Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
bioRxiv ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39026698

RESUMO

Septins can function as scaffolds for protein recruitment, membrane-bound diffusion barriers, or membrane curvature sensors. Septins are important for cytokinesis, but their exact roles are still obscure. In fission yeast, four septins (Spn1 to Spn4) accumulate at the rim of the division plane as rings. The octameric exocyst complex, which tethers exocytic vesicles to the plasma membrane, exhibits a similar localization and is essential for plasma membrane deposition during cytokinesis. Without septins, the exocyst spreads across the division plane but absent from the rim during septum formation. These results suggest that septins and the exocyst physically interact for proper localization. Indeed, we predicted six pairs of direct interactions between septin and exocyst subunits by AlphaFold2 ColabFold, most of them are confirmed by co-immunoprecipitation and yeast two-hybrid assays. Exocyst mislocalization results in mistargeting of secretory vesicles and their cargos, which leads to cell-separation delay in septin mutants. Our results indicate that septins guide the targeting of exocyst complex on the plasma membrane for vesicle tethering during cytokinesis through direct physical interactions.

2.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915521

RESUMO

Cdk5 is a highly-conserved, noncanonical cell division kinase important to the terminal differentiation of mammalian cells in multiple organ systems. We previously identified Pef1, the Schizosaccharomyces pombe ortholog of cdk5, as regulator of chronological lifespan. To reveal the processes impacted by Pef1, we developed APEX2-biotin phenol-mediated proximity labeling in S. pombe. Efficient labeling required a short period of cell wall digestion and eliminating glucose and nitrogen sources from the medium. We identified 255 high-confidence Pef1 neighbors in growing cells and a novel Pef1-interacting partner, the DNA damage response protein Rad24. The Pef1-Rad24 interaction was validated by reciprocal proximity labeling and co-immunoprecipitation. Eliminating Pef1 partially rescued the DNA damage sensitivity of cells lacking Rad24. To monitor how Pef1 neighbors change under different conditions, cells induced for autophagy were labeled and 177 high-confidence Pef1 neighbors were identified. Gene ontology (GO) analysis of the Pef1 neighbors identified proteins participating in processes required for autophagosome expansion including regulation of actin dynamics and vesicle-mediated transport. Some of these proteins were identified in both exponentially growing and autophagic cells. Pef1-APEX2 proximity labeling therefore identified a new Pef1 function in modulating the DNA damage response and candidate processes that Pef1 and other cdk5 orthologs may regulate.

3.
Curr Genet ; 70(1): 8, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913087

RESUMO

The Byr2 kinase of fission yeast Schizosaccharomyces pombe is recruited to the membrane with the assistance of Ras1. Byr2 is also negatively regulated by 14-3-3 proteins encoded by rad24 and rad25. We conducted domain and mutational analysis of Byr2 to determine which region is critical for its binding to 14-3-3 proteins. Rad24 and Rad25 bound to both the Ras interaction domain in the N-terminus and to the C-terminal catalytic domain of Byr2. When amino acid residues S87 and T94 of the Ras-interacting domain of Byr2 were mutated to alanine, Rad24 could no longer bind to Byr2. S402, S566, S650, and S654 mutations in the C-terminal domain of Byr2 also abolished its interaction with Rad24 and Rad25. More than three mutations in the C-terminal domain were required to abolish completely its interaction with 14-3-3 protein, suggesting that multiple residues are involved in this interaction. Expression of the N-terminal domain of Byr2 in wild-type cells lowered the mating ratio, because it likely blocked the interaction of Byr2 with Ste4 and Ras1, whereas expression of the catalytic domain of Byr2 increased the mating ratio as a result of freeing from intramolecular regulation by the N-terminal domain of Byr2. The S87A and T94A mutations of Byr2 increased the mating ratio and attenuated inhibition of Byr2 by Rad24; therefore, these two amino acids are critical for its regulation by Rad24. S566 of Byr2 is critical for activity of Byr2 but not for its interaction with 14-3-3 proteins. In this study, we show that 14-3-3 proteins interact with two separate domains in Byr2 as negative regulators.


Assuntos
Proteínas 14-3-3 , Ligação Proteica , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Mutação , Análise Mutacional de DNA , Domínios Proteicos/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ciclo Celular , Peptídeos e Proteínas de Sinalização Intracelular
4.
Adv Exp Med Biol ; 1441: 313-339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884719

RESUMO

Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.


Assuntos
Processamento Pós-Transcricional do RNA , RNA não Traduzido , Animais , Humanos , Processamento Alternativo/genética , Regulação da Expressão Gênica , Edição de RNA , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
5.
Cell Rep ; 43(7): 114373, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38900638

RESUMO

Biomolecular condensates have emerged as major drivers of cellular organization. It remains largely unexplored, however, whether these condensates can impart mechanical function(s) to the cell. The heterochromatin protein HP1α (Swi6 in Schizosaccharomyces pombe) crosslinks histone H3K9 methylated nucleosomes and has been proposed to undergo condensation to drive the liquid-like clustering of heterochromatin domains. Here, we leverage the genetically tractable S. pombe model and a separation-of-function allele to elucidate a mechanical function imparted by Swi6 condensation. Using single-molecule imaging, force spectroscopy, and high-resolution live-cell imaging, we show that Swi6 is critical for nuclear resistance to external force. Strikingly, it is the condensed yet dynamic pool of Swi6, rather than the chromatin-bound molecules, that is essential to imparting mechanical stiffness. Our findings suggest that Swi6 condensates embedded in the chromatin meshwork establish the emergent mechanical behavior of the nucleus as a whole, revealing that biomolecular condensation can influence organelle and cell mechanics.


Assuntos
Núcleo Celular , Proteínas Cromossômicas não Histona , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas Cromossômicas não Histona/metabolismo , Núcleo Celular/metabolismo , Homólogo 5 da Proteína Cromobox , Heterocromatina/metabolismo , Cromatina/metabolismo
6.
J Mol Biol ; 436(16): 168641, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38844045

RESUMO

Protein-protein interactions (PPIs) are known to rewire extensively during evolution leading to lineage-specific and species-specific changes in molecular processes. However, the detailed molecular evolutionary mechanisms underlying interactome network rewiring are not well-understood. Here, we combine high-confidence PPI data, high-resolution three-dimensional structures of protein complexes, and homology-based structural annotation transfer to construct structurally-resolved interactome networks for the two yeasts S. cerevisiae and S. pombe. We then classify PPIs according to whether they are preserved or different between the two yeast species and compare site-specific evolutionary rates of interfacial versus non-interfacial residues for these different categories of PPIs. We find that residues in PPI interfaces evolve significantly more slowly than non-interfacial residues when using lineage-specific measures of evolutionary rate, but not when using non-lineage-specific measures. Furthermore, both lineage-specific and non-lineage-specific evolutionary rate measures can distinguish interfacial residues from non-interfacial residues for preserved PPIs between the two yeasts, but only the lineage-specific measure is appropriate for rewired PPIs. Finally, both lineage-specific and non-lineage-specific evolutionary rate measures are appropriate for elucidating structural determinants of protein evolution for residues outside of PPI interfaces. Overall, our results demonstrate that unlike tertiary structures of single proteins, PPIs and PPI interfaces can be highly volatile in their evolution, thus requiring the use of lineage-specific measures when studying their evolution. These results yield insight into the evolutionary design principles of PPIs and the mechanisms by which interactions are preserved or rewired between species, improving our understanding of the molecular evolution of PPIs and PPI interfaces at the residue level.


Assuntos
Evolução Molecular , Mapas de Interação de Proteínas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/química , Modelos Moleculares , Mapeamento de Interação de Proteínas , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
Curr Issues Mol Biol ; 46(5): 4609-4629, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38785548

RESUMO

Ermp1 is a putative metalloprotease from Schizosaccharomyces pombe and a member of the Fxna peptidases. Although their function is unknown, orthologous proteins from rats and humans have been associated with the maturation of ovarian follicles and increased ER stress. This study focuses on proposing the first prediction of PPI by comparison of the interologues between humans and yeasts, as well as the molecular docking and dynamics of the M28 domain of Ermp1 with possible target proteins. As results, 45 proteins are proposed that could interact with the metalloprotease. Most of these proteins are related to the transport of Ca2+ and the metabolism of amino acids and proteins. Docking and molecular dynamics suggest that the M28 domain of Ermp1 could hydrolyze leucine and methionine residues of Amk2, Ypt5 and Pex12. These results could support future experimental investigations of other Fxna peptidases, such as human ERMP1.

8.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673778

RESUMO

Pre-mRNA splicing plays a key role in the regulation of gene expression. Recent discoveries suggest that defects in pre-mRNA splicing, resulting from the dysfunction of certain splicing factors, can impact the expression of genes crucial for genome surveillance mechanisms, including those involved in cellular response to DNA damage. In this study, we analyzed how cells with a non-functional spliceosome-associated Gpl1-Gih35-Wdr83 complex respond to DNA damage. Additionally, we investigated the role of this complex in regulating the splicing of factors involved in DNA damage repair. Our findings reveal that the deletion of any component within the Gpl1-Gih35-Wdr83 complex leads to a significant accumulation of unspliced pre-mRNAs of DNA repair factors. Consequently, mutant cells lacking this complex exhibit increased sensitivity to DNA-damaging agents. These results highlight the importance of the Gpl1-Gih35-Wdr83 complex in regulating the expression of DNA repair factors, thereby protecting the stability of the genome following DNA damage.


Assuntos
Dano ao DNA , Reparo do DNA , Fatores de Processamento de RNA , Splicing de RNA , Dano ao DNA/genética , Reparo do DNA/genética , Regulação Fúngica da Expressão Gênica , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Spliceossomos/metabolismo , Spliceossomos/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo
9.
Elife ; 122024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376141

RESUMO

Genome and epigenome integrity in eukaryotes depends on the proper coupling of histone deposition with DNA synthesis. This process relies on the evolutionary conserved histone chaperone CAF-1 for which the links between structure and functions are still a puzzle. While studies of the Saccharomyces cerevisiae CAF-1 complex enabled to propose a model for the histone deposition mechanism, we still lack a framework to demonstrate its generality and in particular, how its interaction with the polymerase accessory factor PCNA is operating. Here, we reconstituted a complete SpCAF-1 from fission yeast. We characterized its dynamic structure using NMR, SAXS and molecular modeling together with in vitro and in vivo functional studies on rationally designed interaction mutants. Importantly, we identify the unfolded nature of the acidic domain which folds up when binding to histones. We also show how the long KER helix mediates DNA binding and stimulates SpCAF-1 association with PCNA. Our study highlights how the organization of CAF-1 comprising both disordered regions and folded modules enables the dynamics of multiple interactions to promote synthesis-coupled histone deposition essential for its DNA replication, heterochromatin maintenance, and genome stability functions.


Assuntos
Histonas , Schizosaccharomyces , Histonas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Saccharomyces cerevisiae/genética , DNA/metabolismo , Nucleossomos/metabolismo
10.
Elife ; 132024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289024

RESUMO

Eukaryotic cells are constantly exposed to various environmental stimuli. It remains largely unexplored how environmental cues bring about epigenetic fluctuations and affect heterochromatin stability. In the fission yeast Schizosaccharomyces pombe, heterochromatic silencing is quite stable at pericentromeres but unstable at the mating-type (mat) locus under chronic heat stress, although both loci are within the major constitutive heterochromatin regions. Here, we found that the compromised gene silencing at the mat locus at elevated temperature is linked to the phosphorylation status of Atf1, a member of the ATF/CREB superfamily. Constitutive activation of mitogen-activated protein kinase (MAPK) signaling disrupts epigenetic maintenance of heterochromatin at the mat locus even under normal temperature. Mechanistically, phosphorylation of Atf1 impairs its interaction with heterochromatin protein Swi6HP1, resulting in lower site-specific Swi6HP1 enrichment. Expression of non-phosphorylatable Atf1, tethering Swi6HP1 to the mat3M-flanking site or absence of the anti-silencing factor Epe1 can largely or partially rescue heat stress-induced defective heterochromatic maintenance at the mat locus.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Inativação Gênica
11.
Elife ; 122023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37988290

RESUMO

The localization of condensin along chromosomes is crucial for their accurate segregation in anaphase. Condensin is enriched at telomeres but how and for what purpose had remained elusive. Here, we show that fission yeast condensin accumulates at telomere repeats through the balancing acts of Taz1, a core component of the shelterin complex that ensures telomeric functions, and Mit1, a nucleosome remodeler associated with shelterin. We further show that condensin takes part in sister-telomere separation in anaphase, and that this event can be uncoupled from the prior separation of chromosome arms, implying a telomere-specific separation mechanism. Consistent with a cis-acting process, increasing or decreasing condensin occupancy specifically at telomeres modifies accordingly the efficiency of their separation in anaphase. Genetic evidence suggests that condensin promotes sister-telomere separation by counteracting cohesin. Thus, our results reveal a shelterin-based mechanism that enriches condensin at telomeres to drive in cis their separation during mitosis.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Complexo Shelterina , Anáfase , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
12.
bioRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37790432

RESUMO

tRNA modifications are crucial in all organisms to ensure tRNA folding and stability, and accurate translation in the ribosome. In both the yeast Saccharomyces cerevisiae and the evolutionarily distant yeast Schizosaccharomyces pombe, mutants lacking certain tRNA body modifications (outside the anticodon loop) are temperature sensitive due to rapid tRNA decay (RTD) of a subset of hypomodified tRNAs. Here we show that for each of two S. pombe mutants subject to RTD, mutations in ribosomal protein genes suppress the temperature sensitivity without altering tRNA levels. Prior work showed that S. pombe trm8Δ mutants, lacking 7-methylguanosine, were temperature sensitive due to RTD and that one class of suppressors had mutations in the general amino acid control (GAAC) pathway, which was activated concomitant with RTD, resulting in further tRNA loss. We now find that another class of S. pombe trm8Δ suppressors have mutations in rpl genes, encoding 60S subunit proteins, and that suppression occurs with minimal restoration of tRNA levels and reduced GAAC activation. Furthermore, trm8Δ suppression extends to other mutations in the large or small ribosomal subunit. We also find that S. pombe tan1Δ mutants, lacking 4-acetylcytidine, are temperature sensitive due to RTD, that one class of suppressors have rpl mutations, associated with minimal restoration of tRNA levels, and that suppression extends to other rpl and rps mutations. However, although S. pombe tan1Δ temperature sensitivity is associated with some GAAC activation, suppression by an rpl mutation does not significantly inhibit GAAC activation. These results suggest that ribosomal protein mutations suppress the temperature sensitivity of S. pombe trm8Δ and tan1Δ mutants due to reduced ribosome concentrations, leading to both a reduced requirement for tRNA, and reduced ribosome collisions and GAAC activation. Results with S. cerevisiae trm8Δ trm4Δ mutants are consistent with this model, and fuel speculation that similar results will apply across eukaryotes.

13.
Elife ; 122023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787376

RESUMO

Eukaryotic genes are interrupted by introns that are removed from transcribed RNAs by splicing. Patterns of splicing complexity differ between species, but it is unclear how these differences arise. We used inter-species association mapping with Saccharomycotina species to correlate splicing signal phenotypes with the presence or absence of splicing factors. Here, we show that variation in 5' splice site sequence preferences correlate with the presence of the U6 snRNA N6-methyladenosine methyltransferase METTL16 and the splicing factor SNRNP27K. The greatest variation in 5' splice site sequence occurred at the +4 position and involved a preference switch between adenosine and uridine. Loss of METTL16 and SNRNP27K orthologs, or a single SNRNP27K methionine residue, was associated with a preference for +4 U. These findings are consistent with splicing analyses of mutants defective in either METTL16 or SNRNP27K orthologs and models derived from spliceosome structures, demonstrating that inter-species association mapping is a powerful orthogonal approach to molecular studies. We identified variation between species in the occurrence of two major classes of 5' splice sites, defined by distinct interaction potentials with U5 and U6 snRNAs, that correlates with intron number. We conclude that variation in concerted processes of 5' splice site selection by U6 snRNA is associated with evolutionary changes in splicing signal phenotypes.


Assuntos
Sítios de Splice de RNA , RNA Nuclear Pequeno , Adenosina/metabolismo , Sequência de Bases , Íntrons/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Nuclear Pequeno/genética , Humanos
14.
Biol Open ; 12(10)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37787465

RESUMO

Cell cycle regulation in response to biochemical cues is a fundamental event associated with many diseases. The regulation of such responses in complex metabolic environments is poorly understood. This study reveals unknown aspects of the metabolic regulation of cell division in Schizosaccharomyces pombe. We show that changing the carbon source from glucose to lactic acid alters the functions of the cyclin-dependent kinase (CDK) Cdc2 and mitogen-activated protein kinase (MAPK) Sty1, leading to unanticipated outcomes in the behavior and fate of such cells. Functional communication of Cdc2 with Sty1 is known to be an integral part of the cellular response to aberrant Cdc2 activity in S. pombe. Our results show that cross-talk between Cdc2 and Sty1, and the consequent Sty1-dependent regulation of Cdc2 activity, appears to be compromised and the relationship between Cdc2 activity and mitotic timing is also reversed in the presence of lactate. We also show that the biochemical status of cells under these conditions is an important determinant of the altered molecular functions mentioned above as well as the altered behavior of these cells.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Schizosaccharomyces/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Ácido Láctico/metabolismo , Glucose/metabolismo , Comunicação
15.
Elife ; 122023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787768

RESUMO

Many proteins remain poorly characterized even in well-studied organisms, presenting a bottleneck for research. We applied phenomics and machine-learning approaches with Schizosaccharomyces pombe for broad cues on protein functions. We assayed colony-growth phenotypes to measure the fitness of deletion mutants for 3509 non-essential genes in 131 conditions with different nutrients, drugs, and stresses. These analyses exposed phenotypes for 3492 mutants, including 124 mutants of 'priority unstudied' proteins conserved in humans, providing varied functional clues. For example, over 900 proteins were newly implicated in the resistance to oxidative stress. Phenotype-correlation networks suggested roles for poorly characterized proteins through 'guilt by association' with known proteins. For complementary functional insights, we predicted Gene Ontology (GO) terms using machine learning methods exploiting protein-network and protein-homology data (NET-FF). We obtained 56,594 high-scoring GO predictions, of which 22,060 also featured high information content. Our phenotype-correlation data and NET-FF predictions showed a strong concordance with existing PomBase GO annotations and protein networks, with integrated analyses revealing 1675 novel GO predictions for 783 genes, including 47 predictions for 23 priority unstudied proteins. Experimental validation identified new proteins involved in cellular aging, showing that these predictions and phenomics data provide a rich resource to uncover new protein functions.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Fenômica , Proteínas de Schizosaccharomyces pombe/genética , Fenótipo , Schizosaccharomyces/genética , Aprendizado de Máquina
16.
Antioxidants (Basel) ; 12(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37891889

RESUMO

Aging is characterized by a number of hallmarks including loss of mitochondrial homeostasis and decay in stress tolerance, among others. Unicellular eukaryotes have been widely used to study chronological aging. As a general trait, calorie restriction and activation of mitochondrial respiration has been proposed to contribute to an elongated lifespan. Most aging-related studies have been conducted with the Crabtree-positive yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, and with deletion collections deriving from these conventional yeast models. We have performed an unbiased characterization of longevity using thirteen fungi species, including S. cerevisiae and S. pombe, covering a wide range of the Ascomycota clade. We have determined their mitochondrial activity by oxygen consumption, complex IV activity, and mitochondrial redox potential, and the results derived from these three methodologies are highly overlapping. We have phenotypically compared the lifespans of the thirteen species and their capacity to tolerate oxidative stress. Longevity and elevated tolerance to hydrogen peroxide are correlated in some but not all yeasts. Mitochondrial activity per se cannot anticipate the length of the lifespan. We have classified the strains in four groups, with members of group 1 (Kluyveromyces lactis, Saccharomyces bayanus and Lodderomyces elongisporus) displaying high mitochondrial activity, elevated resistance to oxidative stress, and elongated lifespan.

17.
Cell Rep ; 42(10): 113226, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37851576

RESUMO

Messenger RNAs (mRNAs) in higher eukaryotes that encode proteins important for the assembly of the translational apparatus (e.g., ribosomal proteins) often harbor a pyrimidine-rich motif at the extreme 5' end known as a 5' terminal oligopyrimidine (5'TOP) sequence. Members of the La-related protein 1 (LARP1) family control 5'TOP expression through a conserved DM15 motif, but the mechanism is not well understood. 5'TOP motifs have not been described in many lower organisms, and fission yeast harbors a LARP1 homolog that also lacks a DM15 motif. In this work, we show that the fission yeast LARP1 homolog, Slr1p, controls the translation and stability of mRNAs encoding proteins analogous to 5'TOP mRNAs in higher eukaryotes, which we thus refer to as proto-5'TOPs. Our data suggest that the LARP1 DM15 motif and the mRNA 5'TOP motif may be features that were scaffolded over a more fundamental mechanism of LARP1-associated control of gene expression.


Assuntos
Schizosaccharomyces , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/metabolismo , Biossíntese de Proteínas
18.
Mol Cell ; 83(21): 3787-3800.e9, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37820734

RESUMO

Condensin is a structural maintenance of chromosomes (SMC) complex family member thought to build mitotic chromosomes by DNA loop extrusion. However, condensin variants unable to extrude loops, yet proficient in chromosome formation, were recently described. Here, we explore how condensin might alternatively build chromosomes. Using bulk biochemical and single-molecule experiments with purified fission yeast condensin, we observe that individual condensins sequentially and topologically entrap two double-stranded DNAs (dsDNAs). Condensin loading transitions through a state requiring DNA bending, as proposed for the related cohesin complex. While cohesin then favors the capture of a second single-stranded DNA (ssDNA), second dsDNA capture emerges as a defining feature of condensin. We provide complementary in vivo evidence for DNA-DNA capture in the form of condensin-dependent chromatin contacts within, as well as between, chromosomes. Our results support a "diffusion capture" model in which condensin acts in mitotic chromosome formation by sequential dsDNA-dsDNA capture.


Assuntos
Proteínas de Ligação a DNA , Schizosaccharomyces , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/química , DNA/genética , Cromossomos , Proteínas de Ciclo Celular/genética , Schizosaccharomyces/genética , Mitose
19.
Curr Biol ; 33(19): 4187-4201.e6, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37714149

RESUMO

CENP-A chromatin specifies mammalian centromere identity, and its chaperone HJURP replenishes CENP-A when recruited by the Mis18 complex (Mis18C) via M18BP1/KNL2 to CENP-C at kinetochores during interphase. However, the Mis18C recruitment mechanism remains unresolved in species lacking M18BP1, such as fission yeast. Fission yeast centromeres cluster at G2 spindle pole bodies (SPBs) when CENP-ACnp1 is replenished and where Mis18C also localizes. We show that SPBs play an unexpected role in concentrating Mis18C near centromeres through the recruitment of Mis18 by direct binding to the major SPB linker of nucleoskeleton and cytoskeleton (LINC) component Sad1. Mis18C recruitment by Sad1 is important for CENP-ACnp1 chromatin establishment and acts in parallel with a CENP-C-mediated Mis18C recruitment pathway to maintain centromeric CENP-ACnp1 but operates independently of Sad1-mediated centromere clustering. SPBs therefore provide a non-chromosomal scaffold for both Mis18C recruitment and centromere clustering during G2. This centromere-independent Mis18-SPB recruitment provides a mechanism that governs de novo CENP-ACnp1 chromatin assembly by the proximity of appropriate sequences to SPBs and highlights how nuclear spatial organization influences centromere identity.


Assuntos
Proteínas de Transporte , Proteínas Cromossômicas não Histona , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Transporte/genética , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Interfase , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Corpos Polares do Fuso/metabolismo
20.
Int J Biol Macromol ; 253(Pt 3): 126907, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37717872

RESUMO

The mTOR complexes play a fundamental role in mitochondrial biogenesis and cellular homeostasis. Wat1, an ortholog of mammalian Lst8 is an important component of TOR complex and is essential for the regulation of downstream signaling. Earlier we reported the role of Wat1 in oxidative stress response. Here, we have shown that the abrogation of wat1 causes respiratory defects and mitochondrial depolarization that leads to a decrease in ATP production. The confocal and electron microscopy in wat1Δ cells revealed the fragmented mitochondrial morphology implying its role in mitochondrial fission. Furthermore, we also showed its role in autophagy and the maintenance of calcium ion homeostasis. Additionally, tor2-287 mutant cells also exhibit defects in mitochondrial integrity indicating the TORC1-dependent involvement of Wat1 in the maintenance of mitochondrial homeostasis. The interaction studies of Wat1 and Tor2 with Por1 and Mmm1 proteins revealed a plausible cross-talk between mitochondria and endoplasmic reticulum through the Mitochondria-associated membranes (MAM) and endoplasmic reticulum-mitochondria encounter structure (ERMES) complex, involving TORC1. Taken together, this study demonstrates the involvement of Wat1/mLst8 in harmonizing various mitochondrial functions, redox status, and Ca2+ homeostasis.


Assuntos
Schizosaccharomyces , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Homeostase , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA