Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Agric Food Chem ; 72(21): 11938-11948, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752540

RESUMO

The pursuit of new succinate dehydrogenase (SDH) inhibitors is a leading edge in fungicide research and development. The use of 3D quantitative structure-activity relationship (3D-QSAR) models significantly enhances the development of compounds with potent antifungal properties. In this study, we leveraged the natural product coumarin as a molecular scaffold to synthesize 74 novel 3-coumarin hydrazide derivatives. Notably, compounds 4ap (0.28 µg/mL), 6ae (0.32 µg/mL), and 6ah (0.48 µg/mL) exhibited exceptional in vitro effectiveness against Rhizoctonia solani, outperforming the commonly used fungicide boscalid (0.52 µg/mL). Furthermore, compounds 4ak (0.88 µg/mL), 6ae (0.61 µg/mL), 6ah (0.65 µg/mL), and 6ak (1.11 µg/mL) showed significant activity against Colletotrichum orbiculare, surpassing both the SDHI fungicide boscalid (43.45 µg/mL) and the broad-spectrum fungicide carbendazim (2.15 µg/mL). Molecular docking studies and SDH enzyme assays indicate that compound 4ah may serve as a promising SDHI fungicide. Our ongoing research aims to refine this 3D-QSAR model further, enhance molecular design, and conduct additional bioactivity assays.


Assuntos
Cumarínicos , Fungicidas Industriais , Relação Quantitativa Estrutura-Atividade , Rhizoctonia , Succinato Desidrogenase , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Rhizoctonia/efeitos dos fármacos , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Colletotrichum/efeitos dos fármacos , Estrutura Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hidrazinas/química , Hidrazinas/farmacologia , Hidrazinas/síntese química , Simulação de Acoplamento Molecular , Halogenação , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química
2.
J Agric Food Chem ; 72(17): 9599-9610, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646697

RESUMO

In the search for novel succinate dehydrogenase inhibitor (SDHI) fungicides to control Rhizoctonia solani, thirty-five novel pyrazole-4-carboxamides bearing either an oxime ether or an oxime ester group were designed and prepared based on the strategy of molecular hybridization, and their antifungal activities against five plant pathogenic fungi were also investigated. The results indicated that the majority of the compounds containing oxime ether demonstrated outstanding in vitro antifungal activity against R. solani, and some compounds also displayed pronounced antifungal activities against Sclerotinia sclerotiorum and Botrytis cinerea. Particularly, compound 5e exhibited the most promising antifungal activity against R. solani with an EC50 value of 0.039 µg/mL, which was about 20-fold better than that of boscalid (EC50 = 0.799 µg/mL) and 4-fold more potent than fluxapyroxad (EC50 = 0.131 µg/mL). Moreover, the results of the detached leaf assay showed that compound 5e could suppress the growth of R. solani in rice leaves with significant protective efficacies (86.8%) at 100 µg/mL, superior to boscalid (68.1%) and fluxapyroxad (80.6%), indicating promising application prospects. In addition, the succinate dehydrogenase (SDH) enzymatic inhibition assay revealed that compound 5e generated remarkable SDH inhibition (IC50 = 2.04 µM), which was obviously more potent than those of boscalid (IC50 = 7.92 µM) and fluxapyroxad (IC50 = 6.15 µM). Furthermore, SEM analysis showed that compound 5e caused a remarkable disruption to the characteristic structure and morphology of R. solani hyphae, resulting in significant damage. The molecular docking analysis demonstrated that compound 5e could fit into the identical binding pocket of SDH through hydrogen bond interactions as well as fluxapyroxad, indicating that they had a similar antifungal mechanism. The density functional theory and electrostatic potential calculations provided useful information regarding electron distribution and electron transfer, which contributed to understanding the structural features and antifungal mechanism of the lead compound. These findings suggested that compound 5e could be a promising candidate for SDHI fungicides to control R. solani, warranting further investigation.


Assuntos
Botrytis , Fungicidas Industriais , Oximas , Doenças das Plantas , Pirazóis , Rhizoctonia , Succinato Desidrogenase , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/crescimento & desenvolvimento , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Pirazóis/farmacologia , Pirazóis/química , Relação Estrutura-Atividade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Oximas/química , Oximas/farmacologia , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Simulação de Acoplamento Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ascomicetos/efeitos dos fármacos , Ascomicetos/química , Estrutura Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
3.
J Agric Food Chem ; 71(28): 10575-10589, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37428481

RESUMO

The conformational restriction switch concept has been adopted as a major tool for structural optimization of pharmaceuticals in order to expand the chemical structure scope and improve therapeutic activity against specific proteins. Several of the 1-aminocyclobutanecarboxylic acid derivatives produced in this way exhibited satisfactory antifungal activity in vitro compared with positive control boscalid. In vitro antifungal tests revealed that compound A21 had comparable, even higher antifungal activity against Rhizoctonia solani (R.s., EC50 = 0.03 mg/L) and Botrytis cinerea (B.c., EC50 = 0.04 mg/L) than fluxapyroxad (R.s., EC50 = 0.02 mg/L; B.c., EC50 = 0.20 mg/L) and boscalid (R.s., EC50 = 0.29 mg/L; B.c., EC50 = 0.42 mg/L). Furthermore, compound A20 was successfully screened and exhibited good inhibitory activity against porcine SDH, its IC50 value was 3.73 µM, which has considerable potency compared with fluxapyroxad (IC50 = 3.76 µM). The mode of action was determined using SEM and membrane potential research. The effects of the substituent steric hindrance, electrostatic property, hydrophobicity, and hydrogen-bond fields on structure-activity relationships were elaborated by the reliable models of comparative molecular field analysis and comparative molecular similarity index analysis. Furthermore, density functional theory simulations, molecule electrostatic potential, and molecular docking were also used to study the probable binding mode of target compounds with flexible fragments. The results showed that the scaffold of 1-aminocyclobutanecarboxylic acid derivatives could be used as lead for discovering new succinate dehydrogenase inhibitors.


Assuntos
Antifúngicos , Fungicidas Industriais , Animais , Suínos , Antifúngicos/farmacologia , Antifúngicos/química , Simulação de Acoplamento Molecular , Succinato Desidrogenase , Relação Estrutura-Atividade , Rhizoctonia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química
4.
Chem Biodivers ; 20(8): e202300958, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37492004

RESUMO

In search for SDHIs fungicides, twenty-five novel carboxamides containing a chalcone scaffold were designed, synthesized, and evaluated for antifungal activities against five pathogenic fungi. The results showed that compound 5 k exhibited outstanding antifungal activity against R. solani with an EC50 value of 0.20 µg/mL, which was much better than that of commercial SDHIs Boscalid (EC50 =0.74 µg/mL). Moreover, compound 5 k also displayed promising antifungal activities against S. sclerotiorum, B. cinerea, and A. alternate (IC50 =2.53-4.06 µg/mL), indicating that 5 k had broad-spectrum antifungal activity. Additionally, in vivo antifungal activities results showed that 5 k could significantly inhibit the growth of R. solani in rice leaves with good protective efficacy (57.78 %) and curative efficacy (58.45 %) at 100 µg/mL, both of which were much better than those of Boscalid, indicating a promising application prospect. Moreover, SEM analysis showed that compound 5 k could remarkably disrupt the typical structure and morphology of R. solani hyphae. Further SDH enzyme inhibition assay and molecular docking study revealed that lead compound 5 k had a similar mechanism of action as commercial SDHI Boscalid. These results indicated that compound 5 k showed potential as a SDHIs fungicide and deserved further investigation.


Assuntos
Chalcona , Chalconas , Fungicidas Industriais , Antifúngicos/química , Relação Estrutura-Atividade , Chalconas/farmacologia , Chalcona/farmacologia , Simulação de Acoplamento Molecular
5.
Phytopathology ; 113(6): 998-1009, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36596212

RESUMO

Succinate dehydrogenase inhibitors (SDHIs) are keystone synthetic fungicides used to manage Botrytis cinerea in several hosts. In this study, we investigated the cross-resistance between five new SDHIs (pyraziflumid, isofetamid, benzovindiflupyr, fluxapyroxad, and pydiflumetofen) with commonly used SDHIs boscalid and fluopyram. Different mutations were detected in the sdhB gene in B. cinerea collected from Michigan grapes, and their frequency and EC50 value were determined. Among 216 B. cinerea boscalid-resistant isolates, five different mutations were detected, including H272R/Y, P225F/H, and N230I, at frequencies of 82.6, 4.3, 11.5, 0.4, and 5.3%, respectively. Five isolates of each genotype were used to screen the cross-resistance of the SDHIs. We classified the resistance profile of our mutants into five patterns. We report that all tested mutants were sensitive to benzovindiflupyr, indicating that it can be used as an effective fungicide against all B. cinerea mutants identified in this study. In addition, fluopyram, pydiflumetofen, and isofetamid can provide effective control according to which type of mutation is present in the field. We also developed and compared two molecular diagnostic tools, rhAMP and TaqMan assays, for rapid detection of SDHI resistance-associated mutants in B. cinerea. We report that the TaqMan assay was more successful than the rhAMP assay in detecting the B. cinerea mutant DNA at ≤10 pg and in a single assay was capable of monitoring two amino acid positions. Our results provide essential information about new SDHIs and provide molecular tools for monitoring SDHI resistance mutations, which will assist in gray mold disease control.


Assuntos
Fungicidas Industriais , Succinato Desidrogenase , Succinato Desidrogenase/genética , Succinato Desidrogenase/farmacologia , Patologia Molecular , Doenças das Plantas , Fungicidas Industriais/farmacologia , Botrytis/genética , Niacinamida/farmacologia , Farmacorresistência Fúngica/genética
6.
Food Chem ; 411: 135452, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36682161

RESUMO

The stereoisomers of chiral SDHIs were prepared using Autoprep HPLC and chiral columns. The method of combining theoretical calculation with experimental determination was used to confirm the absolute configuration of stereoisomer. SFC-MS/MS and four kinds of chiral columns were used to separate the eight chiral SDHIs, and they could be separated simultaneously using OD-3 column in 6.5 min. The integrated QuEChERS strategy was used to analyse the chiral SDHIs in foods of plant and animal origin, and the average recoveries ranged from 71 % to 119 % with RSD ≤ 18 %, and the LOQ was 1 ng/g. There were 99.2 % and 63.6 % matrix effects were in the range of 0.8-1.2 in foods of plant and animal origin, respectively, showing weak matrix effects. The study provided methods for monitoring chiral SDHIs stereoisomers residues, which were crucial for stereoselective evaluations and improving risk assessments.


Assuntos
Cromatografia com Fluido Supercrítico , Espectrometria de Massas em Tandem , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia com Fluido Supercrítico/métodos , Succinato Desidrogenase , Alimentos , Cromatografia Líquida de Alta Pressão , Estereoisomerismo
7.
Ecotoxicol Environ Saf ; 247: 114259, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334343

RESUMO

Fluxapyroxad, a succinate dehydrogenase inhibitor (SDHI) fungicide, is commercialized worldwide to control a variety of fungal diseases. Growing evidence shows that fluxapyroxad is teratogenic to aquatic organisms. In this study, the influence of fluxapyroxad toward hematopoietic development was evaluated using zebrafish embryos which were exposed to fluxapyroxad (0.03 µM, 0.3 µM and 3 µM) from 3 h post fertilization (hpf) to 3 days post fertilization (dpf). Compared to the control groups, the hemoglobin was ectopic and decreased in response to fluxapyroxad treatment. The transcription levels of genes (hbbe1, hbbe2, and gata1a) involved in erythropoiesis were reduced after exposure to fluxapyroxad. In contrast, the distributions and expression of marker genes for myeloid lineage cells were unaffected by fluxapyroxad exposure. Our data suggested that fluxapyroxad might specifically affect erythropoiesis and hold great promise for the assessment of the toxicity of fluxapyroxad to aquatic organisms.


Assuntos
Eritropoese , Peixe-Zebra , Animais , Eritropoese/genética , Peixe-Zebra/genética , Amidas , Teratogênicos
8.
Aquat Toxicol ; 252: 106282, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36150281

RESUMO

Quinone outside inhibitor fungicides (QoIs) and succinate dehydrogenase inhibitor fungicides (SDHIs) were classified as highly or moderately toxic to nontarget aquatic organisms, which deterred their application in paddy scenario. Currently, the mechanism of toxicity regarding which factors govern their risk ranking in fish species are not fully explored. In this study, adult zebrafish were exposed to four QoIs (pyraclostrobin, trifloxystrobin, kresoxim-methyl, and azoxystrobin) and three SDHIs (isopyrazam, thifluzamide, and boscalid) to assess its acute toxicity and effects on tissue accumulation and gill injury. The results showed that the overall toxicity level was in the order of QoIs > SDHIs, whereas the order of accumulation capacity was SDHIs > QoIs. Seven mitochondrial respiratory inhibitors exposure induced serious histological damage in the gills, including aneurism, curling, telangiectasia and swelling, and caused mitochondrial dysfunction and weaker complex II and III activities. The correlation between their acute toxicities and in vitro gill cytotoxicity was significant (R = 0.868), whereas the bioaccumulation level was not markedly associated with their 96h-LC50 values in zebrafish (R = -0.686), indicating the degree of target organ (gill) injury may be the decisive factor that governs the risk grade of respiratory inhibitors in fish. Additionally, the docking positions and binding energies of fungicides with the target proteins may be responsible for their differential branchial damage. These results offer a point of reference and theoretical support for the design of fungicides and appropriate formulations with improved environmental safety that could broaden their application scenario.


Assuntos
Fungicidas Industriais , Poluentes Químicos da Água , Animais , Estrobilurinas/toxicidade , Peixe-Zebra/metabolismo , Succinato Desidrogenase/metabolismo , Fungicidas Industriais/metabolismo , Poluentes Químicos da Água/toxicidade
9.
J Agric Food Chem ; 70(24): 7566-7575, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35674516

RESUMO

To develop novel succinate dehydrogenase inhibitors (SDHIs), two series of novel N-4-fluoro-pyrazol-5-yl-benzamide and N-4-chloro-pyrazol-5-yl-benzamide derivatives were designed and synthesized, and their antifungal activities were evaluated against Valsa mali, Sclerotinia sclerotiorum, FusaHum graminearum Sehw, Physalospora piricola, and Botrytis cinerea. The bioassay results showed that some of the target compounds exhibited good antifungal activities in vitro against V. mali and S. sclerotiorum. Remarkably, compound 9Ip displayed good in vitro activity against V. mali with an EC50 value of 0.58 mg/L. This outcome was 21-fold greater than that of fluxapyroxad (12.45 mg/L) and close to that of the commercial fungicide tebuconazole (EC50 = 0.36 mg/L). In addition, in vivo experiments proved that compound 9Ip has good protective fungicidal activity with an inhibitory rate of 93.2% against V. mali at 50 mg/L, which was equivalent to that of the positive control tebuconazole (95.5%). The results of molecular docking indicated that there were obvious hydrogen bonds and p-π interactions between compound 9Ip and succinate dehydrogenase (SDH), which could explain the probable action mechanism. In addition, the SDH enzymatic inhibition assay was carried out to further prove its mode of action. Our studies suggest that compound 9Ip could be a fungicidal lead to discover more potent SDHIs for crop protection.


Assuntos
Fungicidas Industriais , Succinato Desidrogenase , Antifúngicos/química , Antifúngicos/farmacologia , Benzamidas/farmacologia , Cloro , Flúor , Fungicidas Industriais/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
10.
J Agric Food Chem ; 70(4): 957-975, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35041423

RESUMO

Up to now, a total of 24 succinate dehydrogenase inhibitors (SDHIs) fungicides have been commercialized, and SDHIs fungicides were also one of the most active fungicides developed in recent years. Carboxamide derivatives represented an important class of SDHIs with broad spectrum of antifungal activities. In this review, the development of carboxamide derivatives as SDHIs with great significances were summarized. In addition, the structure-activity relationships (SARs) of antifungal activities of carboxamide derivatives as SDHIs was also summarized based on the analysis of the structures of the commercial SDHIs and lead compounds. Moreover, the cause of resistance of SDHIs and some solutions were also introduced. Finally, the development trend of SDHIs fungicides was prospected. We hope this review will give a guide for the development of novel SDHIs fungicides in the future.


Assuntos
Fungicidas Industriais , Succinato Desidrogenase , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Relação Estrutura-Atividade , Succinato Desidrogenase/metabolismo
11.
Plant Dis ; 106(9): 2310-2320, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35100029

RESUMO

Succinate dehydrogenase inhibitors (SDHIs) are fungicides used in control of numerous fungal plant pathogens, including Erysiphe necator, the causal agent of grapevine powdery mildew (GPM). Here, the sdhb, sdhc, and sdhd genes of E. necator were screened for mutations that may be associated with SDHI resistance. GPM samples were collected from 2017 to 2020 from the U.S. states of California, Oregon, Washington, and Michigan, and the Canadian province of British Columbia. Forty-five polymorphisms were identified in the three sdh genes, 17 of which caused missense mutations. Of these, the SDHC-p.I244V substitution was shown in this study to reduce sensitivity of E. necator to boscalid and fluopyram, whereas the SDHC-p.G25R substitution did not affect SDHI sensitivity. Of the other 15 missense mutations, the SDHC-p.H242R substitution was shown in previous studies to reduce sensitivity of E. necator toward boscalid, whereas the equivalents of the SDHB-p.H242L, SDHC-p.A83V, and SDHD-p.I71F substitutions were shown to reduce sensitivity to SDHIs in other fungi. Generally, only a single amino acid substitution was present in the SDHB, SDHC, or SDHD subunit of E. necator isolates, but missense mutations putatively associated with SDHI resistance were widely distributed in the sampled areas and increased in frequency over time. Finally, isolates that had decreased sensitivity to boscalid or fluopyram were identified but with no or only the SDHC-p.G25R amino acid substitution present in SDHB, SDHC, and SDHD subunits. This suggests that target site mutations probably are not the only mechanism conferring resistance to SDHIs in E. necator.


Assuntos
Inibidores Enzimáticos/farmacologia , Succinato Desidrogenase , Vitis , Colúmbia Britânica , Farmacorresistência Fúngica/genética , Erysiphe , Mutação , Doenças das Plantas/microbiologia , Succinato Desidrogenase/genética
12.
Pest Manag Sci ; 78(2): 530-540, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34561937

RESUMO

BACKGROUND: Succinate dehydrogenase inhibitors (SDHIs) have been widely used to manage plant diseases caused by phytopathogenic fungi. Although attention to and use of SDHI fungicides has recently increased, molecular responses of fungal pathogens to SDHIs have often not been investigated. A SDHI fungicide, fluopyram, has been used as a soybean seed treatment and has displayed effective control of Fusarium virguliforme, one of the causal agents of soybean sudden death syndrome. To examine genome-wide gene expression of F. virguliforme to fluopyram, RNA-seq analysis was conducted on two field strains of F. virguliforme with differing SDHI fungicide sensitivity in the absence and presence of fluopyram. RESULTS: The analysis indicated that several xenobiotic detoxification-related genes, such as those of deoxygenase, transferases and transporters, were highly induced by fluopyram. Among the genes, four ATP-binding cassette (ABC) transporters were characterized by the yeast expression system. The results revealed that expression of three ABCG transporters was associated with reduced sensitivity to multiple fungicides including fluopyram. In addition, heterologous expression of a major facilitator superfamily (MFS) transporter that was highly expressed in the fluopyram-insensitive F. virguliforme strain in the yeast system conferred decreased sensitivity to fluopyram. CONCLUSION: This study demonstrated that xenobiotic detoxification-related genes were highly upregulated in response to fluopyram, and expression of ABC or MFS transporter genes was associated with reduced sensitivity to the SDHI fungicide. This is the first transcriptomic analysis of the fungal species response to fluopyram and the finding will help elucidate the molecular mechanisms of SDHI resistance. © 2021 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Fusarium , Doenças das Plantas , Benzamidas/farmacologia , Fungicidas Industriais/farmacologia , Fusarium/genética , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Piridinas/farmacologia , Glycine max/microbiologia , Succinato Desidrogenase/antagonistas & inibidores , Ácido Succínico
13.
Ecotoxicol Environ Saf ; 228: 113007, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34808508

RESUMO

Bixafen, a pyrazole-carboxamide fungicide, is a potent toxicant that may elicit multiple adverse effects in non-target organisms. However, knowledge of the mechanisms involved in developmental defects caused by bixafen in aquatic organisms remains limited. In this study, the effects of bixafen on retinal development were evaluated in embryo-larval zebrafish. We exposed zebrafish embryos to 0, 0.1, and 0.3 µM bixafen. Exposure of zebrafish embryos to bixafen caused severe retinal defects, including extreme microphthalmia and a significantly increased cell density of the ganglion cell layer (GCL). Compared with the controls, the expression levels of rod and cone photoreceptor marker genes (rho, opn1sw2, opn1mw1, opn1lw1, and opn1sw1) in the outer nuclear layer (ONL) were significantly downregulated after bixafen exposure. Furthermore, bixafen caused significantly increased expression levels in the GCL marker ath5 and decreased expression levels in the inner nuclear layer (INL) markers prox1a, vsx1, and sox2. Accordingly, we observed a significantly increased rate of cell apoptosis in the retina after bixafen exposure. Taken together, our data demonstrate that bixafen exhibits retinal developmental toxicity to zebrafish embryos/larvae, and thus, it may pose a significant environmental threat to aquatic organisms.

14.
Pestic Biochem Physiol ; 179: 104960, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34802512

RESUMO

The occurrence of bakanae disease of rice caused by the fungus Fusarium fujikuroi in Zhejiang Province has become increasingly aggravated in recent years, concomitant with the development of resistance to the widely applied fungicides, prochloraz and phenamacril. In this study, the activity of a novel succinate dehydrogenase inhibitor (SDHI) fungicide, penflufen, against different fungi was evaluated in addition to the potential of penflufen in controlling F. fujikuroi infections. Penflufen exhibited good bioactivity against F. fujikuroi, but weak activity against Fusarium spp. and other investigated plant-pathogenic fungi including Colletotrichum spp. In addition to inhibiting mycelial growth, penflufen effectively inhibited F. fujikuroi conidium production. For germination, penflufen could effectively inhibit that of small conidia, but only delay the germination of large conidia. In addition, the sensitivity to penflufen among 100 F. fujikuroi isolates that were collected in areas that were never exposed to SDHIs was determined based on mycelium growth. Sensitivities surprisingly exhibited bimodal distributions, indicating the presence of natural resistance. Cross-resistance was not observed between penflufen in F. fujikuroi and two fungicides that have been extensively applied in field including prochloraz (a DMI) and phenamacril (a 2-cyanoacrylate fungicide), nor with the three SDHIs, fluopyram, benzovindiflupyr, and pydiflumetofen. Additional analysis identified five different point mutations in SDH-A (i.e., at residues 46, 225, 283, 430, and 586) of naturally resistant isolates. These results inform the potential application of the new SDHI fungicide penflufen for managing crop diseases and understanding possible resistance mechanisms among pathogens.


Assuntos
Fungicidas Industriais , Fusarium , Anilidas , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Imunidade Inata , Doenças das Plantas , Pirazóis , Succinato Desidrogenase/genética , Ácido Succínico
15.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830252

RESUMO

Succinate dehydrogenase inhibitor (SDHI) fungicides are increasingly used in agriculture to combat molds and fungi, two major threats to both food supply and public health. However, the essential requirement for the succinate dehydrogenase (SDH) complex-the molecular target of SDHIs-in energy metabolism for almost all extant eukaryotes and the lack of species specificity of these fungicides raise concerns about their toxicity toward off-target organisms and, more generally, toward the environment. Herein we review the current knowledge on the toxicity toward zebrafish (Brachydanio rerio) of nine commonly used SDHI fungicides: bixafen, boscalid, fluxapyroxad, flutolanil, isoflucypram, isopyrazam, penthiopyrad, sedaxane, and thifluzamide. The results indicate that these SDHIs cause multiple adverse effects in embryos, larvae/juveniles, and/or adults, sometimes at developmentally relevant concentrations. Adverse effects include developmental toxicity, cardiovascular abnormalities, liver and kidney damage, oxidative stress, energy deficits, changes in metabolism, microcephaly, axon growth defects, apoptosis, and transcriptome changes, suggesting that glycometabolism deficit, oxidative stress, and apoptosis are critical in the toxicity of most of these SDHIs. However, other adverse outcome pathways, possibly involving unsuspected molecular targets, are also suggested. Lastly, we note that because of their recent arrival on the market, the number of studies addressing the toxicity of these compounds is still scant, emphasizing the need to further investigate the toxicity of all SDHIs currently used and to identify their adverse effects and associated modes of action, both alone and in combination with other pesticides.


Assuntos
Anormalidades Múltiplas/induzido quimicamente , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , Proteínas de Peixes/antagonistas & inibidores , Fungicidas Industriais/toxicidade , Succinato Desidrogenase/antagonistas & inibidores , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Amidas/toxicidade , Anilidas/toxicidade , Animais , Compostos de Bifenilo/toxicidade , Embrião não Mamífero , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Expressão Gênica , Niacinamida/análogos & derivados , Niacinamida/toxicidade , Norbornanos/toxicidade , Pirazóis/toxicidade , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Tiazóis/toxicidade , Tiofenos/toxicidade , Peixe-Zebra
16.
Bioorg Med Chem ; 50: 116476, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34757244

RESUMO

Succinate dehydrogenase inhibitors (SDHIs) have become one of the fastest growing classes of new fungicides since entering the market, and have attracted increasing attention as a result of their unique structure, high activity and broad fungicidal spectrum. The mechanism of SDHIs is to inhibit the activity of succinate dehydrogenase, thereby affecting mitochondrial respiration and ultimately killing pathogenic fungi. At present, they have become popular varieties researched and developed by major pesticide companies in the world. In the review, we focused on the mechanism, the history, the representative varieties, structure-activity relationship and resistance of SDHIs. Finally, the potential directions for the development of SDHIs were discussed. It is hoped that this review can strengthen the individuals' understanding of SDHIs and provide some inspiration for the development of new fungicides.


Assuntos
Inibidores Enzimáticos/farmacologia , Fungicidas Industriais/farmacologia , Succinato Desidrogenase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Succinato Desidrogenase/metabolismo
17.
Pest Manag Sci ; 77(3): 1316-1327, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33078570

RESUMO

BACKGROUND: Resistance of Botrytis cinerea to SDHI fungicides is widely distributed throughout the world and is associated with mutations in sdhB, differentially affecting mutant sensitivity to several succinate dehydrogenase inhibitors (SDHI) and the fitness of the strains. This study was initiated to test the hypothesis that Bacillus amyloliquefaciens QST713 (Ba QST713) can be utilized in Integrated Pest Management (IPM) programs aiming to control grey mould and eliminate sdhB mutants (H272R/Y, N230I and P225F/H/L). RESULTS: Protective and curative applications of Ba QST713 on artificially inoculated bean plants resulted in a significant reduction of disease incidence and severity. Competition experiments between sdhB mutants and wild-type isolates conducted either in the absence of any treatment or in the presence of Ba QST713 or fluopyram showed a dominance of sensitive strains over the mutated strains on untreated and Ba QST713-treated plants. Additionally, the efficacy of Ba QST713 in controlling grey mould and its effects on the selection of sdhB mutants was assessed in a greenhouse experiment. The applications of Ba QST713 in alternation schemes with fluopyram provided high control efficacy and reduced SDHI resistance frequency. CONCLUSIONS: The results of the study showed that Ba QST713 can contribute both to moderate/high levels of grey mould suppression and to a reduction in SDHI resistance frequency. Thus, Ba QST713 can be an efficient tool for SDHI resistance management of B. cinerea in the field. © 2020 Society of Chemical Industry.


Assuntos
Bacillus amyloliquefaciens , Fungicidas Industriais , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Botrytis/metabolismo , Farmacorresistência Fúngica , Fungicidas Industriais/farmacologia , Doenças das Plantas , Succinato Desidrogenase/metabolismo
18.
Chemosphere ; 265: 128781, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33153847

RESUMO

Succinate dehydrogenase inhibitors (SDHIs), the most widely used fungicides in agriculture today, act by blocking succinate dehydrogenase (SDH), an essential and evolutionarily conserved component of mitochondrial respiratory chain. Recent results showed that several SDHIs used as fungicides not only inhibit the SDH activity of target fungi but also block this activity in human cells in in vitro models, revealing a lack of specificity and thus a possible health risk for exposed organisms, including humans. Despite the frequent detection of SDHIs in the environment and on harvested products and their increasing use in modern agriculture, their potential toxic effects in vivo, especially on neurodevelopment, are still under-evaluated. Here we assessed the neurotoxicity of bixafen, one of the latest-generation SDHIs, which had never been tested during neurodevelopment. For this purpose, we used a well-known vertebrate model for toxicity testing, namely zebrafish transparent embryos, and live imaging using transgenic lines labelling the brain and spinal cord. Here we show that bixafen causes microcephaly and defects on motor neuron axon outgrowth and their branching during development. Our findings show that the central nervous system is highly sensitive to bixafen, thus demonstrating in vivo that bixafen is neurotoxic in vertebrates and causes neurodevelopmental defects. This work adds to our knowledge of the toxic effect of SDHIs on neurodevelopment and may help us take appropriate precautions to ensure protection against the neurotoxicity of these substances.


Assuntos
Fungicidas Industriais , Microcefalia , Animais , Axônios/metabolismo , Fungicidas Industriais/toxicidade , Humanos , Neurônios Motores/metabolismo , Succinato Desidrogenase/genética , Ácido Succínico
19.
Bioorg Med Chem ; 29: 115846, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33191087

RESUMO

Succinate dehydrogenase (SDH), a crucial bridge enzyme between the respiratory electron transfer chain and tricarboxylic acid (or Krebs) cycle, has been identified as an ideal target for the development of effective fungicide. In this study, a series of 24 novel SDH inhibitors (SDHIs) were designed, synthesized, and characterized by 1H NMR, 13C NMR, and HRMS. In vitro fungicidal activity experiments, most of the compounds exhibited broad-spectrum antifungal activities against five plant pathogenic fungi. Compounds 9j and 9k showed excellent activities against Pythium aphanidermatum with EC50 values of 9.93 mg/L and 10.50 mg/L, respectively, which were superior to the lead compound Fluopyram with an EC50 value of 19.10 mg/L. Furthermore, the toxicity of these compounds was also tested against Meloidogyne incognita J2 nematodes. The results indicated that compound 9x exhibited moderate nematicidal activity (LC50/48 h = 71.02 mg/L). Molecular docking showed that novel guanidine amide of 9j formed hydrogen bonds with crucial residues, which was crucial to the binding of an inhibitor and SDH. This present work indicates that these derivatives may serve as novel potential fungicides targeting SDH.


Assuntos
Antifúngicos/farmacologia , Benzamidas/farmacologia , Inibidores Enzimáticos/farmacologia , Fungos/efeitos dos fármacos , Guanidina/farmacologia , Piridinas/farmacologia , Succinato Desidrogenase/antagonistas & inibidores , Animais , Antifúngicos/síntese química , Antifúngicos/química , Benzamidas/síntese química , Benzamidas/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Guanidina/química , Testes de Sensibilidade Microbiana , Mitocôndrias Cardíacas/enzimologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Succinato Desidrogenase/metabolismo , Suínos
20.
Plant Dis ; 104(2): 306-314, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31804902

RESUMO

Alternaria late blight (ALB) caused by Alternaria spp. is an annual disease problem in California pistachio and requires repeated applications of fungicides to prevent significant losses of pistachio foliage and nut quality. From 2003 onward, the succinate dehydrogenase inhibiting fungicide boscalid has played a key role in ALB management. The development of boscalid resistance in A. alternata populations was monitored from 2005 to 2012 in pistachio producing areas in California. A total of 1,765 single-spore isolates, collected from commercial and experimental pistachio orchards with or without a history of boscalid exposure, were tested in a radial growth assay in agar media amended with the discriminatory dose of 10 µg/ml of boscalid. The frequency of boscalid-resistant isolates in 2005 was 12% but increased significantly and remained stable toward the end of the survey period. Most of the resistant isolates exhibited a high level of resistance (R) to boscalid with percent of mycelial growth inhibition (PGI) values between 0 and 50%, whereas significantly fewer isolates had an intermediate level (IR) of resistance (50 < PGI < 75%). The frequency of sensitive (S) isolates (75 < PGI < 100%) was generally the highest in orchards with no history of boscalid usage, whereas mean incidences of boscalid-resistant populations of Alternaria were 81, 92.4, 80.2, and 98%, in 2006, 2007, 2011, and 2012, respectively, in orchards that received a high number (at least three per season) of boscalid spray applications. In comparison, none to relatively low frequencies (0 to 12%) of resistance were observed in populations with no or limited exposure to Pristine, suggesting an air-movement of resistant spores through wind from treated to nontreated areas. In 2012, boscalid-resistant isolates were found practically in every sampled location in all counties, with the orchards in Fresno, Madera, Tulare, and King Counties being the locations with the highest frequencies of resistance (100%). Monitoring of A. alternata AaSDHB, AaSDHC, and AaSDHD mutations in 286 boscalid-resistant phenotypes identified 11 mutations, leading to amino acid substitutions in AaSDHB (seven mutations: H277Y/R/L, P230A/R, N235D/T), AaSDHC (one mutation: H134R), and AaSDHD (three mutations: D123E, H133R/P), with AaSDHB mutations being the most prevalent (80%) ones throughout the survey period. The majority of isolates carrying these mutations exhibited the R phenotype toward boscalid. The increased prevalence of boscalid resistance in populations of A. alternata is a likely contributing factor to the inability of pistachio farmers to successfully control ALB with Pristine. Other factors implicated in the rapid and widespread occurrence of A. alternata boscalid-resistant populations in California pistachios are further discussed.


Assuntos
Alternaria , Pistacia , Compostos de Bifenilo , California , Farmacorresistência Fúngica , Niacinamida/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA