of cell death to the CDPM, while significantly higher concentrations of NO were produced by S Gallinarum-infected cells. Global transcriptome analysis performed 2 h postinfection showed that S Gallinarum infection triggered a more comprehensive response in CDPM with 1,114 differentially expressed genes (DEGs) compared to the responses of S Typhimurium (625 DEGs) and S Dublin (656 DEGs). Comparable levels of proinflammation responses were observed in CDPM infected by these three different serovars at the initial infection phase, but a substantially quicker reduction in levels of interleukin-1ß (IL-1ß), CXCLi1, and CXCLi2 gene expression was detected in the S Gallinarum-infected macrophages than that of two other groups as infections proceeded. KEGG cluster analysis for unique DEGs after S Gallinarum infection showed that the JAK-STAT signaling pathway was top enriched, indicating a specific role for this pathway in response to S Gallinarum infection of CDPM. Together, these findings provide new insights into the interaction between Salmonella and the host and increase our understanding of S Gallinarum host specificity.


Assuntos
Especificidade de Hospedeiro/imunologia , Macrófagos/imunologia , Doenças das Aves Domésticas/imunologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Animais , Bovinos , Células Cultivadas , Galinhas , Interleucina-1beta/imunologia , Óxido Nítrico/metabolismo , Doenças das Aves Domésticas/microbiologia , Salmonella typhimurium/classificação
7.
Artigo em Inglês | MEDLINE | ID: mdl-31998655

RESUMO

Salmonella Gallinarum only infects avian species, where it causes a severe systemic infection in birds of all ages. It is generally accepted that interaction with phagocytic cells plays an important role in the development of systemic, host-specific Salmonella infections. The current study detailed the interaction of S. Gallinarum with macrophages derived from chicken (HD11) and cattle (Bomac) compared to interaction of the broad host range serovar, Salmonella Typhimurium and the cattle adapted serovar Salmonella Dublin. Results showed a weaker invading ability of S. Gallinarum in both kinds of macrophages, regardless whether the bacteria were opsonized or not before infections. However, opsonization of S. Gallinarum by chicken serum increased its intracellular survival rate in chicken macrophages. No significant induction of nitrogen oxide was observed in the infected HD11 cells within the first 6 h, and levels of reactive oxygen species (ROS) were similar among the three serovars. S. Gallinarum infection was associated with low cell deaths in both chicken and cattle macrophages, whereas S. Dublin only induced a comparable high level of cell death in chicken macrophages, but not in macrophages of its preferred host species (Bomac) compared to host generalist S. Typhimurium. S. Gallinarum-infected HD11 macrophages exhibited low induction of pro-inflammation genes [interleukin (IL)1ß, CXCLi1, and CXCLi2] compared to the two other serovars, and contrary to the other serovars, it did not induce significant downregulation of Toll-like receptor (TLR)2, TLR4, and TLR5. In in vivo infection of 1-week-old chicken, a significant upregulation of the TLR4 and TLR5 genes in the spleen was observed in S. Gallinarum-infected chickens, but not in S. Typhimurium-infected chicken at 5 days post-infections. Taken together, results show that S. Gallinarum infection of macrophages was characterized by low uptake and low cytotoxicity, possibly allowing long-term persistence in the intracellular environment, and it caused a low induction of pro-inflammatory responses.


Assuntos
Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Salmonelose Animal/imunologia , Salmonella typhimurium/metabolismo , Salmonella/metabolismo , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Galinhas , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/genética , Interleucina-1beta/metabolismo , Óxido Nítrico/metabolismo , Doenças das Aves Domésticas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Salmonelose Animal/microbiologia , Sorogrupo , Receptores Toll-Like/metabolismo
8.
Poult Sci ; 96(5): 1088-1093, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27837117

RESUMO

Salmonella enterica serovar Gallinarum biovars Pullorum and Gallinarum represent the most common causative agents of chicken salmonellosis, which result in high mortality and morbidity throughout the world. It is difficult and laborious to discriminate these diseases based on biochemical or phenotypic methods. Herein, we report the development of a single nucleotide polymorphism (SNP) PCR-high resolution melt (PCR-HRM) assay for the detection and discrimination of both S. Pullorum and S. Gallinarun. The gene rfbS, which encodes a factor involved in the biosynthesis of ADP paratose in serogroup D of Salmonella, has been identified as a robust genetic marker for the identification of S. Pullorum and S. Gallinarun based on polymorphisms at positions 237 and 598. Therefore, PCR-HRM analyses were used to characterize this gene. A total of 15 reference and 33 clinical isolates of Salmonella and related Gram-negative bacteria were detected using 2 sets of primers. Our PCR-HRM assay could distinguish S. Pullorum from S. Gallinarun and other strains using the primer pair SP-237F/237R. Similarly, S. Gallinarun could be distinguished from S. Pullorum and other strains using primer set SG-598F/598R. These 2 assays showed high specificity (100%) for both S. Pullorum and S. Gallinarun; the sensitivity of these 2 assays was at least 100-fold greater than that of the allele-specific PCR assay. This present study demonstrated that HRM analysis represents a potent, simple, and economic tool for the rapid, specific, and sensitive detection of S. Pullorum and S. Gallinarun. Our approach also may aid efforts for purification of Avian Salmonella disease.


Assuntos
Reação em Cadeia da Polimerase em Tempo Real/veterinária , Salmonella enterica/classificação , Salmonella enterica/genética , Animais , Galinhas , Polimorfismo de Nucleotídeo Único/genética , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/diagnóstico , Salmonelose Animal/microbiologia , Sorogrupo
9.
EFSA J ; 15(8): e04954, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32625620

RESUMO

Salmonella infection in poultry (Salmonella Pullorum, Salmonella Gallinarum and Salmonella arizonae) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of Salmonella to be listed, Article 9 for the categorisation of Salmonella according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to Salmonella. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, Salmonella can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL. The disease would comply with the criteria as in Sections 4 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (d) and (e) of Article 9(1). The assessment here performed on compliance with the criteria as in Section 1 of Annex IV referred to in point (a) of Article 9(1) is inconclusive. The main animal species to be listed for Salmonella according to Article 8(3) criteria are all species of domestic poultry and wild species of mainly Anseriformes and Galliformes, as indicated in the present opinion.

10.
Arch Microbiol ; 198(2): 161-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26597854

RESUMO

Salmonella gallinarum is the causative agent of fowl typhoid. Being a Gram-negative bacteria, its outer membrane proteins (OMP) can be regulated by different microenvironments. S. gallinarum was cultured under the following conditions: nutrient broth (NB), NB supplemented with serum from specific pathogen-free birds (NBS) and NB with serum incubated at 56 °C prior to incubation with the bacteria (NBSD); OMP were subsequently extracted. Several changes were observed in the apparent expression of OMP, mainly a decrease in an OMP with a size of 30 kDa, approximately, under the NBS condition. In contrast, the same event was not observed in NB and NBSD when using one- and two-dimensional polyacrylamide gels (SDS-PAGE). Using the OMP with a size of 30 kDa, approximately, as antigen in indirect ELISA, we were able to differentiate serum from healthy and vaccinated birds, as well as birds infected with S. gallinarum and S. enteritidis. The amino-terminal of this protein was sequenced, showing 100 % identity with OmpA of S. typhimurium. Subsequently, we designed primers to amplify the gene by PCR. The partial sequence of the amplified gene showed 100 % identity with OmpA of S. gallinarum. (1) Heat-labile serum components influence the presence of OmpA in the OM of S. gallinarum; (2) by the way of ELISA, OmpA allows to specifically differentiate healthy from diseased birds.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Salmonella , Soro/química , Animais , Proteínas da Membrana Bacteriana Externa/genética , Galinhas , Eletroforese em Gel de Poliacrilamida , Temperatura Alta , Reação em Cadeia da Polimerase , Salmonella/genética , Salmonella/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA