Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.187
Filtrar
1.
Alzheimers Dement ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39030746

RESUMO

INTRODUCTION: We examined whether the aging suppressor KLOTHO gene's functionally advantageous KL-VS variant (KL-VS heterozygosity [KL-VSHET]) confers resilience against deleterious effects of aging indexed by cerebrospinal fluid (CSF) biomarkers of neuroinflammation (interleukin-6 [IL-6], S100 calcium-binding protein B [S100B], triggering receptor expressed on myeloid cells [sTREM2], chitinase-3-like protein 1 [YKL-40], glial fibrillary acidic protein [GFAP]), neurodegeneration (total α-synuclein [α-Syn], neurofilament light chain protein), and synaptic dysfunction (neurogranin [Ng]). METHODS: This Alzheimer disease risk-enriched cohort consisted of 454 cognitively unimpaired adults (Mage = 61.5 ± 7.75). Covariate-adjusted multivariate regression examined relationships between age (mean-split[age ≥ 62]) and CSF biomarkers (Roche/NeuroToolKit), and whether they differed between KL-VSHET (N = 122) and non-carriers (KL-VSNC; N = 332). RESULTS: Older age was associated with a poorer biomarker profile across all analytes (Ps ≤ 0.03). In age-stratified analyses, KL-VSNC exhibited this same pattern (Ps ≤ 0.05) which was not significant for IL-6, S100B, Ng, and α-Syn (Ps ≥ 0.13) in KL-VSHET. Although age-related differences in GFAP, sTREM2, and YKL-40 were evident for both groups (Ps ≤ 0.01), the effect magnitude was markedly stronger for KL-VSNC. DISCUSSION: Higher levels of neuroinflammation, neurodegeneration, and synaptic dysfunction in older adults were attenuated in KL-VSHET. HIGHLIGHTS: Older age was associated with poorer profiles across all cerebrospinal fluid biomarkers of neuroinflammation, neurodegeneration, and synaptic dysfunction. KLOTHO KL-VS non-carriers exhibit this same pattern, which is does not significantly differ between younger and older KL-VS heterozygotes for interleukin-6, S100 calcium-binding protein B, neurogranin, and total α-synuclein. Although age-related differences in glial fibrillary acidic protein, triggering receptor expressed on myeloid cells, and chitinase-3-like protein 1 are evident for both KL-VS groups, the magnitude of the effect is markedly stronger for KL-VS non-carriers. Higher levels of neuroinflammation, neurodegeneration, and synaptic dysfunction in older adults are attenuated in KL-VS heterozygotes.

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167358, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39025374

RESUMO

Radiation-induced pulmonary fibrosis (RIPF) is a frequently encountered late complication in patients undergoing radiation therapy, presenting a substantial risk to patient mortality and quality of life. The pathogenesis of RIPF remains unclear, and current treatment options are limited in efficacy. High-dose vitamin C has demonstrated potential when used in conjunction with other adjuvant therapies due to potent anticancer properties. However, the potential relationship between high-dose vitamin C and RIPF has not yet been explored in existing literature. In our study, the RIPF model and the LLC tumor model were used as two animal models to explore how high-dose vitamin C can improve RIPF without hampering the antitumour efficacy of radiotherapy. The impact of high-dose vitamin C on RIPF was assessed through various assays, including micro-CT, HE staining, Masson staining, and immunohistochemistry. Our results indicated that administering high-dose vitamin C 2 days before radiation and continuing for a duration of 6 weeks significantly inhibited the progression of RIPF. In order to explore the mechanism by which high-dose vitamin C attenuates RIPF, we utilized RNA-seq analysis of mouse lung tissue in conjunction with publicly available databases. Our findings indicated that high-dose vitamin C inhibits the differentiation of fibroblasts into myofibroblasts by targeting S100A8 and S100A9 derived from neutrophils. Additionally, the combination of high-dose vitamin C and radiation demonstrated enhanced inhibition of tumor growth in a murine LLC tumor model. These results revealed that the combination of radiotherapy and high-dose vitamin C may offer a promising therapeutic approach for the clinical management of thoracic tumors and the prevention of RIPF.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39009944

RESUMO

Acute-phase inhibition of the pro-inflammatory alarmin S100A8/A9 improves cardiac function post-myocardial infarction (MI), but the mechanisms underlying the long-term benefits of this short-term treatment remain to be elucidated. Here, we assessed the effects of S100A8/A9 blockade with the small-molecule inhibitor ABR-238901 on myocardial neovascularization in mice with induced MI. The treatment significantly reduced S100A9 and increased neovascularization in the myocardium, assessed by CD31 staining. Proteomic analysis by mass-spectrometry showed strong myocardial upregulation of the pro-angiogenic proteins filamin A (~ 10-fold) and reticulon 4 (~ 5-fold), and downregulation of the anti-angiogenic proteins Ras homolog gene family member A (RhoA, ~ 4.7-fold), neutrophilic granule protein (Ngp, ~ 4.0-fold), and cathelicidin antimicrobial peptide (Camp, ~ 4.4-fold) versus controls. In-vitro, ABR-238901 protected against apoptosis induced by recombinant human S100A8/A9 in human umbilical vein endothelial cells (HUVECs). In conclusion, S100A8/A9 blockade promotes post-MI myocardial neovascularization by favorably modulating pro-angiogenic proteins in the myocardium and by inhibiting endothelial cell apoptosis.

4.
Arch Biochem Biophys ; 758: 110087, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38977154

RESUMO

Protein aggregation in the form of amyloid fibrils has long been associated with the onset and development of various amyloidoses, including Alzheimer's, Parkinson's or prion diseases. Recent studies of their fibril formation process have revealed that amyloidogenic protein cross-interactions may impact aggregation pathways and kinetic parameters, as well as the structure of the resulting aggregates. Despite a growing number of reports exploring this type of interaction, they only cover just a small number of possible amyloidogenic protein pairings. One such pair is between two neurodegeneration-associated proteins: the pro-inflammatory S100A9 and prion protein, which are known to co-localize in vivo. In this study, we examined their cross-interaction in vitro and discovered that the fibrillar form of S100A9 modulated the aggregation pathway of mouse prion protein 89-230 fragment, while non-aggregated S100A9 also significantly inhibited its primary nucleation process. These results complement previous observations of the pro-inflammatory protein's role in amyloid aggregation and highlight its potential role against neurodegenerative disorders.


Assuntos
Amiloide , Calgranulina B , Proteínas Priônicas , Agregados Proteicos , Calgranulina B/metabolismo , Calgranulina B/química , Animais , Camundongos , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Amiloide/metabolismo , Amiloide/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/química , Cinética
5.
Front Neurosci ; 18: 1425525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027325

RESUMO

The S100B is a member of the S100 family of "E" helix-loop- "F" helix structure (EF) hand calcium-binding proteins expressed in diverse glial, selected neuronal, and various peripheral cells, exerting differential effects. In particular, this review compiles descriptions of the detection of S100B in different brain cells localized in specific regions during the development of humans, mice, and rats. Then, it summarizes S100B's actions on the differentiation, growth, and maturation of glial and neuronal cells in humans and rodents. Particular emphasis is placed on S100B regulation of the differentiation and maturation of astrocytes, oligodendrocytes (OL), and the stimulation of dendritic development in serotoninergic and cerebellar neurons during embryogenesis. We also summarized reports that associate morphological alterations (impaired neurite outgrowth, neuronal migration, altered radial glial cell morphology) of specific neural cell groups during neurodevelopment and functional disturbances (slower rate of weight gain, impaired spatial learning) with changes in the expression of S100B caused by different conditions and stimuli as exposure to stress, ethanol, cocaine and congenital conditions such as Down's Syndrome. Taken together, this evidence highlights the impact of the expression and early actions of S100B in astrocytes, OL, and neurons during brain development, which is reflected in the alterations in differentiation, growth, and maturation of these cells. This allows the integration of a spatiotemporal panorama of S100B actions in glial and neuronal cells in the developing brain.

6.
Int J Biol Macromol ; 276(Pt 2): 133838, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39002917

RESUMO

Accumulation of the pro-inflammatory protein S100A9 has been implicated in neuroinflammatory cascades in neurodegenerative diseases (NDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD). S100A9 co-aggregates with other proteins such as α-synuclein in PD and Aß in AD, contributing to amyloid plaque formation and neurotoxicity. The amyloidogenic nature of this protein and its role in chronic neuroinflammation suggest that it may play a key role in the pathophysiology of these diseases. Research into molecules targeting S100A9 could be a potential therapeutic strategy to prevent its amyloidogenic self-assembly and to attenuate the neuroinflammatory response in affected brain tissue. This work suggests that bioactive natural molecules, such as those found in the Mediterranean diet, may have the potential to alleviate neuroinflammation associated with the accumulation of proteins such as S100A9 in neurodegenerative diseases. A major component of extra virgin olive oil (EVOO), hydroxytyrosol (HT), with its ability to interact with and modulate S100A9 amyloid self-assembly and expression, offers a compelling approach for the development of novel and effective interventions for the prevention and treatment of ND. The findings highlight the importance of exploring natural compounds, such as HT, as potential therapeutic options for these complex and challenging neurological conditions.

7.
Cureus ; 16(6): e62707, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39036258

RESUMO

Brain death (BD) represents the irreversible loss of all brain functions, including the brainstem, and is equivalent to clinical death established by neurological criteria. However, clinical diagnosis, mainly based on the absence of primary reflexes post-acute brain injury, remains a challenge in hospital settings. The S100 calcium-binding protein beta (S100b) is used to monitor brain injuries, as recommended by neurotrauma care guidelines in some countries. Its levels are associated with severity and mortality, particularly after traumatic brain injury (TBI) and cerebral hemorrhage. The evaluation of S100b levels in investigating brain death is promising; however, aspects such as cutoff values remain to be elucidated. This paper reviews the literature on the use of S100b as a biomarker in diagnosing brain death. It is noteworthy that there is still no defined cutoff for S100b levels in confirming brain death. Additionally, when considering the use of S100b in emergency situations, a point-of-care methodology should be established to support clinical decision-making quickly and easily in the early identification of patients who are more likely to progress to brain death. In this context, S100b levels may assist in establishing the diagnosis of brain death, complementing existing clinical evidence. This, in turn, can optimize and qualify the organ donation process, reducing costs with ineffective therapies and minimizing the suffering of the families involved.

8.
J Mol Med (Berl) ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995368

RESUMO

Fatty liver, which is induced by abnormal lipid metabolism, is one of the most common causes of chronic liver disease globally and causes liver fibrosis. During this process, bone marrow-derived mesenchymal stromal cells (BMSCs) and hepatic stellate cells (HSCs) migrate toward the injured liver and participate in fibrogenesis by transdifferentiating into myofibroblasts. S100A8/A9 is a powerful inducer of cell migration and is involved in liver injury. But there are few reports about the effects of S100A8/A9 on BMSC/HSC migration. In the current study, we found that S100A8/A9 expression was increased during fatty liver injury/fibrogenesis. Moreover, S100A8/A9 expression had a positive correlation with fibrosis marker gene expressions in the injured liver. S100A8/A9 was mainly produced by neutrophils in the fibrotic liver. In vitro, neutrophil-secreted S100A8/A9 promoted BMSC/HSC migration via remodeling of microfilaments. Using specific siRNA and inhibitor, we proved that S100A8/A9-induced BMSC/HSC migration is dependent on TLR4/Rho GTPases signaling. Moreover, S100A8/A9 knock-down alleviated liver injury and fibrogenesis in vivo, while injection of S100A9 neutralizing antibody performed similar roles. We proved that S100A8/A9 was involved in liver injury and fibrogenesis via inducing BMSC/HSC migration. Our research reveals a new mechanism underlying BMSC/HSC migration in liver fibrosis and suggests S100A8/A9 as a potential therapeutic target of liver fibrosis. KEY MESSAGES: S100A8/A9 is secreted by neutrophils and increased in fatty liver injury. Neutrophil-secreted S100A8/A9 is a mediator of BMSC/HSC migration in vitro. S100A8/A9-induced BMSC/HSC migration is dependent on TLR4/Rho GTPases signaling. S100A8/A9 blockade alleviates liver injury and fibrogenesis in vivo.

9.
J Inflamm Res ; 17: 4483-4503, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006491

RESUMO

Purpose: Sepsis-induced cardiomyopathy (SICM) is a prevalent cardiac dysfunction caused by sepsis. Mitochondrial dysfunction is a crucial pathogenic factor associated with adverse cardiovascular adverse events; however, research on SICM remains insufficient. Methods: To investigate the factors contributing to the pathological progression of SICM, we performed a comprehensive analysis of transcriptomic data from the GEO database using bioinformatics and machine learning techniques. CRISPR-Cas9 S100A9 knockout mice and primary cardiomyocytes were exposed to lipopolysaccharide to simulate SICM. Transcriptome analysis and mass spectrometry of primary cardiomyocytes were used to determine the potential pathogenic mechanisms of S100A9. The mitochondrial ultrastructure and mitochondrial membrane potential (MMP) were detected using transmission electron microscopy and flow cytometry, respectively. Pink1/Parkin and Drp1 proteins were detected using Western blotting to evaluate mitochondrial autophagy and division. The mtDNA and mRNA levels of mitochondrial transcription factors and synthases were evaluated using real-time polymerase chain reaction. Results: Bioinformatics analysis identified 12 common differentially expressed genes, including SERPINA3N, LCN2, MS4A6D, LRG1, OSMR, SOCS3, FCGR2b, S100A9, S100A8, CASP4, ABCA8A, and NFKBIZ. Significant S100A9 upregulation was closely associated with myocardial injury exacerbation and cardiac function deterioration. GSEA revealed that myocardial contractile function, oxidative stress, and mitochondrial function were significantly affected by S100A9. Knocking out S100A9 alleviates the inflammatory response and mitochondrial dysfunction. The interaction of S100A9 with ATP5 enhanced mitochondrial division and autophagy, inhibited MMP and ATP synthesis, and induced oxidative stress, which are related to the Nlrp3-Nfkb-Caspase1 and Drp1-Pink1-Parkin signaling pathways. The expression of mitochondrial transcription factors (TFAM and TFBM) and ATP synthetases (ATP6 and ATP8, as well as COX1, COX2, and COX3) was further suppressed by S100A9 in SICM. Targeted S100A9 inhibition by paquinimod partially reversed myocardial mitochondrial dysfunction and oxidative stress. Conclusion: The interaction of S100A9 with ATP5 exacerbates myocardial damage in sepsis by inducing mitochondrial dysfunction and oxidative stress.

10.
Int Immunopharmacol ; 139: 112661, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39008936

RESUMO

The therapeutic effect of 5-amino salicylic acid (5-ASA), a first-line therapeutic agent for the treatment of ulcerative colitis (UC), is limited by the modest bioavailability afforded by its oral administration. In this study, a 5-ASA oral delivery system was developed using Eudragit S100-coated iron oxide-chitosan nanocomposites (ES-IOCS/5-ASA) to address this issue. According to drug release studies in vitro, ES-IOCS/5-ASA only released a small amount of drug in simulated gastric fluid with a pH of 1.2. However, in a medium with a pH of 7.5, a relatively rapid and complete release was noted. 5-ASA-loaded iron oxide-chitosan nanocomposites (IOCS/5-ASA) could be effectively taken up by NCM460 cells and performed better anti-inflammatory effects than free 5-ASA. At the same time, IOCS/5-ASA improved barrier damage in DSS-induced NCM460 cells. In vivo models of dextran sulphate sodium (DSS)-induced colitis were used to assess the therapeutic efficacy of oral administration of ES-IOCS/5-ASA. ES-IOCS/5-ASA significantly relieved DSS-induced colitis and enhanced the integrity of the intestinal epithelial barrier. ES-IOCS/5-ASA also reduced the expression of NLRP3, ASC and IL-1ß. Additionally, iron oxide nanoparticles used as nanozymes could alleviate inflammation. In summary, this study indicates that ES-IOCS/5-ASA exert anti-inflammatory effects on DSS-induced colitis by improving intestinal barrier function and inhibiting NLRP3 inflammasome expression, presenting a viable therapeutic choice for the treatment of UC.

11.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(7): 716-722, 2024 Jul 15.
Artigo em Chinês | MEDLINE | ID: mdl-39014948

RESUMO

OBJECTIVES: To investigate the role of calprotectin S100 A8/A9 complex in evaluating the condition of children with severe Mycoplasma pneumoniae pneumonia (SMPP). METHODS: A prospective study was conducted among 136 children with Mycoplasma pneumoniae pneumonia (MPP) and 30 healthy controls. According to the severity of the condition, the children with MPP were divided into mild subgroup (40 children) and SMPP subgroup (96 children). The levels of S100 A8/A9 complex and related inflammatory factors were compared between the MPP group and the healthy control group, as well as between the two subgroups of MPP. The role of S100 A8/A9 in assessing the severity of MPP was explored. RESULTS: The MPP group had a significantly higher level of S100 A8/A9 than the healthy control group, with a significantly greater increase in the SMPP subgroup (P<0.05). The multivariate logistic regression analysis showed that the increases in serum C reactive protein (CRP) and S100A8/A9 were closely associated with SMPP (P<0.05). The receiver operating characteristic (ROC) curve analysis showed that the combined measurement of serum S100 A8/A9 and CRP had an area under the ROC curve of 0.904 in predicting SMPP, which was significantly higher than the AUC of S100 A8/A9 or CRP alone (P<0.05), with a specificity of 0.718 and a sensitivity of 0.952. CONCLUSIONS: S100 A8/A9 is closely associated with the severity of MPP, and the combination of S100 A8/A9 with CRP is more advantageous for assessing the severity of MPP in children.


Assuntos
Calgranulina A , Calgranulina B , Pneumonia por Mycoplasma , Humanos , Pneumonia por Mycoplasma/sangue , Pneumonia por Mycoplasma/diagnóstico , Masculino , Feminino , Calgranulina A/sangue , Calgranulina B/sangue , Pré-Escolar , Criança , Estudos Prospectivos , Modelos Logísticos , Índice de Gravidade de Doença , Proteína C-Reativa/análise , Complexo Antígeno L1 Leucocitário/sangue , Complexo Antígeno L1 Leucocitário/análise , Lactente
12.
J Cutan Pathol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986510

RESUMO

PRRX1-fused mesenchymal neoplasm is a recently identified, rare subcutaneous soft tissue neoplasm that is characterized by fusion of PRRX1 (exon 1) with NCOA1 (exon 13) in the majority of reported cases. Although initially considered to be fibroblastic, a possibility of neural or neuroectodermal differentiation has been suggested in a subset of cases. We report a 26-year-old female with a 4.0 cm painless mass located in the subcutis of the left thigh. Microscopically, the tumor was well-circumscribed and multinodular and was composed of relatively monomorphic ovoid to spindle cells arranged in loose fascicles, trabeculae, and cords within alternating myxoid and fibrous matrix, and vascularized stroma. Mitotic figures were scarce and necrosis was not observed. By immunohistochemistry, the neoplastic cells demonstrated focal co-expression of S100 protein and SOX10 and were negative for epithelial membrane antigen, smooth muscle actin, desmin, CD34, STAT6, HMB45, Melan-A, and MUC4. The expression of Rb1 was retained. Targeted RNA-sequencing identified a novel transcript fusion of PRRX1 (exon 1)::NCOA1 (exon 15), which was further confirmed by reverse transcription polymerase chain reaction and Sanger sequencing. The tumor was narrowly excised and no tumor recurrence or metastasis was identified after 13 months of follow-up. In summary, we report a new case of PRRX1-fused mesenchymal neoplasm, expanding the molecular genetic spectrum and providing further support for possible neural or neuroectodermal differentiation of this emerging soft tissue tumor entity.

13.
Immunology ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003642

RESUMO

Among several quantitative trait loci involved in tuberculosis (TB) control in mice, one was mapped within the chromosome 17 segment occupied by the H2 complex and another within the chromosome 3 segment comprising the S100A8/9 genes, which encode neutrophil inflammatory factor S100A8/9. Previously, we developed a panel of H2-congenic mouse strains differing by small segments of the major histocompatibility complex Class II (MHC-II) region from TB-susceptible H2j mice transferred onto the genetic background of the TB-resistant C57BL/6 (H2b) strain. Susceptible B6.I-9.3 mice differ from B6 progenitors by the alleles of their only classical MHC-II H2-Aß gene. The goals of the present study were to: (i) comprehensively characterise the differences in TB-related phenotypes between mice of the two strains and (ii) decipher interactions between the H2-Aß and S100A8/9 genes. Here, we describe the dynamics of TB-related phenotypes differentiating B6.I-9.3 and B6 mice (colony forming units counts, histopathology, lung immune cell infiltration and cytokine profiles). We show that disproportionally diminished CD4+ T-cell population, an enlarged S100A8/9-positive neutrophil population and higher S100A8/9 serum levels in B6.I-9.3 mice collectively form the 'susceptible' phenotype before infection. An increase in IL-17 and a decrease in intrferon-gamma production by CD4+ T-cells in these mice provide a mechanistic explanation of this phenotype. Using F2 segregation analysis, we show that the number of S100A8/9-producing neutrophils in lungs and spleens and the proportion of Th17 CD4+ T-cells in lungs are significantly lower in the presence of the MHC-II dominant 'resistant' b allele compared to the recessive 'susceptible' j/j genotype. This provides direct genetic evidence that MHC-II-regulated CD4+ T-cell landscapes determine neutrophil abundance before infection, an important pathogenic factor in TB immunity.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39012268

RESUMO

The S100 family proteins (S100s) participate in multiple stages of tumorigenesis and are considered to have potential value as biomarkers for detecting and predicting various cancers. But the role of S100s in lung adenocarcinoma (LUAD) prognosis is elusive. Transcriptional data of LUAD patients were retrieved from TCGA, and relevant literature was extensively reviewed to collect S100 genes. Differential gene expression analysis was performed on the LUAD data, followed by intersection analysis between the differentially expressed genes (DEGs) and S100 genes. Unsupervised consensus clustering analysis identified two clusters. Significant variations in overall survival between the two clusters were shown by Kaplan-Meier analysis. DEGs between the two clusters were analyzed using Lasso regression and univariate/multivariate Cox regression analysis, leading to construction of an 11-gene prognostic signature. The signature exhibited stable and accurate predictive capability in TCGA and GEO datasets. Subsequently, we observed distinct immune cell infiltration, immunotherapy response, and tumor mutation characteristics in high and low-risk groups. Finally, small molecular compounds targeting prognostic genes were screened using CellMiner database, and molecular docking confirmed the binding of AMG-176, Estramustine, and TAK-632 with prognostic genes. In conclusion, we generated a prognostic signature with robust and reliable predictive ability, which may provide guidance for prognosis and treatment of LUAD.

15.
Vet Microbiol ; 296: 110175, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39018941

RESUMO

Mycoplasma gallisepticum (MG) is the primary causative agent of chronic respiratory disease (CRD) in chickens, characterized by respiratory inflammation. S100A9 plays a pivotal role in modulating the inflammatory response to microbial pathogens. Our prior investigation revealed a significant upregulation of S100A9 in the lungs of chickens following MG infection. This study delves into the immunomodulatory effects of S100A9 during MG infection, demonstrating a notable increase in S100A9 levels in the lungs, immune organs, alveolar epithelial type II cells (AECII), and macrophage HD11 cells of MG-infected chicks and embryos. In MG-infected AECII cells, S100A9 overexpression significantly enhanced MG proliferation and adhesion, suppressed AVBD1, NFκB, pro-inflammatory factors (IL1ß and TNFα), and chemokines, reduced apoptosis, and promoted cell proliferation, thereby facilitating MG infection. Conversely, inhibiting S100A9 produced opposing effects. In MG-infected HD11 cells, S100A9 impeded MG proliferation and adhesion, increased AVBD1, NFκB, pro-inflammatory factors, and chemokines, and induced cell apoptosis while inhibiting proliferation. Additional results demonstrated that S100A9 facilitates MG infection by modulating the TLR7/NFκB/JAK/STAT pathway in AECII/HD11 cells. In summary, S100A9 exhibits a dual role in activating/inhibiting the natural immune response through TLR7/NFκB/JAK/STAT pathway regulation. This dual role promotes MG infection in AECII cells while enabling MG to evade immune surveillance by HD11 cells, ultimately enhancing the overall infection process. These findings advance our understanding of host-pathogen interactions during MG infection and underscore S100A9's potential as a therapeutic target for CRD in chickens.

16.
Pflugers Arch ; 476(8): 1263-1277, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963545

RESUMO

6-Cyanodopamine is a novel catecholamine released from rabbit isolated heart. However, it is not known whether this catecholamine presents any biological activity. Here, it was evaluated whether 6-cyanodopamine (6-CYD) is released from rat vas deferens and its effect on this tissue contractility. Basal release of 6-CYD, 6-nitrodopamine (6-ND), 6-bromodopamine, 6-nitrodopa, and 6-nitroadrenaline from vas deferens were quantified by LC-MS/MS. Electric-field stimulation (EFS) and concentration-response curves to noradrenaline, adrenaline, and dopamine of the rat isolated epididymal vas deferens (RIEVD) were performed in the absence and presence of 6-CYD and /or 6-ND. Expression of tyrosine hydroxylase was assessed by immunohistochemistry. The rat isolated vas deferens released significant amounts of both 6-CYD and 6-ND. The voltage-gated sodium channel blocker tetrodotoxin had no effect on the release of 6-CYD, but it virtually abolished 6-ND release. 6-CYD alone exhibited a negligible RIEVD contractile activity; however, at 10 nM, 6-CYD significantly potentiated the noradrenaline- and EFS-induced RIEVD contractions, whereas at 10 and 100 nM, it also significantly potentiated the adrenaline- and dopamine-induced contractions. The potentiation of noradrenaline- and adrenaline-induced contractions by 6-CYD was unaffected by tetrodotoxin. Co-incubation of 6-CYD (100 pM) with 6-ND (10 pM) caused a significant leftward shift and increased the maximal contractile responses to noradrenaline, even in the presence of tetrodotoxin. Immunohistochemistry revealed the presence of tyrosine hydroxylase in both epithelial cell cytoplasm of the mucosae and nerve fibers of RIEVD. The identification of epithelium-derived 6-CYD and its remarkable synergism with catecholamines indicate that epithelial cells may regulate vas deferens smooth muscle contractility.


Assuntos
Dopamina , Contração Muscular , Ducto Deferente , Masculino , Animais , Ducto Deferente/efeitos dos fármacos , Ducto Deferente/metabolismo , Ducto Deferente/fisiologia , Contração Muscular/efeitos dos fármacos , Ratos , Dopamina/metabolismo , Dopamina/farmacologia , Ratos Wistar , Norepinefrina/farmacologia , Norepinefrina/metabolismo , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Músculo Liso/fisiologia , Estimulação Elétrica , Epinefrina/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Cureus ; 16(6): e63020, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39050316

RESUMO

Traumatic brain injury (TBI) stands as a significant contributor to traumatic death and disability worldwide. In recent years, researchers have identified biomarkers to gauge useful outcomes in TBI patients. However, the enigma of timely sample collection to measure the biomarkers remains a controversial point in the case of TBI, unlike other degenerative diseases like Alzheimer's disease and Parkinson's disease, where we can collect the sample at any point in time. The purpose of this study is to evaluate the sensitivity of biomarkers in TBI concerning time of injury by analyzing recent available data on biomarkers in the medical literature. A total of 2,256 studies were initially retrieved from the search engine. After an initial screening, only 1,750 unique articles remained. After excluding review articles, animal studies, meta-analysis, and studies with children (screened by title and abstract), 30 kinds of literature were found relevant to search the required variables. Further 16 studies were excluded due to the nonavailability of complete variables or data. Finally, 14 studies remained and were included in the analysis. This study has analyzed the four most commonly described biomarkers for TBI in the literature: glial fibrillary acidic protein (GFAP), S100 calcium-binding protein B, ubiquitin carboxy-terminal hydrolase L1, and Tau. According to this statistical analysis, all biomarkers included in the study have shown their serum levels after trauma. So, all these biomarkers can be used for further study in the outcome prediction and diagnosis of TBI patients. The meta-analysis suggests that the best biomarker for TBI is Tau in cases where sample collection is done within 24 hours, while GFAP is the best biomarker to be studied for TBI if sample collection is done 24 hours after trauma.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38951152

RESUMO

A previous study has confirmed the upregulation of circ_0007142 expression in CC. Here, we aimed to investigate the effect and mechanism of circ_0007142 in CC progression. The expression of circ_0007142, microRNA-128-3p (miR-128-3p), S100 calcium-binding protein A14 (S100A14), and epithelial mesenchymal transition (EMT)-related markers was measured by qRT-PCR and Western blot. Cell proliferative, migratory, and invasion abilities were evaluated using cell counting Kit-8, cell colony formation, 5-ethynyl-2'-deoxyuridine, and transwell assays, respectively. The interaction among circ_0007142, miR-128-3p and S100A14 was identified by dual-luciferase reporter and RNA immunoprecipitation assays. In vivo experiment was implemented to investigate the effect of circ_0007142 on tumor growth. CC tissues and cells displayed high expression of circ_0007142 and S100A14, and low expression of miR-128-3p in comparison to the controls. Knockdown of circ_0007142 resulted in the inhibition of cell proliferation, migration invasion, and EMT in vitro. In support, circ_0007142 deficiency hindered tumor growth and EMT in vivo. In rescue experiments, downregulation of miR-128-3p relieved circ_0007142 absence-mediated anticancer impacts. MiR-128-3p overexpression-induced inhibitory effects on cell growth and metastasis were attenuated by S100A14 overexpression. Importantly, circ_0007142 regulated S100A14 expression by sponging miR-128-3p. Circ_0007142 knockdown suppressed CC cell malignant behaviors by miR-128-3p/S100A14 pathway, providing a possible circRNA-targeted therapy for CC.

20.
J Cell Mol Med ; 28(13): e18516, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38958577

RESUMO

The progression of lung adenocarcinoma (LUAD) from atypical adenomatous hyperplasia (AAH) to invasive adenocarcinoma (IAC) involves a complex evolution of tumour cell clusters, the mechanisms of which remain largely unknown. By integrating single-cell datasets and using inferCNV, we identified and analysed tumour cell clusters to explore their heterogeneity and changes in abundance throughout LUAD progression. We applied gene set variation analysis (GSVA), pseudotime analysis, scMetabolism, and Cytotrace scores to study biological functions, metabolic profiles and stemness traits. A predictive model for prognosis, based on key cluster marker genes, was developed using CoxBoost and plsRcox (CPM), and validated across multiple cohorts for its prognostic prediction capabilities, tumour microenvironment characterization, mutation landscape and immunotherapy response. We identified nine distinct tumour cell clusters, with Cluster 6 indicating an early developmental stage, high stemness and proliferative potential. The abundance of Clusters 0 and 6 increased from AAH to IAC, correlating with prognosis. The CPM model effectively distinguished prognosis in immunotherapy cohorts and predicted genomic alterations, chemotherapy drug sensitivity, and immunotherapy responsiveness. Key gene S100A16 in the CPM model was validated as an oncogene, enhancing LUAD cell proliferation, invasion and migration. The CPM model emerges as a novel biomarker for predicting prognosis and immunotherapy response in LUAD patients, with S100A16 identified as a potential therapeutic target.


Assuntos
Adenocarcinoma de Pulmão , Biomarcadores Tumorais , Progressão da Doença , Neoplasias Pulmonares , Aprendizado de Máquina , Análise de Célula Única , Microambiente Tumoral , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Análise de Célula Única/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica , Imunoterapia/métodos , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA