Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
J Biol Chem ; 300(9): 107629, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098524

RESUMO

Organic cations comprise a significant part of medically relevant drugs and endogenous substances. Such substances need organic cation transporters for efficient transfer via cell membranes. However, the membrane transporters of most natural or synthetic organic cations are still unknown. To identify these transporters, genes of 10 known OCTs and 18 orphan solute carriers (SLC) were overexpressed in HEK293 cells and characterized concerning their transport activities with a broad spectrum of low molecular weight substances emphasizing organic cations. Several SLC35 transporters and SLC38A10 significantly enhanced the transport of numerous relatively hydrophobic organic cations. Significant organic cation transport activities have been found in gene families classified as transporters of other substance classes. For instance, SLC35G3 and SLC38A10 significantly accelerated the uptake of several cations, such as clonidine, 3,4-methylenedioxymethamphetamine, and nicotine, which are known as substrates of a thus far genetically unidentified proton/organic cation antiporter. The transporters SLC35G4 and SLC35F5 stood out by their significantly increased choline uptake, and several other SLC transported choline together with a broader spectrum of organic cations. Overall, there are many more polyspecific organic cation transporters than previously estimated. Several transporters had one predominant substrate but accepted some other cationic substrates, and others showed no particular preference for one substrate but transported several organic cations. The role of these transporters in biology and drug therapy remains to be elucidated.

2.
Cell Mol Gastroenterol Hepatol ; : 101378, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992465

RESUMO

BACKGROUND & AIMS: Addition of sialic acids (sialylation) to glycoconjugates is a common capping step of glycosylation. Our study aims to determine the roles of the overall sialylation in intestinal mucosal homeostasis. METHODS: Mice with constitutive deletion of intestinal epithelial sialylation (IEC Slc35a1-/- mice) and mice with inducible deletion of sialylation in intestinal epithelium (TM-IEC Slc35a1-/- mice) were generated, which were used to determine the roles of overall sialylation in intestinal mucosal homeostasis by ex vivo and mutiomics studies. RESULTS: IEC Slc35a1-/- mice developed mild spontaneous microbiota-dependent colitis. Additionally, 30% of IEC Slc35a1-/- mice had spontaneous tumors in the rectum greater than the age of 12 months. TM-IEC Slc35a1-/- mice were highly susceptible to acute inflammation induced by 1% dextran sulfate sodium versus control animals. Loss of total sialylation was associated with reduced mucus thickness on fecal sections and within colon tissues. TM-IEC Slc35a1-/- mice showed altered microbiota with an increase in Clostridia disporicum, which is associated a global reduction in the abundance of at least 20 unique taxa; however, metabolomic analysis did not show any significant differences in short-chain fatty acid levels. Treatment with 5-fluorouracil led to more severe small intestine mucositis in the IEC Slc35a1-/- mice versus wild-type littermates, which was associated with reduced Lgr5+ cell representation in small intestinal crypts in IEC Slc35a1-/-;Lgr5-GFP mice. CONCLUSIONS: Loss of overall sialylation impairs mucus stability and the stem cell niche leading to microbiota-dependent spontaneous colitis and tumorigenesis.

3.
Int J Biochem Cell Biol ; 173: 106602, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38843991

RESUMO

Congenital disorders of glycosylation (CDG) are a large family of genetic diseases resulting from defects in the synthesis of glycans and the attachment of glycans to macromolecules. The CDG known as leukocyte adhesion deficiency II (LAD II) is an autosomal, recessive disorder caused by mutations in the SLC35C1 gene, encoding a transmembrane protein of the Golgi apparatus, involved in GDP-fucose transport from the cytosol to the Golgi lumen. In this study, a cell-based model was used as a tool to characterize the molecular background of a therapy based on a fucose-supplemented diet. Such therapies have been successfully introduced in some (but not all) known cases of LAD II. In this study, the effect of external fucose was analyzed in SLC35C1 KO cell lines, expressing 11 mutated SLC35C1 proteins, previously discovered in patients with an LAD II diagnosis. For many of them, the cis-Golgi subcellular localization was affected; however, some proteins were localized properly. Additionally, although mutated SLC35C1 caused different α-1-6 core fucosylation of N-glycans, which explains previously described, more or less severe disorder symptoms, the differences practically disappeared after external fucose supplementation, with fucosylation restored to the level observed in healthy cells. This indicates that additional fucose in the diet should improve the condition of all patients. Thus, for patients diagnosed with LAD II we advocate careful analysis of particular mutations using the SLC35C1-KO cell line-based model, to predict changes in localization and fucosylation rate. We also recommend searching for additional mutations in the human genome of LAD II patients, when fucose supplementation does not influence patients' state.


Assuntos
Fucose , Mutação , Humanos , Fucose/metabolismo , Síndrome da Aderência Leucocítica Deficitária/genética , Síndrome da Aderência Leucocítica Deficitária/metabolismo , Síndrome da Aderência Leucocítica Deficitária/patologia , Fenótipo , Glicosilação , Complexo de Golgi/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , Polissacarídeos/metabolismo , Animais , Proteínas de Transporte de Monossacarídeos
4.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928424

RESUMO

The SLC35 (Solute Carrier 35) family members acting as nucleotide sugar transporters are typically localized in the endoplasmic reticulum or Golgi apparatus. It is, therefore, intriguing that some reports document the presence of orphan transporters SLC35F1 and SLC35F6 within the endosomal and lysosomal system. Here, we compared the subcellular distribution of these proteins and found that they are concentrated in separate compartments; i.e., recycling endosomes for SLC35F1 and lysosomes for SLC35F6. Swapping the C-terminal tail of these proteins resulted in a switch of localization, with SLC35F1 being trafficked to lysosomes while SLC35F6 remained in endosomes. This suggested the presence of specific sorting signals in these C-terminal regions. Using site-directed mutagenesis, fluorescence microscopy, and cell surface biotinylation assays, we found that the EQERLL360 signal located in the cytoplasmic tail of human SLC35F6 is involved in its lysosomal sorting (as previously shown for this conserved sequence in mouse SLC35F6), and that SLC35F1 localization in the recycling pathway depends on two YXXΦ-type signals: a Y367KQF sequence facilitates its internalization from the plasma membrane, while a Y392TSL motif prevents its transport to lysosomes, likely by promoting SLC35F1 recycling to the cell surface. Taken together, these results support that some SLC35 members may function at different levels of the endosomal and lysosomal system.


Assuntos
Endossomos , Lisossomos , Humanos , Sequência de Aminoácidos , Membrana Celular/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Lisossomos/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Sinais Direcionadores de Proteínas , Transporte Proteico
5.
Discov Oncol ; 15(1): 124, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639872

RESUMO

The role of SLC35A2 in breast cancer remains poorly understood, with limited available information on its significance. This study aimed to investigate the expression of SLC35A2 and clinicopathological variables in breast cancer patients. Immunohistochemical analysis of SLC35A2 protein was conductedon 40 adjacent non-neoplastic tissues and 320 breast cancer tissues. The study also assesed the association between SLC35A2 expression and breast cancer clinicopathological features of breast cancer, as well as its impact on overall survival. In comparison to adjacent non-neoplastic tissues, a significantly higher expression of SLC35A2 was observed in breast cancer tissues (P = 0.020), and this expression was found to be independently correlated with HER2 positivity (P = 0.001). Survival analysis indicated that patients with low SLC35A2 expression had a more favorable prognosis in HER2-positive subtype breast cancer (P = 0.017). These results suggest that SLC35A2 is overexpressed in breast cancer tissues compared to adjacent non-neoplastic tissues and may serve as a potential prognostic marker for HER2-positive subtype breast cancer. Furthermore, breast cancer patients with the HER2 positive subtype who exhibited decreased levels of SLC35A2 expression demonstrated improved long-term prognostic outcomes.

6.
Biochem Pharmacol ; 224: 116242, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38679209

RESUMO

Although the anticancer activity of ONC212 has been reported, the precise mechanism underlying its apoptotic effects remains unclear. In this study, we investigated the apoptotic mechanism of ONC212 in acute myeloid leukemia (AML) cells. ONC212 induces apoptosis, MCL1 downregulation, and mitochondrial depolarization in AML U937 cells. Ectopic MCL1 expression alleviates mitochondria-mediated apoptosis in ONC212-treated U937 cells. ONC212 triggers AKT phosphorylation, inducing NOX4-dependent ROS production and promoting HuR transcription. HuR-mediated ATF4 mRNA stabilization stimulates NOXA and SLC35F2 expression; ONC212-induced upregulation of NOXA leads to MCL1 degradation. The synergistic effect of ONC212 on YM155 cytotoxicity was dependent on increased SLC35F2 expression. In addition, YM155 feedback facilitated the activation of the ONC212-induced signaling pathway. A similar mechanism explains ONC212- and ONC212/YM155-induced AML HL-60 cell death. The continuous treatment of U937 cells with the benzene metabolite hydroquinone (HQ) generated U937/HQ cells, exhibiting enhanced responsiveness to the cytotoxic effects of ONC212. In U937/HQ cells, ONC212 triggered apoptosis through NOXA-mediated MCL1 downregulation, enhancing YM155 cytotoxicity. Collectively, our data suggested that ONC212 upregulated SLC35F2 expression and triggered NOXA-mediated MCL1 degradation in U937, U937/HQ, and HL-60 cells by activating the AKT/NOX4/HuR/ATF4 pathway. The ONC212-induced signaling pathway showed anti-AML activity and enhanced YM155 cytotoxicity.


Assuntos
Imidazóis , Leucemia Mieloide Aguda , Proteína de Sequência 1 de Leucemia de Células Mieloides , Naftoquinonas , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/biossíntese , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Células U937 , Imidazóis/farmacologia , Naftoquinonas/farmacologia , Células HL-60 , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sinergismo Farmacológico , Compostos de Benzil , Compostos Heterocíclicos com 3 Anéis , Sulfonamidas , Compostos Bicíclicos Heterocíclicos com Pontes
7.
Cell Mol Gastroenterol Hepatol ; 17(6): 1039-1061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467191

RESUMO

BACKGROUND & AIMS: The functional maturation of the liver largely occurs after birth. In the early stages of life, the liver of a newborn encounters enormous high-fat metabolic stress caused by the consumption of breast milk. It is unclear how the maturing liver adapts to high lipid metabolism. Liver sinusoidal endothelial cells (LSECs) play a fundamental role in establishing liver vasculature and are decorated with many glycoproteins on their surface. The Slc35a1 gene encodes a cytidine-5'-monophosphate (CMP)-sialic acid transporter responsible for transporting CMP-sialic acids between the cytoplasm and the Golgi apparatus for protein sialylation. This study aimed to determine whether endothelial sialylation plays a role in hepatic vasculogenesis and functional maturation. METHODS: Endothelial-specific Slc35a1 knockout mice were generated. Liver tissues were collected for histologic analysis, lipidomic profiling, RNA sequencing, confocal immunofluorescence, and immunoblot analyses. RESULTS: Endothelial Slc35a1-deficient mice exhibited excessive neonatal hepatic lipid deposition, severe liver damage, and high mortality. Endothelial deletion of Slc35a1 led to sinusoidal capillarization and disrupted hepatic zonation. Mechanistically, vascular endothelial growth factor receptor 2 (VEGFR2) in LSECs was desialylated and VEGFR2 signaling was enhanced in Slc35a1-deficient mice. Inhibition of VEGFR2 signaling by SU5416 alleviated lipid deposition and restored hepatic vasculature in Slc35a1-deficient mice. CONCLUSIONS: Our findings suggest that sialylation of LSECs is critical for maintaining hepatic vascular development and lipid homeostasis. Targeting VEGFR2 signaling may be a new strategy to prevent liver disorders associated with abnormal vasculature and lipid deposition.


Assuntos
Células Endoteliais , Metabolismo dos Lipídeos , Fígado , Camundongos Knockout , Animais , Camundongos , Animais Recém-Nascidos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fígado/metabolismo , Fígado/patologia , Proteínas de Transporte de Nucleotídeos/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
Heliyon ; 10(1): e23828, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187235

RESUMO

Objective: To explore the potential clinical and prognostic significance of Homo sapiens solute carrier family 35 member F2 (SLC35F2) in the context of lung adenocarcinoma (LUAD). Methods: The expression pattern of SLC35F2 in LUAD tissues and normal tissues was analyzed in The Cancer Genome Atlas (TCGA) datasets and validated in 12 pairs of fresh clinical LUAD tissues and their corresponding adjacent normal tissues using quantitative real-time PCR (qRT-PCR) and western blotting. Immunohistochemistry (IHC) was used to assess the protein expression of SLC35F2 in 60 paraffin-embedded LUAD tissues, and its associations with clinicopathological parameters were further examined. The prognostic significance of SLC35F2 mRNA expression was also evaluated using the Kaplan-Meier method, and Cox regression models in LUAD patients from the TCGA database. The potential utility of SLC35F2 as an indicator of recurrence or metastasis was explored through the follow-up of selected clinical LUAD cases. Lastly, gene set enrichment analysis (GSEA) was conducted to investigate the underlying biological mechanisms and signaling pathways. Results: Bioinformatics analysis utilizing the TCGA database indicated that SLC35F2 mRNA exhibited heightened expression in LUAD tissues when compared to normal tissues. These findings were further substantiated through the examination of 12 pairs of clinical LUAD tissues and their corresponding adjacent normal tissues, employing qRT-PCR and western blotting techniques. IHC results from a cohort of 60 LUAD patients demonstrated an up-regulation of SLC35F2 in 38 out of 60 individuals (63.3 %), which exhibited a significant correlation with tumor size, lymph node metastasis, and clinical stage (all P < 0.05). Both the Kaplan-Meier curve and the Cox proportional hazard analyses indicated a strong association between the up-regulation of SLC35F2 mRNA expression and unfavorable overall survival (OS) in patients with LUAD, as observed in the TCGA datasets (P < 0.05). The follow-up findings from select clinical LUAD cases provided evidence that the expression of SLC35F2 could serve as a dependable biomarker for monitoring the recurrence or metastasis. Additionally, the GSEA highlighted the enrichment of apoptosis, adhesion, small cell lung cancer (SCLC), and p53 signaling pathways in the subgroup of LUAD patients with elevated SLC35F2 expression. Conclusion: SLC35F2 exhibited an up-regulated in both mRNA and protein expression, rendering it a valuable independent prognostic indicator for patients diagnosed with LUAD.

9.
Apoptosis ; 29(3-4): 503-520, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38066391

RESUMO

The hypomethylation agent decitabine (DAC), in combination with other apoptosis inducers, is considered a potential modality for cancer treatment. We investigated the mechanism underlying the combined cytotoxicity of DAC and YM155 in acute myeloid leukemia (AML) cells because of increasing evidence that YM155 induces apoptosis in cancer cells. Co-administration of DAC and YM155 resulted in synergistic cytotoxicity in AML U937 cells, which was characterized by the induction of apoptosis, NOXA-dependent degradation of MCL1 and survivin, and depolarization of mitochondria. Restoration of MCL1 or survivin expression attenuated DAC/YM155-induced U937 cell death. DAC initiated AKT and p38 MAPK phosphorylation in a Ca2+/ROS-dependent manner, thereby promoting autophagy-mediated degradation of ß-TrCP mRNA, leading to increased Sp1 expression. DAC-induced Sp1 expression associated with Ten-eleven-translocation (TET) dioxygenases and p300 was used to upregulate the expression of SLC35F2. Simultaneously, the activation of p38 MAPK induced by DAC, promoted CREB-mediated NOXA expression, resulting in survivin and MCL1 degradation. The synergistic cytotoxicity of DAC and YM155 in U937 cells was dependent on elevated SLC35F2 expression. Additionally, YM155 facilitated DAC-induced degradation of MCL1 and survivin. A similar mechanism explained DAC/YM155-mediated cytotoxicity in AML HL-60 cells. Our data demonstrated that the synergistic cytotoxicity of DAC and YM155 in AML cell lines U937 and HL-60 is dependent on AKT- and p38 MAPK-mediated upregulation of SLC35F2 and p38 MAPK-mediated degradation of survivin and MCL1. This indicates that a treatment regimen that amalgamates YM155 and DAC may be beneficial for AML.


Assuntos
Leucemia Mieloide Aguda , Proteínas de Membrana Transportadoras , Naftoquinonas , Humanos , Survivina/genética , Survivina/metabolismo , Apoptose , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Decitabina/farmacologia , Células U937 , Regulação para Cima , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Naftoquinonas/farmacologia , Linhagem Celular Tumoral
10.
Gene ; 898: 148110, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38151177

RESUMO

The treatment of osteosarcoma patients exhibits individual variability, underscoring the critical importance of targeted therapy. Although (Solute carrier family 35 member A2) SLC35A2's role in the progression of various cancers has been extensively investigated, its specific implications in osteosarcoma remain unexplored. Leveraging data from the (The Cancer Genome Atlas) TCGA and (Genotype-Tissue Expression) GTEx databases, we have discerned that SLC35A2 is notably upregulated in osteosarcoma and correlates with the prognosis of osteosarcoma patients. Consequently, it becomes imperative to delve into the role of SLC35A2 in the context of osteosarcoma. Our research substantiates that SLC35A2 exerts a notable influence on mitochondrial autophagy in osteosarcoma, thereby exerting cascading effects on the proliferation, migration, invasion, and apoptosis of osteosarcoma cells. Mechanistically, SLC35A2 orchestrates mitochondrial autophagy via the PI3K/AKT/mTOR signaling pathway. Moreover, we have conducted rigorous animal experiments to further corroborate the repercussions of SLC35A2 on osteosarcoma growth. In summation, our study elucidates that SLC35A2's modulation of mitochondrial autophagy through the PI3K/AKT/mTOR signaling pathway constitutes a pivotal factor in the malignant progression of osteosarcoma, unveiling promising therapeutic targets for patients grappling with this condition.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Mitofagia , Proliferação de Células/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Osteossarcoma/metabolismo , Apoptose/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral
11.
FEBS J ; 291(7): 1483-1505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38143314

RESUMO

Alterations in glycosylation are associated with breast tumor formation and progression. Nevertheless, the specific functions and mechanisms of the human major UDP-galactose transporter-encoding gene solute carrier family 35 member A2 (SLC35A2) in breast invasive carcinoma (BRCA) have not been fully determined. Here, we report that SLC35A2 promotes BRCA progression by activating extracellular signal regulated kinase (ERK). SLC35A2 expression and prognosis-predictive significance in pan-cancer were evaluated using public databases. The upstream non-coding RNAs (ncRNAs) of SLC35A2 were analyzed, and their expression and regulations were validated in breast tissues and cell lines by a quantitative PCR and dual-luciferase assays. We used bioinformatic tools to assess the link between SLC35A2 expression and immune infiltration and performed immunohistochemistry for validation. Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, transwell, flow cytometer and western blotting were used to assess the proliferation, motility, cell cycle and apoptosis of BRCA cells in vitro. The xenograft models were constructed to assess the effect of SLC35A2 on BRCA tumor growth in vivo. The results indicated that SLC35A2 expression was upregulated and linked to an unfavorable prognosis in BRCA. The most likely upstream ncRNA-associated pathway of SLC35A2 in BRCA was the AC074117.1/hsa-let-7b-5p axis. SLC35A2 expression had positive correlations with the presence of Th2 cells, regulatory T cells and immune checkpoints. Knockdown of SLC35A2 could reduce BRCA cell proliferation, motility, and cause G2/M arrest and cell apoptosis via ERK signaling. Moreover, ERK activation can rescue the inhibitory effects of knockdown SLC35A2 in BRCA. In conclusion, AC074117.1/hsa-let-7b-5p axis-mediated high expression of SLC35A2 acts as a tumor promoter in BRCA via ERK signaling, which provides a potential target for BRCA treatment.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/patologia , MAP Quinases Reguladas por Sinal Extracelular , Sistema de Sinalização das MAP Quinases/genética , Apoptose/genética , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo
12.
Mol Syndromol ; 14(6): 498-503, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058750

RESUMO

Introduction: Biallelic variants in the SCL35D1 gene have been originally associated with a severe skeletal dysplasia called "Schneckenbecken dysplasia" because of the resemblance of the pelvic shape to a snail. More recently, SLC35D1 variants have been associated with much milder phenotypes of skeletal dysplasia. Our report describes one such individual with a novel SLC35D1 variant. Case Presentation: A 17-year-old male with a coarse face and short stature was referred to our clinic. On his radiographic imaging, shortness of the long bones and metaphyseal flaring were detected. Using a clinical exome panel, we discovered a novel homozygous missense variant in the SLC35D1 gene, c.899G>T (p.Gly300Val). Conclusions: We identified a biallelic variant that was causative for a mild skeletal dysplasia and showed its phenotypic effects. Our observation confirms the existence of nonlethal skeletal dysplasias associated with biallelic SLC35D1 variants and suggests the existence of a phenotypic spectrum.

13.
Front Physiol ; 14: 1282900, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869713

RESUMO

NF-E2-related factor 2 (Nrf2) plays a crucial role in the oxidative regulatory process, which could trigger hundreds of antioxidant elements to confront xenobiotics. In the previous study, we identified Nrf2 from the marine mussel Mytilus coruscus, and the findings demonstrated that McNrf2 effectively protected the mussels against oxidative stress induced by benzopyrene (Bap). In order to delve deeper into the underlying mechanism, we utilized Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) technology to systematically identify potential novel target genes of McNrf2. A total of 3,465 potential target genes were screened, of which 219 owned binding sites located within the promoter region. During subsequent experimental verification, it was found that McSLC35E2, a candidate target gene of McNrf2, exhibited negative regulation by McNrf2, as confirmed through dual luciferase and qRT-PCR detection. Further, the enzyme activity tests demonstrated that McNrf2 could counteract Bap induced oxidative stress by inhibiting McSLC35E2. The current study provides valuable insights into the application of ChIP-seq technology in the research of marine mollusks, advancing our understanding of the key role of Nrf2 in antioxidant defense mechanisms, and highlighting the significance of SLC35E2 in the highly sophisticated regulation of oxidative stress response in marine invertebrates.

14.
Aging (Albany NY) ; 15(20): 11554-11570, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37889544

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a solid tumor with high morbidity and mortality rates. Accumulating evidence shows that the soluble carrier family 35 member A2 (SLC35A2), a nucleotide sugar transporter, plays a key role in the pathogenesis of various tumors. However, its expression and function in CRC has not been fully elucidated. METHODS: The prognosis-related gene SLC35A2 was obtained using differential analysis, prognosis correlation analysis, and LASSO regression screening. Its expression levels in CRC tissues were analyzed, and so was the relationship of this expression with clinical characteristics of patients. Subsequently, the expression levels were correlated with clinicopathological parameters using immunohistochemical analysis. Analysis based on GO/KEGG databases was used to reveal the potential mechanisms of SLC35A2. Next, we explored the relationship between SLC35A2 and immune cells in CRC tissues. A nomogram was created to help understand the prognosis of CRC patients. Finally, western blotting and qRT-PCR reaction were used to verify the expression of SLC35A2 in CRC cell lines. RESULTS: SLC35A2 expression was upregulated and related to tumor pathological stage and lymph node metastasis, indicating that SLC35A2 is an independent prognostic factor and a potential diagnostic marker for CRC. We verified by IHC, WB and PCR that the expression of SLC35A2 was up-regulated in colorectal cancer tissues and cell lines, and its high expression was related to the tumor pathological stage of CRC clinical samples. CONCLUSIONS: Our study found that SLC35A2 can be used as a biomarker for the diagnosis and prognosis of CRC, providing motivation for further study.


Assuntos
Neoplasias Colorretais , Humanos , Prognóstico , Neoplasias Colorretais/patologia , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
15.
J Inflamm Res ; 16: 3381-3398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593196

RESUMO

Purpose: Elucidation of the oncogenic role of SLC35A2 in human tumors and the potential function and clinical significance in breast cancer. Methods: Pan-cancer analysis was performed via various bioinformatics tools to explain the pathogenic role of SLC35A2. A prognostic nomogram was also developed based on the SLC35A2 expression and clinicopathological characteristics in breast cancer patients. In addition, the role of SLC35A2 was validated in breast cancer by in vivo and in vitro experiments. Results: SLC35A2 expression is increased in 27 tumor types, and its high expression is substantially correlated with poor prognosis in patients with a variety of cancers. Receiver operating characteristic (ROC) curves showed that SLC35A2 expression levels could accurately distinguish most tumor tissues from normal tissues. High SLC35A2 expression was linked to increased immune infiltration in myeloid-derived suppressor cells (MDSC), as well as immune checkpoints, ferroptosis-related genes, tumor mutational burden (TMB), and microsatellite instability (MSI). SLC35A2 may be involved in tumorigenesis by regulating the glycosylation process. Furthermore, multivariate Cox analysis showed that SLC35A2 was an independent prognostic factor for breast cancer. And the nomogram model had good predictive accuracy for the prognosis of breast cancer patients. Meanwhile, cellular experiments demonstrated that knockdown of SLC35A2 could significantly inhibit the proliferation, migration and invasion of breast cancer cells, while increasing the protein level of E-cadherin and decreasing N-cadherin. A nude mouse xenograft model showed that inhibition of SLA35A2 expression could significantly inhibit tumor growth. Conclusion: SLC35A2 has good diagnostic and prognostic values in multiple cancers and is closely related to tumor immune infiltration. In addition, SLA35A2 as an oncogene in breast cancer may be involved in the progression of epithelial mesenchymal transition (EMT).

16.
Int J Biol Macromol ; 250: 125962, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499712

RESUMO

Porcine epidemic diarrhoea (PED) caused by the porcine epidemic diarrhoea virus (PEDV) is the most devastating disease in the global pig industry due to its high mortality rate in piglets. The host factors critical for PEDV replication are poorly understood. Here, we designed a pooled African green monkey genome-scale CRISPR/Cas9 knockout (VeroCKO) library containing 75,608 single guide RNAs targeting 18,993 protein-coding genes. Subsequently, we use the VeroCKO library to identify key host factors facilitating PEDV infection in Vero E6 cells. Several previously unreported genes associated with PEDV infection are highly enriched post-PEDV selection. We discovered that knocking out the tripartite motif 2 (TRIM2) and the solute carrier family 35 member A1 (SLC35A1) inhibited PEDV replication. Virtual screening and molecular docking approaches showed that chem-80,048,685 (M2) s ignificantly inhibited PEDV attachment and late replication by impeding SLC35A1. Furthermore, we found that knocking out SLC35A1 in Vero E6 cells upregulated a disintegrin and metalloprotease protein-17 (ADAM17) by splicing porcine aminopeptidase N (pAPN) and angiotensin-converting enzyme 2 (ACE2) ectodomains to reduce PEDV-infection in a CMP-Sialic Acid (CMP-SA) cell entry-independent manner. These findings provide a new perspective for a better understanding of host-pathogen interactions and new therapeutic targets for PEDV infection.

17.
Front Immunol ; 14: 1155182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275857

RESUMO

Background: Solute carrier family 35 member A2 (SLC35A2), which belongs to the SLC35 solute carrier family of human nucleoside sugar transporters, has shown regulatory roles in various tumors and neoplasms. However, the function of SLC35A2 across human cancers remains to be systematically assessed. Insights into the prediction ability of SLC35A2 in clinical practice and immunotherapy response remains limited. Materials and methods: We obtained the gene expression and protein levels of SLC35A2 in a variety of tumors from Molecular Taxonomy of Breast Cancer International Consortium, The Cancer Genome Atlas, Gene Expression Omnibus, Chinese Glioma Genome Atlas, and Human Protein Atlas databases. The SLC35A2 level was validated by immunohistochemistry. The predictive value for prognosis was evaluated by Kaplan-Meier survival and Cox regression analyses. Correlations between SLC35A2 expression and DNA methylation, genetic alterations, tumor mutation burden (TMB), microsatellite instability (MSI), and tumor microenvironment were performed using Spearman's correlation analysis. The possible downstream pathways of SLC35A2 in different human cancers were explored using gene set variation analysis. The potential role of SLC35A2 in the tumor immune microenvironment was evaluated via EPIC, CIBERSORT, MCP-counter, CIBERSORT-ABS, quanTIseq, TIMER, and xCell algorithms. The difference in the immunotherapeutic response of SLC35A2 under different expression conditions was evaluated by the tumor immune dysfunction and exclusion (TIDE) score as well as four independent immunotherapy cohorts, which includes patients with bladder urothelial carcinoma (BLCA, N = 299), non-small cell lung cancer (NSCLC, N = 72 and N = 36) and skin cutaneous melanoma (SKCM, N = 25). Potential drugs were identified using the CellMiner database and molecular docking. Results: SLC35A2 exhibited abnormally high or low expression in 23 cancers and was significantly associated with the prognosis. In various cancers, SLC35A2 expression and mammalian target of rapamycin complex 1 signaling were positively correlated. Multiple algorithmic immune infiltration analyses suggested an inverse relation between SLC35A2 expression and infiltrating immune cells, which includes CD4+T cells, CD8+T cells, B cells, and natural killer cells (NK) in various tumors. Furthermore, SLC35A2 expression was significantly correlated with pan-cancer immune checkpoints, TMB, MSI, and TIDE genes. SLC35A2 showed significant predictive value for the immunotherapy response of patients with diverse cancers. Two drugs, vismodegib and abiraterone, were identified, and the free binding energy of cytochrome P17 with abiraterone was higher than that of SLC35A2 with abiraterone. Conclusion: Our study revealed that SLC35A2 is upregulated in 20 types of cancer, including lung adenocarcinoma (LUAD), breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), and lung squamous cell carcinoma (LUSC). The upregulated SLC35A2 in five cancer types indicates a poor prognosis. Furthermore, there was a positive correlation between the overexpression of SLC35A2 and reduced lymphocyte infiltration in 13 cancer types, including BRCA and COAD. Based on data from several clinical trials, patients with LUAD, LUSC, SKCM, and BLCA who exhibited high SLC35A2 expression may experience improved immunotherapy response. Therefore, SLC35A2 could be considered a potential predictive biomarker for the prognosis and immunotherapy efficacy of various tumors. Our study provides a theoretical basis for further investigating its prognostic and therapeutic potentials.


Assuntos
Biomarcadores Tumorais , Proteínas de Transporte de Monossacarídeos , Neoplasias , Humanos , Expressão Gênica , Imunoterapia , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Prognóstico , Linfócitos T/imunologia , Resultado do Tratamento , Microambiente Tumoral , Regulação para Cima , Biomarcadores Tumorais/genética
18.
Neurotherapeutics ; 20(5): 1294-1304, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37278968

RESUMO

MOGHE is defined as mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy. Approximately half of the patients with histopathologically confirmed MOGHE carry a brain somatic variant in the SLC35A2 gene encoding a UDP-galactose transporter. Previous research showed that D-galactose supplementation results in clinical improvement in patients with a congenital disorder of glycosylation due to germline variants in SLC35A2. We aimed to evaluate the effects of D-galactose supplementation in patients with histopathologically confirmed MOGHE, with uncontrolled seizures or cognitive impairment and epileptiform activity at the EEG after epilepsy surgery (NCT04833322). Patients were orally supplemented with D-galactose for 6 months in doses up to 1.5 g/kg/day and monitored for seizure frequency including 24-h video-EEG recording, cognition and behavioral scores, i.e., WISC, BRIEF-2, SNAP-IV, and SCQ, and quality of life measures, before and 6 months after treatment. Global response was defined by > 50% improvement of seizure frequency and/or cognition and behavior (clinical global impression of "much improved" or better). Twelve patients (aged 5-28 years) were included from three different centers. Neurosurgical tissue samples were available in all patients and revealed a brain somatic variant in SLC35A2 in six patients (non-present in the blood). After 6 months of supplementation, D-galactose was well tolerated with just two patients presenting abdominal discomfort, solved after dose spacing or reduction. There was a 50% reduction or higher of seizure frequency in 3/6 patients, with an improvement at EEG in 2/5 patients. One patient became seizure-free. An improvement of cognitive/behavioral features encompassing impulsivity (mean SNAP-IV - 3.19 [- 0.84; - 5.6]), social communication (mean SCQ - 2.08 [- 0.63; - 4.90]), and executive function (BRIEF-2 inhibit - 5.2 [- 1.23; - 9.2]) was observed. Global responder rate was 9/12 (6/6 in SLC35A2-positive). Our results suggest that supplementation with D-galactose in patients with MOGHE is safe and well tolerated and, although the efficacy data warrant larger studies, it might build a rationale for precision medicine after epilepsy surgery.


Assuntos
Epilepsia , Galactose , Humanos , Medicina de Precisão , Hiperplasia , Projetos Piloto , Qualidade de Vida , Epilepsia/terapia , Convulsões , Eletroencefalografia/métodos
19.
Cell Mol Gastroenterol Hepatol ; 16(3): 473-495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37192689

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in the United States. Tyrosine sulfation, catalyzed by the tyrosylprotein sulfotransferase 2 (TPST2), is a post-translational modification essential for protein-protein interactions and cellular functions. Solute carrier family 35 member B (SLC35B2) is a key transporter that transports the universal sulfate donor 3'-phosphoadenosine 5'-phosphosulfate into the Golgi apparatus where the protein sulfation occurs. The goal of this study was to determine whether and how the SLC35B2-TPST2 axis of tyrosine sulfation plays a role in PDAC. METHODS: Gene expression was analyzed in PDAC patients and mice. Human PDAC MIA PaCa-2 and PANC-1 cells were used for in vitro studies. TPST2-deficient MIA PaCa-2 cells were generated to assess xenograft tumor growth in vivo. Mouse PDAC cells derived from the KrasLSL-G12D/+;Tp53L/+;Pdx1-Cre (KPC) mice were used to generate Tpst2 knockout KPC cells to evaluate tumor growth and metastasis in vivo. RESULTS: High expressions of SLC35B2 and TPST2 were correlated with poor PDAC patient survival. Knocking down SLC35B2 or TPST2, or pharmacologicically inhibiting sulfation, resulted in the inhibition of PDAC cell proliferation and migration in vitro. TPST2-deficient MIA PaCa-2 cells showed inhibited xenograft tumor growth. Orthotopic inoculation of Tpst2 knockout KPC cells in mice showed inhibition of primary tumor growth, local invasion, and metastasis. Mechanistically, the integrin ß4 was found to be a novel substrate of TPST2. Inhibition of sulfation destabilizes integrin ß4 protein, which may have accounted for the suppression of metastasis. CONCLUSIONS: Targeting the SLC35B2-TPST2 axis of tyrosine sulfation may represent a novel approach for therapeutic intervention of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Tirosina , Integrina beta4/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Transportadores de Sulfato , Proteínas de Membrana/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo
20.
Brain Struct Funct ; 228(3-4): 895-906, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36951990

RESUMO

SLC35F1 is a member of the sugar-like carrier (SLC) superfamily that is expressed in the mammalian brain. Malfunction of SLC35F1 in humans is associated with neurodevelopmental disorders. To get insight into the possible roles of Slc35f1 in the brain, we generated Slc35f1-deficient mice. The Slc35f1-deficient mice are viable and survive into adulthood, which allowed examining adult Slc35f1-deficient mice on the anatomical as well as behavioral level. In humans, mutation in the SLC35F1 gene can induce a Rett syndrome-like phenotype accompanied by intellectual disability (Fede et al. Am J Med Genet A 185:2238-2240, 2021). The Slc35f1-deficient mice, however, display only a very mild phenotype and no obvious deficits in learning and memory as, e.g., monitored with the novel object recognition test or the Morris water maze test. Moreover, neuroanatomical parameters of neuronal plasticity (as dendritic spines and adult hippocampal neurogenesis) are also unaltered. Thus, Slc35f1-deficient mice display no major alterations that resemble a neurodevelopmental phenotype.


Assuntos
Encéfalo , Deficiência Intelectual , Animais , Humanos , Camundongos , Hipocampo , Deficiência Intelectual/genética , Aprendizagem , Mamíferos , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana Transportadoras/genética , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA