Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
CNS Neurosci Ther ; 30(7): e14835, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39004783

RESUMO

AIMS: Necroptosis is one of programmed death that may aggravate spinal cord injury (SCI). We aimed to investigate the effect and mechanism of exendin-4 (EX-4) on the recovery of motor function and necroptosis after SCI. METHODS: The SD rats with left hemisection in the T10 spinal cord as SCI model were used. The behavior tests were measured within 4 weeks. The effects of EX-4 on necroptosis-associated proteins and autophagy flux were explored. In addition, the SHSY5Y cell model was introduced to explore the direct effect of EX-4 on neurons. The effect of lysosome was explored using mTOR activator and AO staining. RESULTS: EX-4 could improve motor function and limb strength, promote the recovery of autophagy flux, and accelerate the degradation of necroptosis-related protein at 3 d after injury in rats. EX-4 reduced lysosome membrane permeability, promoted the recovery of lysosome function and autophagy flux, and accelerated the degradation of necroptosis-related proteins by inhibiting the phosphorylation level of mTOR in the SHSY5Y cell model. CONCLUSION: Our results demonstrated that EX-4 may improve motor function after SCI via inhibiting mTOR phosphorylation level and accelerating the degradation of necroptosis-related proteins in neurons. Our findings may provide new therapeutic targets for clinical treatment after SCI.


Assuntos
Autofagia , Exenatida , Necroptose , Neurônios , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Animais , Autofagia/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Ratos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Exenatida/farmacologia , Exenatida/uso terapêutico , Necroptose/efeitos dos fármacos , Humanos , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Fármacos Neuroprotetores/farmacologia , Masculino
2.
Neurochem Res ; 49(10): 2854-2870, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39023805

RESUMO

This study aimed to assess the impact of conditioned medium from epidermal neural crest stem cells (EPI-NCSCs-CM) on functional recovery following spinal cord injury (SCI), while also exploring the involvement of the PI3K-AKT signaling pathway in regulating neuronal apoptosis. EPI-NCSCs were isolated from 10-day-old Sprague-Dawley rats and cultured for 48 h to obtain EPI-NCSC-CM. SHSY-5Y cells were subjected with H2O2 treatment to induce apoptosis. Cell viability and survival rates were evaluated using the CCK-8 assay and calcein-AM/PI staining. SCI contusion model was established in adult Sprague-Dawley rats to assess functional recovery, utilizing the Basso, Beattie and Bresnahan (BBB) scoring system, inclined test, and footprint observation. Neurological restoration after SCI was analyzed through electrophysiological recordings. Histological analysis included hematoxylin and eosin (H&E) staining and Nissl staining to evaluate tissue organization. Apoptosis and oxidative stress levels were assessed using TUNEL staining and ROS detection methods. Additionally, western blotting was performed to examine the expression of apoptotic markers and proteins related to the PI3K/AKT signaling pathway. EPI-NCSC-CM significantly facilitated functional and histological recovery in SCI rats by inhibiting neuronal apoptosis through modulation of the PI3K/AKT pathway. Administration of EPI-NCSCs-CM alleviated H2O2-induced neurotoxicity in SHSY-5Y cells in vitro. The use of LY294002, a PI3K inhibitor, underscored the crucial role of the PI3K/AKT signaling pathway in regulating neuronal apoptosis. This study contributes to the ongoing exploration of molecular pathways involved in spinal cord injury (SCI) repair, focusing on the therapeutic potential of EPI-NCSC-CM. The research findings indicate that EPI-NCSC-CM exerts a neuroprotective effect by suppressing neuronal apoptosis through activation of the PI3K/AKT pathway in SCI rats. These results highlight the promising role of EPI-NCSC-CM as a potential treatment strategy for SCI, emphasizing the significance of the PI3K/AKT pathway in mediating its beneficial effects.


Assuntos
Apoptose , Células-Tronco Neurais , Neurônios , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Crista Neural/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Masculino
3.
Anal Biochem ; 694: 115631, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39084336

RESUMO

Cyclic 3-phosphosphoglyceric anhydride (cPGA), a side product of glycolysis, acylates cellular amines and thiols to form amides and thioesters, respectively. Since these acylation reactions are harmful, organisms rely on a protein, known as DJ-1 in humans, to inactivate cPGA. Inactivation of cPGA likely plays a significant role in cytoprotection by DJ-1, but further progress in this direction is hampered by the lack of quantitative assays to measure the cPGA hydrolase activity of DJ-1 in biological samples. Here we report an optimized procedure for preparation of cPGA which is then used as a substrate to quantify enzymatic activity of DJ-1. The end-point assay for cPGA hydrolase uses dilute cell lysates to hydrolyze cPGA for 0.5-3.5 min followed by conversion of the remaining cPGA into thioester for spectrophotometric quantitation. We illustrate the utility of this assay by showing that higher levels of cPGA hydrolase activity result in better protection from acylation by cPGA. Moreover, the decrease of cPGA hydrolase activity due to oxidation of the catalytic cysteine of DJ-1 under oxidative stress and its subsequent recovery can be monitored using the assay. This relatively simple assay allows functional characterization of DJ-1 in biological samples through quantitative assessment of its cPGA hydrolase activity.


Assuntos
Estresse Oxidativo , Proteína Desglicase DJ-1 , Proteína Desglicase DJ-1/metabolismo , Humanos , Hidrolases/metabolismo , Ensaios Enzimáticos/métodos
4.
Ther Deliv ; 15(7): 507-519, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38888652

RESUMO

Aim: To investigate the efficacy of exosome-like nanovesicles from citrus lemon (EXO-CLs) in combating oxidative stress associated with Alzheimer's disease.Materials & methods: EXO-CLs were isolated through differential ultracentrifugation, characterized for particle size and evaluated for antioxidant activity.Results: EXO-CLs exhibited a mean size of 93.77 ± 12.31 nm, demonstrated permeability across the blood-brain barrier (BBB) and displayed antioxidant activity comparable to ascorbic acid. Additionally, they were found to be non-toxic, with over 80% cell viability observed in SH-SY5Y cells.Conclusion: The study proposes that EXO-CLs could serve as an effective treatment for neurodegenerative diseases. This suggests a promising approach for targeted interventions in brain-related disorders, owing to the antioxidant properties and BBB permeability exhibited by EXO-CLs.


[Box: see text].


Assuntos
Doença de Alzheimer , Antioxidantes , Barreira Hematoencefálica , Sobrevivência Celular , Citrus , Exossomos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Exossomos/metabolismo , Humanos , Citrus/química , Barreira Hematoencefálica/metabolismo , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Tamanho da Partícula , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade
5.
Lasers Med Sci ; 39(1): 147, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822930

RESUMO

Photobiomodulation (PBM) holds promise as a therapy modality, but its applicability is hindered by the lack of a quantitative model to predict the optimal dose for all forms of PBM. This study investigated the optimal PBM parameters for 532 nm green laser irradiation on SHSY5Y neuroblastoma cells, a commonly used in vitro model for neurodegenerative disease studies. A two-tailed, two sample t-test with equal variance was used to obtain the p-values and statistical significance. There are 3 sets of parameters showing significant ( p < 0 . 01 ) positive percentage biostimulation. 160 m W , 15 m i n produce a percentage biostimulation of ( 9 ± 10 ) % ; 180 m W , 5 m i n produce a percentage biostimulation of ( 19 ± 7 ) % ; and ( 200 m W , 5 m i n ) produce a percentage biostimulation of ( 9 ± 2 ) % . The highest significant ( p < 0 . 01 ) percentage bioinhibition observed is for 220 m W , 15 m i n (dose: 1008 J / c m 2 ) producing a bioinhibition of ( 54 ± 1 ) % . After identifying several parameters that produce noticeable photobiological effects (biostimulation and bioinhibition), this study compared the reaction of undifferentiated and differentiated SHSY5Y cells to laser irradiation and found that undifferentiated SHSY5Y cells shows greater photobiological effect from 532 nm laser irradiation ( p < 0 . 01 ) . This study demonstrated the differentiation-dependant photobiological effect of SHSY5Y in 532 nm laser PBM. This shows that considerations on the differentiation state of cells is important in PBM studies. The hypothesis of difference in intracellular reactive oxygen species (ROS) accumulation from laser irradiation can serve as a versatile explanation of the observed difference in photobiological effect. Further investigation into the role of ROS as a mediator of various photobiological effects from laser of different wavelengths is warranted.


Assuntos
Diferenciação Celular , Terapia com Luz de Baixa Intensidade , Neuroblastoma , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Diferenciação Celular/efeitos da radiação , Neuroblastoma/radioterapia , Neuroblastoma/patologia , Linhagem Celular Tumoral
6.
Nutrients ; 16(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931243

RESUMO

The brain-derived neurotrophic factor (BDNF) plays a crucial role during neuronal development as well as during differentiation and synaptogenesis. They are important proteins present in the brain that support neuronal health and protect the neurons from detrimental signals. The results from the present study suggest BDNF expression can be increase up to ~8-fold by treating the neuroblastoma cells SHSY-5Y with an herbal extract of Oroxylum indicum (50 µg/mL) and ~5.5-fold under lipopolysaccharides (LPS)-induced inflammation conditions. The Oroxylum indicum extract (Sabroxy) was standardized to 10% oroxylin A, 6% chrysin, and 15% baicalein. In addition, Sabroxy has shown to possess antioxidant activity that could decrease the damage caused by the exacerbation of radicals during neurodegeneration. A mode of action of over expression of BDNF with and without inflammation is proposed for the Oroxylum indicum extract, where the three major hydroxyflavones exert their effects through additive or synergistic effects via five possible targets including GABA, Adenoside A2A and estrogen receptor bindings, anti-inflammatory effects, and reduced mitochondrial ROS production.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Flavanonas , Inflamação , Lipopolissacarídeos , Neurônios , Fármacos Neuroprotetores , Extratos Vegetais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Extratos Vegetais/farmacologia , Humanos , Fármacos Neuroprotetores/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Linhagem Celular Tumoral , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Flavanonas/farmacologia , Bignoniaceae/química , Regulação para Cima/efeitos dos fármacos , Flavonoides/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia
7.
Anticancer Agents Med Chem ; 24(1): 39-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37957910

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is probably the most malignant and aggressive brain tumor belonging to the class of astrocytomas. The considerable aggressiveness and high malignancy of GBM make it a tumor that is difficult to treat. Here, we report the synthesis and biological evaluation of eighteen novel cinnamoyl derivatives (3a-i and 4a-i) to obtain more effective antitumor agents against GBM. METHODS: The chemical structures of novel cinnamoyl derivatives (3a-i and 4a-i) were confirmed by NMR and MS analyses. The physicochemical properties and evaluation of the ADME profile of 3a-i and 4a-i were performed by the preADMETlab2.0 web program. Cinnamoyl derivatives 3a-i and 4a-i were tested in vitro for their cytotoxicity against the human healthy fibroblast (HDFa) cells using an MTT cell viability assay. Derivatives with no toxicity on HDFa cells were tested both on human glioblastoma (U87MG) and neuroblastoma (SHSY- 5Y) cells, chosen as an experimental model of brain tumors. Cell death mechanisms were analyzed by performing flow cytometry analyses. RESULTS: Cinnamoyl derivatives 3a-i and 4a-i showed good physicochemical and ADME properties suggesting that these compounds could be developed as oral drugs endowed with a high capability to cross the blood-brain barrier. Compounds (E)-1-methoxy-4-(2-(phenylsulfonyl)vinyl)benzene (2c) and (E)-N-benzyl-N-(2- (cyclohexylamino)-2-oxoethyl)-3-(3,4,5-trimethoxyphenyl)acrylamide (3e) did not show cytotoxicity on healthy human fibroblast cells up to 100 µg/mL. The most anticarcinogenic molecule, compound 3e, emerged as the most potent anticancer candidate in this study. Flow cytometry results showed that compound 3e (25 µg/mL) application resulted in nearly 86% and 84% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively. Compound 2c (25 µg/mL) resulted in 81% and 82% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively. CONCLUSION: Cinnamoyl derivative 3e inhibits the proliferation of cultured U87MG and SHSY-5Y cells by inducing apoptosis. Further detailed research will be conducted to confirm these data in in vivo experimental animal models.


Assuntos
Antineoplásicos , Glioblastoma , Neuroblastoma , Animais , Humanos , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sobrevivência Celular , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Proliferação de Células
8.
Eur J Pharmacol ; 956: 175950, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37544423

RESUMO

Parkinson's disease (PD) is characterized by both motor and non-motor symptoms, including hypokinesia, postural instability, dopaminergic (DA) neurons loss, and α-synuclein (α-syn) accumulation. A growing number of patients show negative responses towards the current therapies. Thus, preventative or disease-modifying treatment agents are worth to further research. In recent years, compounds extracted from natural sources become promising candidates to treat PD. Chlorogenic acid (CGA) is a phenolic compound appearing in coffee, honeysuckle, and eucommia that showed their potential as antioxidants and neuroprotectors. In this study, we investigated the anti-PD activity of CGA by testing its effect on 1-methyl-4-phenyl-1-1,2,3,6-tetrahydropyridine (MPTP) zebrafish model of PD. It was shown that CGA relieved MPTP-induced PD-like symptoms including DA neurons and blood vessel loss, locomotion reduction, and apoptosis events in brain. Moreover, CGA modulated the expression of PD- and autophagy-related genes (α-syn, lc3b, p62, atg5, atg7, and ulk1b), showing its ability to promote the autophagy which was interrupted in the PD pathology. The unblocked effect of CGA on autophagy was further verified in 6-hydroxydopamine (6-OHDA)-modeled SHSY5Y cells. Our findings indicated that CGA might relieve PD by boosting the autophagy in neuronal cells that makes CGA a potential candidate for anti-PD treatment.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Peixe-Zebra , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Autofagia , Neurônios Dopaminérgicos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
9.
Toxicol Mech Methods ; 33(9): 707-718, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37455591

RESUMO

INTRODUCTION: C-Glucosyl Xanthone derivatives were assessed to inhibit the JNK3 mediated Caspase pathway in Almal (Aluminum Maltolate) induced neurotoxicity in SHSY-5Y cells. METHODS: Mangiferin was selected among 200 C-Glucosyl Xanthones based on molecular interaction, docking score (-10.22 kcal/mol), binding free energy (-71.12 kcal/mol), ADME/tox properties and by molecular dynamic studies. Further, it was noticed that glycone moiety of Mangiferin forms H-bond with ASN 194, SER 193, GLY 76, and OH group in the first position of the aglycone moiety shows interaction at Met 149 which is exceptionally crucial for JNK3 inhibitory activity. RESULTS AND DISCUSSION: Mangiferin (0.5, 1, 10, 20 and 30 µM) and standard SP600125 (20 µM) treatment increased the cell survival rate against Almal 200 µM, with EC50 of Mangiferin (8 µM) and standard SP600125 (4.9 µM) respectively. Mangiferin significantly impedes kinase activation, indicating suppression of JNK3 signaling with IC50 (98.26 nM). Mangiferin (10 and 15 µM) dose-dependently inhibits the caspase 3, 8, and 9 enzyme activation in comparison to Almal group. CONCLUSION: Mangiferin demonstrated neuroprotection in SHSY-5Y cells against apoptosis induced by Almal by adapting the architecture of the neurons and increasing their density. Among all Xanthone derivatives, Mangiferin could improve neuronal toxicity by inhibiting JNK3 and down-regulating the Caspase activation.


Assuntos
Neuroblastoma , Xantonas , Humanos , Xantonas/farmacologia , Xantonas/química , Xantonas/metabolismo , Caspases
10.
Front Pharmacol ; 14: 1139606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234712

RESUMO

Alzheimer's disease (AD) is a type of neurodegenerative disease, associated with the hastening of ROS, acetylcholinesterase (AChE) activity, and amyloid ß peptides plaques in the brain. The limitations and side effects of existing synthetic drugs incline toward natural sources. In the present communication active principles of methanolic extract of Olea dioica Roxb, leaves are explored as an antioxidant, AChE inhibitor, and anti-amyloidogenic. Furthermore, neuroprotection against the amyloid beta-peptide has been studied. The bioactive principles were identified by GC-MS and LC-MS and further subjected to antioxidant (DPPH and FRAP) and neuroprotection (AChE inhibition, ThT binding, and MTT assay, DCFH-DA and lipid peroxidation (LPO) assay using neuroblastoma (SHSY-5Y) cell lines) assays. Methanolic extract of O. dioica Roxb, leaves was found to contain polyphenols and flavonoids. In vitro assays exhibited potential antioxidant and anti-AChE (˃50%) activities. ThT binding assay indicated protection against amyloid-beta aggregation. MTT assay, Aß1-40 (10 µM) with extract increase the cell viability (˃50%) and showed significant cytotoxicity to SHSY-5Y cells. ROS level (˃25%) significantly decreased in the Aß1-40 (10 µM) + extract (15 and 20 µM/mL) and LPO assay (˃50%) suggesting prevention of cell damage. Results advocate that O. dioica leaves are a good source of antioxidants, anti-AChE, and anti-amyloidogenic compounds which may be further evaluated as a natural medicine for the treatment of AD.

11.
Pharmaceutics ; 15(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36678849

RESUMO

Aggregation of Amyloid-ß (Aß) leads to the formation and deposition of neurofibrillary tangles and plaques which is the main pathological hallmark of Alzheimer's disease (AD). The bioavailability of the drugs and their capability to cross the BBB plays a crucial role in the therapeutics of AD. The present study evaluates the Memantine Hydrochloride (MeHCl) and Tramiprosate (TMPS) loaded solid lipid nanoparticles (SLNs) for the clearance of Aß on SHSY5Y cells in rat hippocampus. Molecular docking and in vitro Aß fibrillation were used to ensure the binding of drugs to Aß. The in vitro cell viability study showed that the M + T SLNs showed enhanced neuroprotection against SHSY5Y cells than the pure drugs (M + T PD) in presence of Aß (80.35µM ± 0.455 µM) at a 3:1 molar ratio. The Box-Behnken Design (BBD) was employed to optimize the SLNs and the optimized M + T SLNs were further characterized by %drug entrapment efficiency (99.24 ± 3.24 of MeHCl and 89.99 ± 0.95 of TMPS), particle size (159.9 ± 0.569 nm), PDI (0.149 ± 0.08), Zeta potential (-6.4 ± 0.948 mV), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM) and in vitro drug release. The TEM & AFM analysis showed irregularly spherical morphology. In vitro release of SLNs was noted up to 48 h; whereas the pure drugs released completely within 3 hrs. M + T SLNs revealed an improved pharmacokinetic profile and a 4-fold increase in drug concentration in the brain when compared to the pure drug. Behavioral tests showed enhanced spatial memory and histological studies confirmed reduced Aß plaques in rat hippocampus. Furthermore, the levels of Aß decreased in AlCl3-induced AD. Thus, all these noted results established that the M + T SLNs provide enhanced neuroprotective effects when compared to pure and individual drugs and can be a promising therapeutic strategy for the management of AD.

12.
Recent Pat Nanotechnol ; 17(3): 270-280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35619324

RESUMO

BACKGROUND: Green syntheses of silver nanoparticles using plant extracts have potential anti- cancer, antimicrobial, and antioxidant properties, among other aspects. The aim of the present patent study was to synthesize silver nanoparticles (AgNPs) using Vernonia cinerea plant extract. METHODS: The AgNPs were successfully prepared and characterized using UV-Vis Spectrophotometer, particle size, Zeta potential, Transmission electron microscopy (TEM), Energy-dispersive x-ray analysis (EDAX), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectrometry. The in vitro cytotoxicity study was performed using neuroblastoma SHSY-5Y cell lines. Moreover, antimicrobial and antioxidant activity studies were also performed for AgNPs. RESULTS: The size of AgNPs determined through the dynamic light scattering (DLS) technique was 49.5 nm and the zeta potential was -36.8 mV. The synthesized AgNPs were checked using UV-Visible spectroscopy at ƛmax 439 nm. The color was changed from green to dark brown, indicating the formation of AgNPs. The TEM study revealed that the nanoparticles were spherical in shape. The XRD pattern of AgNPs produced in this experiment was apparently crystalline. The results of FTIR study revealed that the majority of the obtained peaks correspond to the polyphenols, triterpenoids, and alkaloids which were abundant in the corresponding to the V. cinerea leaf extract and support to the formation of AgNPs. The cytotoxicity effect of the V. cinerea plant extract and biosynthesized AgNPs was found to be dosedependent. From the results of antimicrobial studies, it was reported that the gram negative bacteria were found to be more susceptible compared to the gram positive bacteria. Moreover, the results of antioxidant study revealed that the AgNPs showed good antioxidant activity (77.21%) in comparison to the V. cinerea plant extract (56.13%). CONCLUSION: Based on the results, it could be concluded that the green synthesized silver nanoparticles showed promising anticancer, antioxidant, and anti-bacterial activities as compared to the plain V. cineria plant extract.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Neuroblastoma , Vernonia , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Antibacterianos/farmacologia , Prata/farmacologia , Nanopartículas Metálicas/química , Patentes como Assunto , Anti-Infecciosos/farmacologia , Linhagem Celular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neuroblastoma/tratamento farmacológico , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Nanomaterials (Basel) ; 12(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35957121

RESUMO

Alzheimer's disease (AD) is considered as the most common neurodegenerative disease. Extracellular amyloid beta (Aß) deposition is a hallmark of AD. The options based on degradation and clearance of Aß are preferred as promising therapeutic strategies for AD. Interestingly, recent findings indicate that boron nanoparticles not only act as a carrier but also play key roles in mediating biological effects. In the present study, the aim was to investigate the effects of different concentrations (0−500 mg/L) of hexagonal boron nitride nanoparticles (hBN-NPs) against neurotoxicity by beta amyloid (Aß1-42) in differentiated human SH-SY5Y neuroblastoma cell cultures for the first time. The synthesized hBN-NPs were characterized by X-ray diffraction (XRD) measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Aß1-42-induced neurotoxicity and therapeutic potential by hBN-NPs were assessed on differentiated SH-SY5Y cells using MTT and LDH release assays. Levels of total antioxidant capacity (TAC) and total oxidant status (TOS), expression levels of genes associated with AD and cellular morphologies were examined. The exposure to Aß1-42 significantly decreased the rates of viable cells which was accompanied by elevated TOS level. Aß1-42 induced both apoptotic and necrotic cell death. Aß exposure led to significant increases in expression levels of APOE, BACE 1, EGFR, NCTSN and TNF-α genes and significant decreases in expression levels of ADAM 10, APH1A, BDNF, PSEN1 and PSENEN genes (p < 0.05). All the Aß1-42-induced neurotoxic insults were inhibited by the applications with hBN-NPs. hBN-NPs also suppressed the remarkable elevation in the signal for Aß following exposure to Aß1-42 for 48 h. Our results indicated that hBN-NPs could significantly prevent the neurotoxic damages by Aß. Thus, hBN-NPs could be a novel and promising anti-AD agent for effective drug development, bio-nano imaging or drug delivery strategies.

14.
Front Cell Neurosci ; 16: 838939, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242014

RESUMO

Although lithium has long been one of the most widely used pharmacological agents in psychiatry, its mechanisms of action at the cellular and molecular levels remain poorly understood. One of the targets of Li+ is the phosphoinositide pathway, but whereas the impact of Li+ on inositol lipid metabolism is well documented, information on physiological effects at the cellular level is lacking. We examined in two mammalian cell lines the effect of acute Li+ exposure on the mobilization of internal Ca2+ and phospholipase C (PLC)-dependent membrane conductances. We first corroborated by Western blots and immunofluorescence in HEK293 cells the presence of key signaling elements of a muscarinic PLC pathway (M1AchR, Gq, PLC-ß1, and IP3Rs). Stimulation with carbachol evoked a dose-dependent mobilization of Ca, as determined with fluorescent indicators. This was due to release from internal stores and proved susceptible to the PLC antagonist U73122. Li+ exposure reproducibly potentiated the Ca response in a concentration-dependent manner extending to the low millimolar range. To broaden those observations to a neuronal context and probe potential Li modulation of electrical signaling, we next examined the cell line SHsy5y. We replicated the potentiating effects of Li on the mobilization of internal Ca, and, after characterizing the basic properties of the electrical response to cholinergic stimulation, we also demonstrated an equally robust upregulation of muscarinic membrane currents. Finally, by directly stimulating the signaling pathway at different links downstream of the receptor, the site of action of the observed Li effects could be narrowed down to the G protein and its interaction with PLC-ß. These observations document a modulation of Gq/PLC/IP3-mediated signaling by acute exposure to lithium, reflected in distinct physiological changes in cellular responses.

15.
Am J Transl Res ; 13(9): 9993-10013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650678

RESUMO

To examine the neuroprotective roles of lncRNA-MIAT in Parkinson's disease (PD). RNA sequencing expression profiles were utilized to screen the dysregulated lncRNAs in patients with PD and to explore the underlying molecular mechanisms by which the lncRNAs regulate the pathogenesis of PD. 6-hydroxydopamine-induced SH-SY5Y cell lines and a PD mouse model were used to prove how the overexpressing or knocking-down of MIAT produce a marked effect in both in vitro and in vivo experiments. Subsequently, the subcellular localization of MIAT was detected via RNA fluorescence in situ hybridization (FISH) assays. Quantitative PCR, as well as western blotting, were used to determine the expression levels of the associated genes and proteins. We utilized Cell Counting Kit-8 (CCK8) assays to measure the viability of the cells, and the apoptotic rate was determined using Annexin V-FITC/PI double staining. The expressions of tyrosine hydroxylase (TH) and Parkin were quantified in the substantia nigra using immunohistochemical staining. Also, TUNEL staining was performed to visualize the apoptotic cells in the substantia nigra. Compared with the normal rats, the downregulation of MIAT was observed in the cortex, hippocampus, substantia nigra, and striatum of the PD rats. Overexpression of MIAT exhibited a neuroprotective effect on the SH-SY5Y cells. Through RNA-sequencing of the PD mice treated with an overexpression of MIAT and through a differentially expressed genes analysis, it was hypothesized that MIAT could upregulate the expression of synaptotagmin-1 (SYT1) through sponging of miR-34-5p. Interactions between MIAT, miR-34-5p, and SYT1 were confirmed using RIP and dual-luciferase reporter assays. At the same time, the MIAT overexpression group exhibited elevated Parkin and TH protein levels, increased cell viability but a decreased apoptosis rate of the SH-SY5Y cells in contrast with the negative control (NC) group. In vivo, compared with the NC group, the overexpression of MIAT resulted in an increase in the positive rates of Parkin and TH, and the apoptosis was decreased in the PD mice. The behavioral test results showed that the motor coordination and autonomous activity of the mice were enhanced in the MIAT overexpression group compared with the NC group. LncRNA-MIAT regulates the growth of SHSY5Y cells by sponging miR-34-5p which targets SYT1 and exerts a neuroprotective effect in a mouse model of PD.

16.
Plants (Basel) ; 10(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925070

RESUMO

The current trend worldwide is searching plant extracts towards prevention of neurodegenerative disorders. This study aimed to investigate the neuroprotective effect of Alpinia galanga leaves (ALE), Alpinia galanga rhizomes (ARE), Vitis vinifera seeds (VSE), Moringa oleifera leaves (MLE), Panax ginseng leaves (PLE) and Panax ginseng rhizomes (PRE) ethanolic extracts on human neuroblastoma (SHSY5Y) cells. The 1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging of VSE and MLE were 81% and 58%, respectively. Ferric-reducing antioxidant power (FRAP) of ALE and MLE (33.57 ± 0.20 and 26.76 ± 0.30 µmol Fe(ΙΙ)/g dry wt., respectively) were higher than for the other extracts. Liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) revealed MLE active compounds. Intracellular study by nitro-blue tetrazolium (NBT) test showed that MLE and VSE had high O2- scavenging (0.83 ± 0.09 vs. 0.98 ± 0.08 mg/mL, respectively). MLE had the highest ROS scavenging followed by PRE (0.71 ± 0.08 vs. 0.83 ± 0.08 mg/mL, respectively), by 2,7-dichlorodihydrofluorescein diacetate (DCFHDA) assay. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity and neuroprotection tests on SHSY5Y showed that PRE had a better neuroprotective effect but higher cytotoxicity compared to MLE (viable cells 51% vs. 44%, IC50 1.92 ± 0.04 vs. 2.7 ± 0.2 mg/mL, respectively). In conclusion, among the studied plants, MLE has potential for developing as a neuroprotective agent.

17.
Neuropsychiatr Dis Treat ; 17: 1145-1151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33907406

RESUMO

OBJECTIVE: This study aimed to explore the mechanism of venlafaxine in regulating the apoptosis of SHSY-5Y cells induced by hypoxia. METHODS: The CoCl2-induced neuronal hypoxia model was established based on SHSY-5Y cells. The morphology and related protein expression of SHSY-5Y cells were detected by qPCR, ELISA and Western blot. RESULTS: Under the condition of hypoxia-induced by CoCl2, the expression of HIF-1α in SHSY-5Y cells was up-regulated and the expression of ß-catenin was down-regulated. After adding siRNA targeting HIF-1 α to the culture cell system, down-regulation of ß -catenin expression in SHSY-5Y cells was restored. This confirmed the existence of the "hypoxia-HIF-1α-Wnt/ß-catenin-depression" axis. Further studies have shown that venlafaxine can alleviate neuronal apoptosis induced by hypoxia by upregulating the Wnt/ß-catenin signaling pathway. CONCLUSION: Venlafaxine regulates apoptosis induced by hypoxia through the Wnt/ß-catenin signaling pathway, which provides a new theoretical basis for the treatment of depression.

18.
Arch Med Res ; 51(2): 180-184, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32111494

RESUMO

BACKGROUND: Detrimental effects of high glucose content (HGC) were proved in different tissues such as the central nervous system. It seems that diabetic conditions could also alter the functional behavior of stem cells residing in the context of the nervous system. METHODS: The possible effects of 40 and 70 mmol glucose were examined on HSP70 signaling pathways with a specific focus on protein translation, folding values of human neuroblastoma cell line SHSY-5Y after 72 h. Human neuroblastoma cells were exposed to 5, 40 and 70 mmol glucose doses. The transcription level of genes related to HSP70 signaling was also evaluated by PCR array. RESULTS: The data from PCR array showed high glucose especially 70 mmol could potentially modulate the normal function of protein folding, endoplasmic reticulum derived protein folding and synthesis in neuroblastoma cells (p <0.05). CONCLUSIONS: Data showed that high glucose condition makes neuroblastoma cells prone to biochemical insufficiency by affecting the function of HSP70 signaling pathway and protein synthesis.


Assuntos
Glucose/metabolismo , Proteínas de Choque Térmico/metabolismo , Neuroblastoma/metabolismo , Linhagem Celular Tumoral , Glucose/farmacologia , Glucose/fisiologia , Humanos , Transdução de Sinais
19.
Nutr Neurosci ; 23(6): 471-480, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30207204

RESUMO

Polyphenols are shown to protect from or delay the progression of chronic neurodegenerative diseases. Mitochondrial dysfunction plays a key role in the pathogenesis of Parkinson's disease (PD). This study was aims to gain insight into the role of ahydroalcoholic extract of cocoa (standardised for epicatechin content) on mitochondrial biogenesis in MPP+ intoxicated human neuroblastoma cells (SHSY5Y). The effects of cocoa on PPARγ, PGC1α, Nrf2 and TFAM protein expression and mitochondrial membrane potential were evaluated. A pre-exposure to cocoa extract decreased reactive oxygen species formation and restored mitochondrial membrane potential. The cocoa extract was found to up-regulate the expression of PPARγ and the downstream signalling proteins PGC1α, Nrf2 and TFAM. It increased the expression of the anti-apoptotic protein BCl2 and increased superoxide dismutase activity. Further, the cocoa extract down-regulated the expression of mitochondria fission 1 (Fis1) and up-regulated the expression of mitochondria fusion 2 (Mfn2) proteins, suggesting an improvement in mitochondrial functions in MPP+ intoxicated cells upon treatment with cocoa. Interestingly, cocoa up-regulates the expression of tyrosine hydroxylase, the rate limiting enzyme in dopamine synthesis. No change in the expression of PPARγ on treatment with cocoa extract was observed when the cells were pre-treated with PPARγ antagonist GW9662. This data suggests that cocoa mediates mitochondrial biogenesis via a PPARγ/PGC1α dependent signalling pathway and also has the ability to improve dopaminergic functions by increasing tyrosine hydroxylase expression. Based on our data, we propose that a cocoa bean extract and products thereof could be used as potential nutritional supplements for neuroprotection in PD.


Assuntos
Cacau , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Biogênese de Organelas , PPAR gama/metabolismo , Doença de Parkinson/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Extratos Vegetais/administração & dosagem , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Doença de Parkinson/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Chem Biodivers ; 17(1): e1900478, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31713998

RESUMO

The in vitro cytotoxic activity on human cancer cell lines of sixteen commercial EOs such as Aloysia citriodora, Boswellia sacra, Boswellia serrata, Cinnamomum zeylanicum, Cistus ladanifer, Citrus × aurantium, Citrus limon, Citrus sinensis, Cymbopogon citratus, Foeniculum vulgare, Illicium verum, Litsea cubeba, Satureja montana, Syzygium aromaticum, Thymus capitatus and Thymus vulgaris was performed using the MTT reduction assay. The screening was carried out on human cancer cells of breast adenocarcinoma (MCF7, T47D and MDA-MB-231), chronic myelogenous erythroleukemia (K562) and neuroblastoma cell lines (SH-SY5Y). C. zeylanicum and L. cubeba EOs were the most active on almost all the cell lines studied and thus could be promising as an anticancer agent. These two species showed a difference in their composition even though they belong to the Lauraceae family. Almost 57 % of the true cinnamon composition was made of (E)-cinnamaldehyde, while L. cubeba showed citral as the major compound (68.9 %). The K562 cells were the most sensitive to these oils with an IC50 ranging from 5.2 parts-per million (ppm) (C. zeylanicum) to 11.1 ppm (L. cubeba). The latter oil also showed an important cytotoxicity on MDA-MB-231 (13.4 ppm).


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Óleos Voláteis/farmacologia , Antineoplásicos Fitogênicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Óleos Voláteis/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA