RESUMO
Our previous study data suggested that the synapse-associated protein 97 (SAP97) rs3915512 polymorphism is significantly related to clinical performance in schizophrenia. The cerebellum exhibits abundant expression of SAP97, which is involved with negative symptoms, cognition and emotion in schizophrenia. As functional dysconnectivity with the cortical-subcortical-cerebellar circuitry has been widely shown in patients with schizophrenia, cortical-subcortical-cerebellar dysconnectivity can therefore be considered a possible intermediate phenotype that connects risk genes with schizophrenia. In this study, resting-state functional magnetic resonance imaging (fMRI) was applied to evaluate whether the SAP97 rs3915512 polymorphism changes cortical/subcortical-cerebellar resting-state functional connectivity (RSFC) in 104 Han Chinese subjects (52 first-episode schizophrenia (FES) patients and 52 matched healthy controls (HCs)). To examine RSFC between cortical/subcortical regions and the cerebellum, a ROI (region of interest)-wise functional connectivity analysis was conducted. The association between abnormal cortical/subcortical-cerebellar connectivity and clinical manifestation was further assessed in FES patients with different genotypes. The interactive effect of disease and genotype on RSFC was found between the frontal gyrus (rectus) and cerebellum. A positive correlation was suggested between RSFC in the cerebellum and the hostility scores in FES patients with the A allele, and no correlation was found in FES patients with the TT genotype. The current findings identified that SAP97 may be involved in the process of mental symptoms in FES patients via cerebellar connectivity depending on the rs3915512 polymorphism genotype.
Assuntos
Proteína 1 Homóloga a Discs-Large , Esquizofrenia , Humanos , Alelos , Povo Asiático , Cerebelo/diagnóstico por imagem , Proteína 1 Homóloga a Discs-Large/genética , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genéticaRESUMO
Changes in the number of synaptic AMPA receptors underlie many forms of synaptic plasticity. These variations are controlled by an interplay between their intracellular transport (IT), export to the plasma membrane (PM), stabilization at synapses, and recycling. The cytosolic C-terminal domain of the AMPAR GluA1 subunit is specifically associated with 4.1 N and SAP97. We analyze how interactions between GluA1 and 4.1N or SAP97 regulate IT and exocytosis in basal conditions and after cLTP induction. The down-regulation of 4.1N or SAP97 decreases GluA1 IT properties and export to the PM. The total deletion of its C-terminal fully suppresses its IT. Our results demonstrate that during basal transmission, the binding of 4.1N to GluA1 allows their exocytosis whereas the interaction with SAP97 is essential for GluA1 IT. During cLTP, the interaction of 4.1N with GluA1 allows its IT and exocytosis. Our results identify the differential roles of 4.1N and SAP97 in the control of various phases of GluA1 IT.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Receptores de AMPA , Receptores de AMPA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sinapses/fisiologia , Plasticidade Neuronal/fisiologia , Membrana Celular/metabolismo , Hipocampo/metabolismoRESUMO
Fragile X syndrome (FXS) is the most common form of monogenic intellectual disability and autism, caused by the absence of the functional fragile X messenger ribonucleoprotein 1 (FMRP). FXS features include increased and dysregulated protein synthesis, observed in both murine and human cells. Altered processing of the amyloid precursor protein (APP), consisting of an excess of soluble APPα (sAPPα), may contribute to this molecular phenotype in mice and human fibroblasts. Here we show an age-dependent dysregulation of APP processing in fibroblasts from FXS individuals, human neural precursor cells derived from induced pluripotent stem cells (iPSCs), and forebrain organoids. Moreover, FXS fibroblasts treated with a cell-permeable peptide that decreases the generation of sAPPα show restored levels of protein synthesis. Our findings suggest the possibility of using cell-based permeable peptides as a future therapeutic approach for FXS during a defined developmental window.
Assuntos
Síndrome do Cromossomo X Frágil , Células-Tronco Neurais , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Síndrome do Cromossomo X Frágil/genética , Células-Tronco Neurais/metabolismo , Neurônios/metabolismoRESUMO
SAP97 is a member of the MAGUK family of proteins, but unlike other MAGUK proteins that are selectively expressed in the CNS, SAP97 is also expressed in peripheral organs, like the heart and kidneys. SAP97 has several protein binding cassettes, and this review will describe their involvement in creating SAP97-anchored multiprotein networks. SAP97-anchored networks localized at the inner leaflet of the cell membrane play a major role in trafficking and targeting of membrane G protein-coupled receptors (GPCR), channels, and structural proteins. SAP97 plays a major role in compartmentalizing voltage gated sodium and potassium channels to specific cellular compartments of heart cells. SAP97 undergoes extensive alternative splicing. These splice variants give rise to different SAP97 isoforms that alter its cellular localization, networking, signaling and trafficking effects. Regarding GPCR, SAP97 binds to the ß1-adrenergic receptor and recruits AKAP5/PKA and PDE4D8 to create a multiprotein complex that regulates trafficking and signaling of cardiac ß1-AR. In the kidneys, SAP97 anchored networks played a role in trafficking of aquaporin-2 water channels. Cardiac specific ablation of SAP97 (SAP97-cKO) resulted in cardiac hypertrophy and failure in aging mice. Similarly, instituting transverse aortic constriction (TAC) in young SAP97 c-KO mice exacerbated TAC-induced cardiac remodeling and dysfunction. These findings highlight a critical role for SAP97 in the pathophysiology of a number of cardiac and renal diseases, suggesting that SAP97 is a relevant target for drug discovery.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Membrana , Camundongos , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Transdução de Sinais/fisiologia , Complexos Multiproteicos/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismoRESUMO
Vascular dementia (VaD) is the second most common subtype of dementia, but the precise mechanism underlying VaD is not fully understood. Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) can act as a key regulator in physiological and pathological processes, including neurological disorders, but whether it is correlated with VaD has not been elucidated. In this study, we established a mouse model of VaD by the transient bilateral common carotid artery occlusion surgery. As expected, the Morris water maze showed that VaD mice had significant deficits in spatial learning and memory. MALAT1 was elevated in the hippocampus of VaD mice. Additionally, we found that microRNA (miR)-9-3p was downregulated in the VaD hippocampus. By performing a dual-luciferase report assay, we verified the binding relationship between MALAT1 and miR-9-3p. Interestingly, synapse-associated protein-97 (SAP97), a well-known gene related to synaptic functions, was found upregulated in the hippocampus of VaD mice. In vitro experiments performed on hippocampal neurons demonstrated that miR-9-3p negatively regulated SAP97 expression. The downregulation of MALAT1 in hippocampal neurons increased miR-9-3p and reduced SAP97, whereas miR-9-3p inhibition rescued the MALAT1 downregulation-mediated SAP97 reduction. In conclusion, the present study reported the alterations in the expression levels of MALAT1, miR-9-3p, and SAP97 in the hippocampus of VaD mice, suggesting that MALAT1 targets miR-9-3p to upregulate SAP97 in the hippocampus of mice with VaD. This work will be helpful for understanding the molecular mechanisms of VaD.
Assuntos
Demência Vascular , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Demência Vascular/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Hipocampo/metabolismoRESUMO
CRAC, which plays important role in Ca2+-dependent T-lymphocyte activation, is composed of the ER-resident STIM1 and the plasma membrane Orai1 pore-forming subunit. Both accumulate at the immunological synapse (IS) between a T cell and an antigen-presenting cell (APC). We hypothesized that adapter/interacting proteins regulate Orai1 residence in the IS. We could show that mGFP-tagged Orai1-Full channels expressed in Jurkat cells had a biphasic IS-accumulation kinetics peaked at 15 min. To understand the background of Orai1 IS-redistribution we knocked down STIM1 and SAP97 (adaptor protein with a short IS-residency (15 min) and ability to bind Orai1 N-terminus): the mGFP-Orai1-Full channels kept on accumulating in the IS up to the 60th minute in the STIM1- and SAP97-lacking Jurkat cells. Deletion of Orai1 N terminus (mGFP-Orai1-Δ72) resulted in the same time course as described for STIM1/SAP97 knock-down cells. Ca2+-imaging of IS-engaged T-cells revealed that of Orai1 residency modifies the Ca2+-response: cells expressing mGFP-Orai1-Δ72 construct or mGFP-Orai1-Full in SAP-97 knock-down cells showed higher number of Ca2+-oscillation up to the 90th minute after IS formation. Overall, these data suggest that SAP97 may contribute to the short-lived IS-residency of Orai1 and binding of STIM1 to Orai1 N-terminus is necessary for SAP97-Orai1 interaction.
Assuntos
Sinalização do Cálcio/imunologia , Sinapses Imunológicas/metabolismo , Proteína ORAI1/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Imunidade Adaptativa , Proteína 1 Homóloga a Discs-Large/antagonistas & inibidores , Proteína 1 Homóloga a Discs-Large/genética , Proteína 1 Homóloga a Discs-Large/metabolismo , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Sinapses Imunológicas/genética , Sinapses Imunológicas/imunologia , Células Jurkat , Cinética , Ativação Linfocitária , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/química , Proteína ORAI1/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Molécula 1 de Interação Estromal/antagonistas & inibidores , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismoRESUMO
Functional and structural disturbances in the orbitofrontal-striatal-thalamic circuitry are thought to be associated with mental symptoms and neurocognitive impairments in schizophrenia. This study tested whether synapse-associated protein 97 (SAP97), a reasonable candidate gene for schizophrenia, is related to orbitofrontal-striatal-thalamic connection changes in first-episode schizophrenia (FES) patients and the clinical performance of schizophrenic patients by affecting this integrity. Fifty-two FES patients and 52 matched healthy controls were recruited. All subjects underwent genotyping via the improved multiplex ligation detection reaction technique and scanning with magnetic resonance imaging (MRI) to provide orbitofrontal-striatal-thalamic functional and structural imaging data. A two-way analysis of covariance model was employed to examine abnormal brain connectivities, and Spearman correlations were applied to estimate the relationships between brain connectivity and clinical manifestations. In the FES group, those with the SAP97 rs3915512 TT genotype showed lower structural and functional connectivity than A allele carriers between the orbitofrontal gyrus and striatum/thalamus. In the FES group, negative correlations were found between resting-state functional connectivity (RSFC) in the orbitofrontal gyrus and thalamus, and positive symptoms between structural connections in the orbitofrontal gyrus and striatum and cognitive functions, and positive correlations were suggested between RSFC in the orbitofrontal gyrus and thalamus and negative symptoms. Our findings suggested that the SAP97 rs3915512 polymorphism may be involved in mental symptoms and cognitive dysfunction in FES patients by influencing structural and functional connectivity of the orbitofrontal-striatal and orbitofrontal-thalamic regions.
RESUMO
Our previous study suggested that the synapse-associated protein 97 (SAP97) gene rs3915512 polymorphism may influence neurocognition in schizophrenia patients. Neuroimaging studies have shown a possible association between cognitive function and brain activity/connectivity. Considering the poor understanding of whether the disease state and SAP97 rs3915512 polymorphism have interactive effects on brain activity/connectivity, 52 first-episode schizophrenia (FES) patients and 52 healthy controls were genotyped using blood DNA samples and underwent magnetic resonance imaging scanning. A two-way ANCOVA model was performed with rs3915512 genotypes and disease state as the between-subject factors. A significant disease × SAP97 interactive effect was found for the amplitude of low-frequency fluctuation (ALFF) in the right supplementary motor area, left rolandic opercularis area (ROC-L), and bilateral middle occipital gyrus (MOG). In addition, among auditory/visual-related brain areas, a significant interactive effect was found for resting-state functional connectivity (RSFC) between the MOG-L and bilateral superior temporal gyrus (STG) in the STG-L with ROC-R, right cuneus (Cu-R), left fusiform (Fu-L), and left lingual gyrus (LG-L). Positive correlations were found between ALFF in the ROC-L and motor speed scores, between RSFC in the STG-L and LG-L and between Brief Assessment of Cognition in Schizophrenia verbal memory scores in FES. The SAP97 rs3915512 polymorphism may affect neurocognitive function in patients with schizophrenia by changing the brain activity and connectivity of auditory/visual-related brain areas.
RESUMO
OBJECTIVE: To investigate the relationship between SAP97 genetic polymorphisms and sporadic Parkinson's disease (PD) in Han Chinese population with the expectation of offering genetic data for the early prevention and treatment of the disease. METHODS: In this study, we genotyped single-nucleotide polymorphisms (SNPs) (rs3915512 and rs9843659) in theSAP97 gene in 317 patients with PD and 317 healthy-matched controls in a Han Chinese population through the improved multiplex ligation detection reaction (imLDR) technique. Then, we analyzed the association of each SNP, alone or in combination, with risk or age of onset of PD. RESULTS: The SAP97 rs3915512 and rs9843659 polymorphisms were not associated with the risk of PD. However, the minor allele of the rs3915512 and rs9843659 were significantly more common in PD patients with an early age of onset. Additionally, significant differences in the distribution of the onset age of the PD among different genotypes of the rs9843659 polymorphism. The CA haplotype was significantly related to early onset PD. CONCLUSIONS: Our data are the first to suggest that the SAP97 SNPs rs3915512 and rs9843659 and the CA haplotype may be significantly associated with early onset PD in China.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína 1 Homóloga a Discs-Large/genética , Predisposição Genética para Doença , Doença de Parkinson/genética , Idoso , Povo Asiático/genética , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Synapse-associated protein 97 (SAP97) is a scaffolding protein crucial for the functional expression of several cardiac ion channels and therefore proper cardiac excitability. Alterations in the functional expression of SAP97 can modify the ionic currents underlying the cardiac action potential and consequently confer susceptibility for arrhythmogenesis. In this study, we generated a murine model for inducible, cardiac-targeted Sap97 ablation to investigate arrhythmia susceptibility and the underlying molecular mechanisms. Furthermore, we sought to identify human SAP97 (DLG1) variants that were associated with inherited arrhythmogenic disease. The murine model of cardiac-specific Sap97 ablation demonstrated several ECG abnormalities, pronounced action potential prolongation subject to high incidence of arrhythmogenic afterdepolarizations and notable alterations in the activity of the main cardiac ion channels. However, no DLG1 mutations were found in 40 unrelated cases of genetically elusive long QT syndrome (LQTS). Instead, we provide the first evidence implicating a gain of function in human DLG1 mutation resulting in an increase in Kv4.3 current (Ito) as a novel, potentially pathogenic substrate for Brugada syndrome (BrS). In conclusion, DLG1 joins a growing list of genes encoding ion channel interacting proteins (ChIPs) identified as potential channelopathy-susceptibility genes because of their ability to regulate the trafficking, targeting, and modulation of ion channels that are critical for the generation and propagation of the cardiac electrical impulse. Dysfunction in these critical components of cardiac excitability can potentially result in fatal cardiac disease.NEW & NOTEWORTHY The gene encoding SAP97 (DLG1) joins a growing list of genes encoding ion channel-interacting proteins (ChIPs) identified as potential channelopathy-susceptibility genes because of their ability to regulate the trafficking, targeting, and modulation of ion channels that are critical for the generation and propagation of the cardiac electrical impulse. In this study we provide the first data supporting DLG1-encoded SAP97's candidacy as a minor Brugada syndrome susceptibility gene.
Assuntos
Arritmias Cardíacas/metabolismo , Proteína 1 Homóloga a Discs-Large/metabolismo , Coração/fisiopatologia , Miocárdio/metabolismo , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Proteína 1 Homóloga a Discs-Large/genética , Humanos , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismoRESUMO
The SAP97 gene is located in the schizophrenia susceptibility locus 3q29, and it encodes the synaptic scaffolding protein that interacts with the N-methyl-D-aspartate (NMDA) receptor, which is presumed to be dysregulated in schizophrenia. In this study, we genotyped a single-nucleotide polymorphism (SNP) (rs3915512) in the SAP97 gene in 1114 patients with schizophrenia and 1036 healthy-matched controls in a Han Chinese population through the improved multiplex ligation detection reaction (imLDR) technique. Then, we analyzed the association between this SNP and the patients' clinical symptoms and neurocognitive function. Our results showed that there were no significant differences in the genotype and allele frequencies between the patients and the controls for the rs3915512 polymorphism. However, patients with the rs3915512 polymorphism TT genotype had higher neurocognitive function scores (list learning scores, symbol coding scores, category instances scores and controlled oral word association test scores) than the subjects with the A allele (P = 4.72 × 10-5, 0.027, 0.027, 0.013, respectively). Our data are the first to suggest that the SAP97 rs3915512 polymorphism may affect neurocognitive function in patients with schizophrenia.
RESUMO
Activation of the electrical signal and its transmission as a depolarizing wave in the whole heart requires highly organized myocyte architecture and cell-cell contacts. In addition, complex trafficking and anchoring intracellular machineries regulate the proper surface expression of channels and their targeting to distinct membrane domains. An increasing list of proteins, lipids, and second messengers can contribute to the normal targeting of ion channels in cardiac myocytes. However, their precise roles in the electrophysiology of the heart are far from been extensively understood. Nowadays, much effort in the field focuses on understanding the mechanisms that regulate ion channel targeting to sarcolemma microdomains and their organization into macromolecular complexes. The purpose of the present section is to provide an overview of the characterized partners of the main cardiac sodium channel, NaV1.5, involved in regulating the functional expression of this channel both in terms of trafficking and targeting into microdomains.
Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Conexina 43/fisiologia , Proteína 1 Homóloga a Discs-Large , Guanilato Quinases/fisiologia , Humanos , Proteínas de Membrana/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/química , Placofilinas/fisiologiaRESUMO
Spike timing-dependent synaptic plasticity (STDP) serves as a key cellular correlate of associative learning, which is facilitated by elevated attentional and emotional states involving activation of adrenergic signaling. At cellular levels, adrenergic signaling increases dendrite excitability, but the underlying mechanisms remain elusive. Here we show that activation of ß2-adrenoceptors promoted STD long-term synaptic potentiation at mouse hippocampal excitatory synapses by inactivating dendritic Kv1.1-containing potassium channels, which increased dendrite excitability and facilitated dendritic propagation of postsynaptic depolarization, potentially improving coincidental activation of pre- and postsynaptic terminals. We further demonstrate that adrenergic modulation of Kv1.1 was mediated by the signaling scaffold SAP97, which, through direct protein-protein interactions, escorts ß2 signaling to remove Kv1.1 from the dendrite surface. These results reveal a mechanism through which the postsynaptic signaling scaffolds bridge the aroused brain state to promote induction of synaptic plasticity and potentially to enhance spike timing and memory encoding.
Assuntos
Dendritos/metabolismo , Guanilato Quinases/genética , Canal de Potássio Kv1.1/metabolismo , Potenciação de Longa Duração/genética , Proteínas de Membrana/genética , Receptores Adrenérgicos beta 2/metabolismo , Animais , Proteína 1 Homóloga a Discs-Large , Hipocampo/citologia , Hipocampo/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Microscopia Confocal , Inibição Neural , Neurônios/citologia , Neurônios/metabolismo , Optogenética , Técnicas de Patch-Clamp , Potenciais SinápticosRESUMO
Postsynaptic density protein 95 (PSD95) and synapse-associated protein 97 (SAP97) are homologous scaffold proteins with different N-terminal domains, possessing either a palmitoylation site (PSD95) or an L27 domain (SAP97). Here, we measured PSD95 and SAP97 conformation in vitro and in postsynaptic densities (PSDs) using FRET and EM, and examined how conformation regulated interactions with AMPA-type and NMDA-type glutamate receptors (AMPARs/NMDARs). Palmitoylation of PSD95 changed its conformation from a compact to an extended configuration. PSD95 associated with AMPARs (via transmembrane AMPAR regulatory protein subunits) or NMDARs [via glutamate ionotropic receptor NMDA-type subunit 2B (GluN2B) subunits] only in its palmitoylated and extended conformation. In contrast, in its extended conformation, SAP97 associates with NMDARs, but not with AMPARs. Within PSDs, PSD95 and SAP97 were largely in the extended conformation, but had different orientations. PSD95 oriented perpendicular to the PSD membrane, with its palmitoylated, N-terminal domain at the membrane. SAP97 oriented parallel to the PSD membrane, likely as a dimer through interactions of its N-terminal L27 domain. Changing PSD95 palmitoylation in PSDs altered PSD95 and AMPAR levels but did not affect NMDAR levels. These results indicate that in PSDs, PSD95 palmitoylation, conformation, and its interactions are dynamic when associated with AMPARs and more stable when associated with NMDARs. Altogether, our results are consistent with differential regulation of PSD95 palmitoylation in PSDs resulting from the clustering of palmitoylating and depalmitoylating enzymes into AMPAR nanodomains segregated away from NMDAR nanodomains.
Assuntos
Proteína 4 Homóloga a Disks-Large/metabolismo , Lipoilação , Densidade Pós-Sináptica , Receptores de Glutamato/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteína 1 Homóloga a Discs-Large , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Hipocampo/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Mutação , Neurônios/metabolismo , Domínios Proteicos , Multimerização Proteica , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
Networks of neuronal synapses are the fundamental basis for making and retaining memory. Reduced synapse number and quality correlates with loss of memory in dementia. Heat shock factor 1 (HSF1), the major transcription factor regulating expression of heat shock genes, plays a central role in proteostasis, in establishing and sustaining synaptic fidelity and function, and in memory consolidation. Support for this thesis is based on these observations: (1) heat shock induces improvements in synapse integrity and memory consolidation; (2) synaptic depolarization activates HSF1; (3) activation of HSF1 alone (independent of the canonical heat shock response) augments formation of essential synaptic elements-neuroligands, vesicle transport, synaptic scaffolding proteins, lipid rafts, synaptic spines, and axodendritic synapses; (4) HSF1 coalesces and activates memory receptors in the post-synaptic dendritic spine; (5) huntingtin or α-synuclein accumulation lowers HSF1 while HSF1 lowers huntingtin and α-synuclein aggregation-a potential vicious cycle; and (6) HSF1 agonists (including physical activity) can improve cognitive function in dementia models. Thus, via direct gene expression of synaptic elements, production of HSPs that assure high protein fidelity, and activation of other neuroprotective signaling pathways, HSF1 agonists could provide breakthrough therapy for dementia-associated disease.
Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas do Tecido Nervoso/genética , Sinapses/fisiologia , Fatores de Transcrição/fisiologia , Animais , Cognição , Expressão Gênica , Fatores de Transcrição de Choque Térmico , Humanos , Consolidação da Memória , Proteínas do Tecido Nervoso/metabolismo , Ativação TranscricionalRESUMO
It has been suggested that synapse-associated protein of 97-kDa molecular weight (SAP97) is a susceptibility factor for childhood and adult neuropsychiatric disorders. SAP97 is a scaffolding protein that shares direct and indirect binding partners with the Disrupted in Schizophrenia 1 (DISC1) gene product, a gene with strong association with neuropsychiatric disorders. Here we investigated the possibility that these two proteins converge upon a common molecular pathway. Since DISC1 modifies Wnt/ß-catenin signaling via changes in glycogen synthase kinase 3 beta (GSK3ß) phosphorylation, we asked if SAP97 impacts Wnt/ß-catenin signaling and GSK3ß phosphorylation. We find that SAP97 acts as inhibitor of Wnt signaling activity and can suppress the stimulatory effects of DISC1 on ß-catenin transcriptional activity. Reductions in SAP97 abundance also decrease GSK3ß phosphorylation. In addition, we find that over expression of DISC1 leads to an increase in the abundance of SAP97, by inhibiting its proteasomal degradation. Our findings suggest that SAP97 and DISC1 contribute to maintaining Wnt/ß-catenin signaling activity within a homeostatic range by regulating GSK3ß phosphorylation.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Via de Sinalização Wnt , Proteína 1 Homóloga a Discs-Large , Células HEK293 , Humanos , FosforilaçãoRESUMO
Antibody memory is critical for protection against many human infectious diseases and is the basis for nearly all current human vaccines. Isotype switched immunoglobulin (Ig) G-expressing memory B cells are considered as one of the fundaments for the rapid, high affinity and high-titered memory antibody response. The detailed molecular mechanism of the enhanced activation of IgG-switched memory B cells upon BCR engagement with antigens has been an elusive question in immunology. In this review, we tried to discuss all the exciting new advances revealing the molecular mechanisms of the transmembrane signaling through mIgG cytoplasmic tail in IgG-switched memory B cells.
Assuntos
Linfócitos B/citologia , Linfócitos B/imunologia , Membrana Celular/metabolismo , Citoplasma/metabolismo , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Transdução de Sinais/imunologia , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência MolecularRESUMO
The understanding of how cardiac ion channels function in the normal and the diseased heart has greatly increased over the last four decades thanks to the advent of patch-clamp technology and, more recently, the emergence of genetics, as well as cellular and molecular cardiology. However, our knowledge of how these membrane-embedded proteins physically interact with each other within macromolecular complexes remains incomplete. This review focuses on how the main cardiac inward sodium channel (NaV1.5) and the strong inward rectifier potassium channel (Kir2.1) function within macromolecular complexes to control cardiac excitability. It has become increasingly clear that these two important ion channel proteins physically interact with multiple other protein partners and with each other from early stages of protein trafficking and targeting through membrane anchoring, recycling, and degradation. Recent findings include compartmentalized regulation of NaV1.5 channel expression and function through a PDZ (postsynaptic density protein, Drosophila disc large tumor suppressor, and zonula occludens-1 protein) domain-binding motif, and interaction of caveolin-3 with Kir2.1 and ankyrin-G as a molecular platform for NaV1.5 signaling. At the cardiomyocyte membrane, NaV1.5 and Kir2.1 interact through at least two distinct PDZ domain-scaffolding proteins (synapse-associated protein-97 and α1-syntrophin), thus modulating reciprocally their cell-surface expression at two different microdomains. Emerging evidence also shows that inheritable mutations in plakophilin-2, ankyrin-G, dystrophin, syntrophin, synapse-associated protein-97, and caveolin-3, among others, modify functional expression and/or localization in the cardiac cell of NaV1.5, Kir2.1 or both to give rise to arrhythmogenic diseases. Unveiling the mechanistic underpinnings of macromolecular interactions should increase our understanding of inherited and acquired arrhythmogenic cardiac diseases and may lead to advances in therapy.
Assuntos
Arritmias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potenciais de Ação , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Humanos , Microdomínios da Membrana/metabolismo , Complexos Multiproteicos , Transdução de SinaisRESUMO
BACKGROUND: Membrane-associated guanylate kinase (MAGUK) proteins are important determinants of ion channel organization in the plasma membrane. In the heart, the MAGUK protein SAP97, encoded by the DLG1 gene, interacts with several ion channels via their PDZ domain-binding motif and regulates their function and localization. OBJECTIVE: The purpose of this study was to assess in vivo the role of SAP97 in the heart by generating a genetically modified mouse model in which SAP97 is suppressed exclusively in cardiomyocytes. METHODS: SAP97(fl/fl) mice were generated by inserting loxP sequences flanking exons 1-3 of the SAP97 gene. SAP97(fl/fl) mice were crossed with αMHC-Cre mice to generate αMHC-Cre/SAP97(fl/fl) mice, thus resulting in a cardiomyocyte-specific deletion of SAP97. Quantitative reverse transcriptase-polymerase chain reaction, western blots, and immunostaining were performed to measure mRNA and protein expression levels, and ion channel localization. The patch-clamp technique was used to record ion currents and action potentials. Echocardiography and surface ECGs were performed on anesthetized mice. RESULTS: Action potential duration was greatly prolonged in αMHC-Cre/SAP97(fl/fl) cardiomyocytes compared to SAP97(fl/fl) controls, but maximal upstroke velocity was unchanged. This was consistent with the decreases observed in IK1, Ito, and IKur potassium currents and the absence of effect on the sodium current INa. Surface ECG revealed an increased corrected QT interval in αMHC-Cre/SAP97(fl/fl) mice. CONCLUSION: These data suggest that ablation of SAP97 in the mouse heart mainly alters potassium channel function. Based on the important role of SAP97 in regulating the QT interval, DLG1 may be a susceptibility gene to be investigated in patients with congenital long QT syndrome.
Assuntos
Potenciais de Ação/fisiologia , Guanilato Quinases/fisiologia , Síndrome do QT Longo/etiologia , Proteínas de Membrana/fisiologia , Miócitos Cardíacos/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Canais de Sódio Disparados por Voltagem/fisiologia , Animais , Proteína 1 Homóloga a Discs-Large , Modelos Animais de Doenças , Eletrocardiografia , Síndrome do QT Longo/fisiopatologia , Camundongos , Camundongos KnockoutRESUMO
SAP97 is directly involved in exporting NMDA receptors with a specific subunit composition from the endoplasmic reticulum (ER). Characterization of the interactions between SAP97 and an NMDA receptor splice variant, GluN1-3, and of the effects on forward trafficking revealed that an ER-level interaction blocked the RXR ER-retention motif in the GluN1-3 cytoplasmic C-terminus in the context of both reporter molecules and full-length receptors. Binding of SAP97 to the PDZ-binding domain of GluN1-3 was required, but the blockade of ER-retention was mediated by the SH3-GuK domains coupled with the action of the N-terminus of SAP97. While other domains of SAP97 were involved in forward trafficking of GluN1-3 out of the ER, the SH3 domain was necessary and sufficient to block the ER retention. This is the first direct evidence for the masking of ER-retention signals by PDZ domain-containing proteins, and provides detailed underlying mechanistic requirements. Such a mechanism could be central to modulating the ER exit of receptors into local, non-conventional or conventional, secretory pathways in neurons.