Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Pharmacol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030902

RESUMO

BACKGROUND AND PURPOSE: Metabotropic glutamate receptor 1 (mGlu1) is a promising therapeutic target for neurodegenerative CNS disorders including spinocerebellar ataxias (SCAs). Clinical reports have identified naturally-occurring mGlu1 mutations in rare SCA subtypes and linked symptoms to mGlu1 mutations. However, how mutations alter mGlu1 function remains unknown, as does amenability of receptor function to pharmacological rescue. Here, we explored SCA-associated mutation effects on mGlu1 cell surface expression, canonical signal transduction and allosteric ligand pharmacology. EXPERIMENTAL APPROACH: Orthosteric agonists, positive allosteric modulators (PAMs) and negative allosteric modulators (NAMs) were assessed at two functional endpoints (iCa2+ mobilisation and inositol 1-phosphate [IP1] accumulation) in FlpIn Trex HEK293A cell lines expressing five mutant mGlu1 subtypes. Key pharmacological parameters including ligand potency, affinity and cooperativity were derived using operational models of agonism and allostery. KEY RESULTS: mGlu1 mutants exhibited differential impacts on mGlu1 expression, with a C-terminus truncation significantly reducing surface expression. Mutations differentially influenced orthosteric ligand affinity, efficacy and functional cooperativity between allosteric and orthosteric ligands. Loss-of-function mutations L454F and N885del reduced orthosteric affinity and efficacy, respectively. A gain-of-function Y792C mutant mGlu1 displayed enhanced constitutive activity in IP1 assays, which manifested as reduced orthosteric agonist activity. The mGlu1 PAMs restored glutamate potency in iCa2+ mobilisation for loss-of-function mutations and mGlu1 NAMs displayed enhanced inverse agonist activity at Y792C relative to wild-type mGlu1. CONCLUSION AND IMPLICATIONS: Collectively, these data highlight distinct mechanisms by which mGlu1 mutations affect receptor function and show allosteric modulators may present a therapeutic strategy to restore aberrant mGlu1 function in rare SCA subtypes.

2.
Cerebellum ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831383

RESUMO

Autosomal recessive spinocerebellar ataxia 13 (SCAR13) is a neurological disease characterized by psychomotor delay, mild to profound intellectual disability with poor or absent language, nystagmus, stance ataxia, and, if walking is acquired, gait ataxia. Epilepsy and polyneuropathy have also been documented in some patients. Cerebellar atrophy and/or ventriculomegaly may be present on brain MRI. SCAR13 is caused by pathogenic variants in the GRM1 gene encoding the metabotropic receptor of glutamate type 1 (mGlur1), which is highly expressed in Purkinje cerebellar cells, where it plays a fundamental role in cerebellar development. Here we discuss the case of an 8-year-old patient who presented with a severe neurodevelopmental disorder with balance disturbance, absence of independent walking, absence of language, diffuse hypotonia, mild nystagmus, and mild dysphagia. Whole-exome sequencing revealed a compound heterozygosity for two likely pathogenic variants in the GRM1 gene, responsible for the patient's phenotype, and made it possible to diagnose autosomal recessive spinocerebellar ataxia SCAR13. The detected (novel) variants appear to be causative of a particularly severe picture with regard to neurodevelopment, in the context of the typical neurological signs of spinocerebellar ataxia.

3.
Genes (Basel) ; 13(9)2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36140834

RESUMO

Background and objectives: Autosomal recessive spinocerebellar ataxia-13 (SCAR13) is an ultra-rare disorder characterized by slowly progressive cerebellar ataxia, cognitive deficiencies, and skeletal and oculomotor abnormalities. The objective of this case report is to expand the clinical and molecular spectrum of SCAR13. Methods: We investigated a consanguineous Pakistani family with four patients partially presenting with clinical features of SCAR13 using whole exome sequencing. Segregation analysis was performed by Sanger sequencing in all the available individuals of the family. Results: Patients presented with quadrupedal gait, delayed developmental milestones, non-progressive peripheral neuropathy, and cognitive impairment. Whole exome sequencing identified a novel pathogenic nonsense homozygous variant, Gly240*, in the gene GRM1 as a cause of SCAR13 that segregates with the recessive disease. Discussion: We report a novel homozygous nonsense variant in the GRM1 gene in four Pakistani patients presenting with clinical features that partially overlap with the already reported phenotype of SCAR13. In addition, the family presented quadrupedal gait and non-progressive symptoms, manifestations which have not been recognized previously. So far, only four variants in GRM1 have been reported, in families of Roma, Iranian, and Tunisian origins. The current study adds to the mutation spectrum of GRM1 and provides a rare presentation of SCAR13, the first from the Pakistani population.


Assuntos
Ataxias Espinocerebelares , Humanos , Irã (Geográfico) , Paquistão , Linhagem , Ataxias Espinocerebelares/congênito , Ataxias Espinocerebelares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA