RESUMO
BACKGROUND: Even today, thyroid cancer (THCA) remains an important threat to global health. For THCA patients, differentiated thyroid cancer is the most commonly identified pathological subtype, and those diagnosed with papillary thyroid cancer generally have good overall prognosis. For poorly differentiated subtype THCA, patients have aggressive disease course, higher risk of distant organ metastasis and inferior overall prognosis. METHODS: RNA-seq data from TCGA and GTEx databases are collected and analyzed via R. The correlation between SEMA6B expression level and pathological as well as clinical parameters of THCA patients was respectively investigated. Gene expression profiling and subsequent functional clustering analysis was the performed utilizing GSEA. The receiver operating characteristic (ROC) curve was utilized to evaluate the diagnostic value of SEMA6B expression. RESULTS: Increased SEMA6B expression was characteristic in THCA tumor samples and was associated with specific pathologic and clinical features for TCHA patients. Univariate and multivariate analysis indicated that SEMA6B was independent predictive marker for THCA patients' prognosis. Gene expression profiling and functional clustering analysis suggested that SEMA6B high-expression was related with increased expression of multiple signal pathways and signatures of multiple immune cell infiltration. CONCLUSIONS: In this study, through bioinformatic analysis and clinical data investigation, we demonstrated the potential value of SEMA6B as diagnostic and prognostic marker in THCA patient treatment.
Assuntos
Adenocarcinoma , Semaforinas , Neoplasias da Glândula Tireoide , Humanos , Prognóstico , Neoplasias da Glândula Tireoide/genética , Câncer Papilífero da Tireoide/genética , Biomarcadores , Semaforinas/genéticaRESUMO
This study describes a patient with progressive myoclonic epilepsy-11 (EPM-11), which follows autosomal dominant inheritance caused by a novel SEMA6B variant. Most patients develop this disease during infancy or adolescence with action myoclonus, generalized tonic-clonic seizures (GTCS), and progressive neurological deterioration. No cases of adult-onset EPM-11 have been reported yet. Here, we present one case of adult-onset EPM-11 who experienced gait instability, seizures, and cognitive impairment, and harbored a novel missense variant, c.432C>G (p.C144W). Our findings provide a foundation for a better understanding of the phenotypic and genotypic profiles of EPM-11. Further functional studies are recommended to elucidate the pathogenesis of this disease.
RESUMO
Variants of SEMA6B have been identified in an increasing number of patients, often presenting with progressive myoclonus epilepsy (PME), and to lesser extent developmental encephalopathy, with or without epilepsy. The exon 17 is mainly involved, with truncating mutations causing the production of aberrant proteins with toxic gain of function. Herein, we describe three adjunctive patients carrying de novo truncating SEMA6B variants in this exon (c.1976delC and c.2086C > T novel; c.1978delC previously reported). These subjects presented with PME preceded by developmental delay, motor and cognitive impairment, worsening myoclonus, and epilepsy with polymorphic features, including focal to bilateral seizures in two, and non-convulsive status epilepticus in one. The evidence of developmental delay in these cases suggests their inclusion in the "PME plus developmental delay" nosological group. This work further expands our knowledge of SEMA6B variants causing PMEs. However, the data to date available confirms that phenotypic features do not correlate with the type or location of variants, aspects that need to be further clarified by future studies.
Assuntos
Epilepsia , Epilepsias Mioclônicas Progressivas , Mioclonia , Semaforinas , Humanos , Epilepsias Mioclônicas Progressivas/genética , Mutação/genética , Fenótipo , Semaforinas/genéticaRESUMO
Progressive myoclonic epilepsy (PME) is a group of rare diseases characterized by progressive myoclonus, cognitive impairment, ataxia, and other neurologic deficits. PME has high genetic heterogeneity, and more than 40 genes are reportedly associated with this disorder. SEMA6B encodes a member of the semaphorin family and was first reported to cause PME in 2020. Herein, we present a rare case of PME due to a novel SEMA6B gene mutation in a 6-year-old boy born to healthy non-consanguineous Chinese parents. His developmental milestones were delayed, and he developed recurrent atonic seizures and myoclonic seizures without fever at 3 years and 11 months of age. He experienced recurrent myoclonic seizures, non-convulsive status epilepticus (NCSE), atonic seizures, and atypical absence seizures during the last 2 years. At different time points since onset, valproic acid, levetiracetam, piracetam, and clobazam were used to control the intractable seizures. Notably, NCSE was controlled by a combination of piracetam with clobazam and valproic acid instead of intravenous infusion of midazolam and phenobarbital. Due to the limited number of cases reported to date, the clinical description of our case provides a better understanding of the genotype-phenotype correlations associated with PME and indicate that piracetam may be effective against NCSE in patients with SEMA6B-related PME.
RESUMO
Background: Semaphorin 6b (SEMA6B) is a member of the semaphorin axon-guidance family and has been demonstrated to both induce and inhibit tumor progression. However, the role of SEMA6B in colorectal cancer (CRC) has remained unclear. This study sought to explore the promising prognostic biomarker for CRC and to understand the expression pattern, clinical significance, immune effects, and biological functions of SEMA6B. Methods: SEMA6B expression in CRC was evaluated via multiple gene and protein expression databases and we identified its prognostic value through The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Correlations between SEMA6B expression and components of the tumor immune microenvironment were analyzed by packages implemented in R, Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA), and Tumor-Immune System Interactions database (TISIDB). RNA interference was performed to silence the expression of SEMA6B to explore its biological roles in the colon cancer cell lines HCT116 and LoVo. Results: The messenger RNA (mRNA) level of SEMA6B and the protein expression were higher in CRC tissues than adjacent normal tissues from multiple CRC datasets. High SEMA6B expression was significantly associated with dismal survival. Multivariate Cox regression analysis demonstrated that SEMA6B was an independent prognostic factor for progression-free survival (PFS). The nomogram showed a favorable predictive ability in PFS. Functional enrichment analysis and the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm revealed that the gene cluster associated with the high SEMA6B group were prominently involved in immune responses and inflammatory activities. Notably, SEMA6B expression was positively correlated with infiltrating levels of CD4+ T cells, macrophages, myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), neutrophils, and dendritic cells. Moreover, SEMA6B expression displayed strong correlations with diverse marker sets of immunosuppressive cells in CRC. Integrative analysis revealed that immunosuppressive molecules and immune checkpoints were markedly upregulated in CRC samples with high SEMA6B expression. Furthermore, knockdown of SMEA6B in colon cancer cells significantly inhibited cell proliferation, migration, invasion and reduced the mRNA levels of immunosuppressive molecules. Conclusion: Our findings provide evidence that high SEMA6B expression correlated with adverse prognosis and the tumor immunosuppressive microenvironment in CRC patients. Therefore, SEMA6B may serve as a novel prognostic biomarker for CRC, which offers further insights into developing CRC-targeted immunotherapies.
RESUMO
Progressive myoclonic epilepsy is a group of neurodegenerative diseases with complex clinical and genetic heterogeneity, which is associated with spontaneous or action-induced myoclonus and progressive neurodegeneration. Since 2020, 4 families with progressive myoclonic epilepsy-11 [OMIM#618876] have been reported with a very limited spectrum of SEMA6B pathogenic variants. In our study, whole-exome sequencing was used in a proband from a nonconsanguineous Chinese family presenting with growth retardation and recurrent atonic seizures. A deletion mutation (c.1960_1978del, p.Leu654Argfs*25) in the last exon of SEMA6B was detected, which is a de novo variant and pathogenic. The new genetic evidence we reported here strengthened the gene-disease relationship, and the gene curation level between SEMA6B and progressive myoclonic epilepsy-11 became "strong" following the ClinGen SOP. Therefore, the results of this study broaden the mutation spectrum of SEMA6B in different ethnic groups and strengthen the gene-disease relationship between SEMA6B and progressive myoclonic epilepsy-11.
Assuntos
Epilepsias Mioclônicas Progressivas/genética , Semaforinas/genética , Criança , Feminino , Deleção de Genes , Humanos , Epilepsias Mioclônicas Progressivas/patologia , FenótipoRESUMO
Progressive myoclonic epilepsy (PME) is a rare neurodegenerative disease, characterized by myoclonic seizures and tonic clonic seizures, with genetical and phenotypical heterogeneity. The semaphorin 6B (SEMA6B) gene has been recently reported a causal gene of PME. Independent studies are warranted to further support these findings. Here we report that one nonsense variant in NM_032108.3 exon17 c.2056C > T (p.Gln686∗) and one missense variant in exon14 c.1483G > T (p.Gly495Trp) of SEMA6B, both occurring de novo, underlie early-onset epilepsy with variable severity and different response to treatment in two patients. In vitro analyses have demonstrated that the nonsense variant, p.Gln686∗, results in a truncated protein with remarkably increased expression compared to that of the wild type. The truncated protein presented more homogeneous and failed to locate in the plasma membrane. The missense variant p.Gly495Trp affects evolutionarily conserved amino acid and is located in the sema domain, a key functional domain of SEMA6B. It was predicted to perturb the SEMA6B function by altering the tertiary structure of mutant protein, although neither change of protein length and expression nor difference of cellular distribution was observed. Co-immunoprecipitation studies have demonstrated that both variants influence protein binding of SEMA6B and PlxnA2 with varying degrees. Our results provide further evidence to support the initial findings of SEMA6B being causal to epilepsy and indicate that mediating Semaphorin/Plexin signaling is the potential mechanism of the SEMA6B-related disease.
RESUMO
As a malignancy of the gastrointestinal tract, gallbladder cancer (GBC) continues to exhibit notable rates of mortality. The current study aimed at investigating the effects associated with miR-30b and miR-30d (miR-30b/-30d) patterns in tumor cells undergoing epithelial-to-mesenchymal transition (EMT) in GBC. It identified that miR-30b and miR-30d, composed as a miRNA cluster, exhibited lower levels in the cancerous tissues from 50 patients with GBC relative to the gallbladder tissues from 35 patients with chronic cholecystitis. As expected, elevated expression of miR-30b/-30d was found to inhibit the EMT process, as evidenced by enhanced E-cadherin and reduced N-cadherin and vimentin in human GBC cells treated with miR-30b mimic, miR-30d mimic, and miR-30b/-30d mimic. Semaphorin-6B (SEMA6B) was identified as a target gene of miR-30b/-30d. Silencing of SEMA6B by its specific small interfering RNA (siRNA) mimicked the effect of miR-30b/-30d upregulation on the GBC cell EMT. Consistently, SEMA6B overexpression promoted this phenotypic switch even in the presence of miR-30b/-30d mimic. The tumorigenicity assay data obtained from nude mice also further supported the notion that miR-30b/-30d inhibited EMT of GBC cells. Thus, based on the key findings of the current study, we concluded that the miR-30b/-30d cluster may provide a potential avenue for targeting mesenchymal-like, invasive tumor cells in GBC.
RESUMO
Pathogenic clostridial species secrete potent toxins that induce severe host tissue damage. Paeniclostridium sordellii lethal toxin (TcsL) causes an almost invariably lethal toxic shock syndrome associated with gynecological infections. TcsL is 87% similar to C. difficile TcdB, which enters host cells via Frizzled receptors in colon epithelium. However, P. sordellii infections target vascular endothelium, suggesting that TcsL exploits another receptor. Here, using CRISPR/Cas9 screening, we establish semaphorins SEMA6A and SEMA6B as TcsL receptors. We demonstrate that recombinant SEMA6A can protect mice from TcsL-induced edema. A 3.3 Å cryo-EM structure shows that TcsL binds SEMA6A with the same region that in TcdB binds structurally unrelated Frizzled. Remarkably, 15 mutations in this evolutionarily divergent surface are sufficient to switch binding specificity of TcsL to that of TcdB. Our findings establish semaphorins as physiologically relevant receptors for TcsL and reveal the molecular basis for the difference in tissue targeting and disease pathogenesis between highly related toxins.
Assuntos
Toxinas Bacterianas/metabolismo , Clostridium sordellii/metabolismo , Semaforinas/metabolismo , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/toxicidade , Sítios de Ligação , Sistemas CRISPR-Cas/genética , Linhagem Celular , Microscopia Crioeletrônica , Edema/patologia , Edema/prevenção & controle , Feminino , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/uso terapêutico , Semaforinas/química , Semaforinas/genéticaRESUMO
De novo variants (DNVs) cause many genetic diseases. When DNVs are examined in the whole coding regions of genes in next-generation sequencing analyses, pathogenic DNVs often cluster in a specific region. One such region is the last exon and the last 50 bp of the penultimate exon, where truncating DNVs cause escape from nonsense-mediated mRNA decay [NMD(-) region]. Such variants can have dominant-negative or gain-of-function effects. Here, we first developed a resource of rates of truncating DNVs in NMD(-) regions under the null model of DNVs. Utilizing this resource, we performed enrichment analysis of truncating DNVs in NMD(-) regions in 346 developmental and epileptic encephalopathy (DEE) trios. We observed statistically significant enrichment of truncating DNVs in semaphorin 6B (SEMA6B) (p value: 2.8 × 10-8; exome-wide threshold: 2.5 × 10-6). The initial analysis of the 346 individuals and additional screening of 1,406 and 4,293 independent individuals affected by DEE and developmental disorders collectively identified four truncating DNVs in the SEMA6B NMD(-) region in five individuals who came from unrelated families (p value: 1.9 × 10-13) and consistently showed progressive myoclonic epilepsy. RNA analysis of lymphoblastoid cells established from an affected individual showed that the mutant allele escaped NMD, indicating stable production of the truncated protein. Importantly, heterozygous truncating variants in the NMD(+) region of SEMA6B are observed in general populations, and SEMA6B is most likely loss-of-function tolerant. Zebrafish expressing truncating variants in the NMD(-) region of SEMA6B orthologs displayed defective development of brain neurons and enhanced pentylenetetrazole-induced seizure behavior. In summary, we show that truncating DNVs in the final exon of SEMA6B cause progressive myoclonic epilepsy.
Assuntos
Exoma/genética , Éxons/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Epilepsias Mioclônicas Progressivas/genética , Semaforinas/genética , Adolescente , Adulto , Alelos , Animais , Feminino , Heterozigoto , Humanos , Masculino , Degradação do RNAm Mediada por Códon sem Sentido/genética , Convulsões/genética , Adulto Jovem , Peixe-Zebra/genéticaRESUMO
The signaling cascade of the transcription factor vitamin D receptor (VDR) is triggered by its specific ligand 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). In this study we demonstrate that in THP-1 human monocytic leukemia cells 87.4% of the 1034 most prominent genome-wide VDR binding sites co-localize with loci of open chromatin. At 165 of them 1α,25(OH)2D3 strongly increases chromatin accessibility and has at further 217 sites weaker effects. Interestingly, VDR binding sites in 1α,25(OH)2D3-responsive chromatin regions are far more often composed of direct repeats with 3 intervening nucleotides (DR3s) than those in ligand insensitive regions. DR3-containing VDR sites are enriched in the neighborhood of genes that are involved in controling cellular growth, while non-DR3 VDR binding is often found close to genes related to immunity. At the example of six early VDR target genes we show that the slope of their 1α,25(OH)2D3-induced transcription correlates with the basal chromatin accessibility of their major VDR binding regions. However, the chromatin loci controlling these genes are indistinguishable in their VDR association kinetics. Taken together, ligand responsive chromatin loci represent dynamically regulated contact points of VDR with the genome, from where it controls early 1α,25(OH)2D3 target genes.