Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
J Hepatocell Carcinoma ; 11: 1221-1233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957436

RESUMO

Purpose: Long noncoding RNAs (lncRNAs) might be closely associated with hepatocellular carcinoma (HCC) progression and could serve as diagnostic and prognostic markers. This study aimed to investigate lncRNA-based diagnostic biomarkers for hepatitis B virus (HBV)-associated HCC. Materials and Methods: High-throughput transcriptome sequencing was conducted on the liver tissues of 15 patients with HBV-associated liver diseases (5 with chronic hepatitis B [CHB], 5 with liver cirrhosis [LC], and 5 with HCC). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze lncRNA expressions. Potential diagnostic performance for HBV-associated HCC screening was evaluated. Results: Through trend analysis and functional analysis, we found that 8 lncRNAs were gradually upregulated and 1 lncRNA was progressively downregulated by regulation of target mRNAs and downstream HCC-associated signaling pathways. The validation of dysregulated lncRNAs in peripheral blood mononuclear cells (PBMCs) and HCC tissues by qRT-PCR revealed that ADAMTSL4-AS1, SOCS2-AS1, and AC067931 were significantly increased in HCC compared with CHB and cirrhosis. Moreover, differentially expressed lncRNAs were aberrantly elevated in Huh7, Hep3B, HepG2, and HepG2.215 cells compared with LX2 cells. Furthermore, ADAMTSL4-AS1, SOCS2-AS1, and AC067931 were identified as novel biomarkers for HBV-associated HCC. For distinguishing HCC from CHB, ADAMTSL4-AS1, AC067931, and SOCS2-AS1 combined with alpha-fetoprotein (AFP) had an area under the curve (AUC) of 0.945 (sensitivity, 83.9%; specificity, 89.8%). Similarly, for distinguishing HCC from LC, this combination had an AUC of 0.871 (sensitivity, 91.1%; specificity, 68.2%). Furthermore, this combination showed the highest diagnostic ability to distinguish HCC from CHB and LC (AUC, 0.905; sensitivity, 91.1%; specificity, 75.3%). In particular, this combination identified AFP-negative (AFP < 20 ng/mL) (AUC = 0.814), small (AUC = 0.909), and early stage (AUC = 0.863) tumors. Conclusion: ADAMTSL4-AS1, SOCS2-AS1, and AC067931 combined with AFP in PBMCs may serve as a noninvasive diagnostic biomarker for HBV-associated HCC, especially AFP-negative, small, and early stage HCC.

2.
Mol Biotechnol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775935

RESUMO

The suppressor of cytokine signaling 2 (SOCS2) has been identified to act as a tumor suppressor in breast cancer (BC) progression. However, the action of SOCS2 in macrophage polarization in BC cells has not been reported yet. The qRT-PCR and western blotting were adopted for detecting the levels of mRNAs and proteins. The macrophage M2 polarization was analyzed by flow cytometry. Analyses of cell oncogenic phenotypes and tumor growth were conducted using 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, scratch, Transwell, tube formation assays in vitro, and tumor xenograft assay in vivo, respectively. The interaction between CEBPA (CCAAT Enhancer Binding Protein Alpha) and SOCS2 was confirmed using bioinformatics analysis and dual-luciferase reporter assay. SOCS2 was lowly expressed in BC tissues and cells. Functionally, overexpression of SOCS2 inhibited macrophage M2 polarization, and impaired BC cell proliferation, angiogenesis, and metastasis. Mechanistically, CEBPA bound to the promoter region of SOCS2, and promoted its transcription. A low CEBPA expression was observed in BC tissues and cells. Forced expression of CEBPA also suppressed macrophage M2 polarization, BC cell proliferation, angiogenesis, and metastasis. Moreover, the anticancer effects mediated by CEBPA were abolished by SOCS2 knockdown. In addition, CEBPA overexpression impeded BC growth in nude mice by regulating SOCS2. CEBPA suppressed macrophage M2 polarization, BC cell proliferation, angiogenesis, and metastasis by promoting SOCS2 transcription in a targeted manner.

3.
Immunol Res ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676899

RESUMO

Acute lung injury (ALI) is characterized by acute respiratory failure with tachypnea and widespread alveolar infiltrates, badly affecting patients' health. Desflurane (Des) is effective against lung injury. However, its mechanism in ALI remains unknown. BEAS-2B cells were incubated with lipopolysaccharide (LPS) to construct an ALI cell model. Cell apoptosis was evaluated using flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was employed to examine the levels of inflammatory cytokines. Interactions among let-7b-5p, homeobox A9 (HOXA9), and suppressor of cytokine signaling 2 (SOCS2) were verified using Dual luciferase activity, chromatin immunoprecipitation (ChIP), and RNA pull-down analysis. All experimental data of this study were derived from three repeated experiments. Des treatment improved LPS-induced cell viability, reduced inflammatory cytokine (tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6)) levels, decreased cell apoptosis, down-regulated the pro-apoptotic proteins (Bcl-2-associated X protein (Bax) and cleaved caspase 3) expression, and up-regulated the anti-apoptotic protein B-cell-lymphoma-2 (Bcl-2) expression in LPS-induced BEAS-2B cells. Des treatment down-regulated let-7b-5p expression in LPS-induced BEAS-2B cells. Moreover, let-7b-5p inhibition improved LPS-induced cell injury. let-7b-5p overexpression weakened the protective effects of Des. Mechanically, let-7b-5p could negatively modulate HOXA9 expression. Furthermore, HOXA9 inhibited the NF-κB signaling by enhancing SOCS2 transcription. HOXA9 overexpression weakened the promotion of let-7b-5p mimics in LPS-induced cell injury. Des alleviated LPS-induced ALI via regulating let-7b-5p/ HOXA9/NF-κB axis.

4.
Poult Sci ; 103(6): 103672, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564834

RESUMO

The development of the avian wing pattern has been the subject of heated debate due to its special shape. The Suppressor of cytokine signaling 2 (SOCS2) gene encodes a negative regulator of growth hormone (GH) signaling and bone growth and is known to be strongly expressed in the third digit of chicken forelimbs. These observations suggest that SOCS2 might regulate the morphology of the avian wing, however, the function of SOCS2 in avian limb development remains unknown. Here, we reexamined SOCS2 expression in successive developmental stages of chicken limb development by in situ hybridization (ISH) and describe extended expression from the posterior of the stypolod to the third digit of the forelimbs. We used the RCAS avian retrovirus to overexpress SOCS2 in the developing chicken limb buds, which resulted in reduced or malformed chicken wings while hindlimbs developed normally. Transcriptome sequencing (mRNA-Seq) revealed changes in expression of genes known to be associated with growth and development in forelimbs with overexpressed SOCS2. This study highlights a pivotal role for SOCS2 during the development of the wing in the chicken and provides new insight into molecular mechanisms regulating avian limb development.


Assuntos
Proteínas Aviárias , Galinhas , Proteínas Supressoras da Sinalização de Citocina , Asas de Animais , Animais , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Embrião de Galinha , Asas de Animais/crescimento & desenvolvimento , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Galinhas/crescimento & desenvolvimento , Galinhas/genética , Membro Anterior , Botões de Extremidades/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
5.
Development ; 151(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38391249

RESUMO

Lactation is an essential process for mammals. In sheep, the R96C mutation in suppressor of cytokine signaling 2 (SOCS2) protein is associated with greater milk production and increased mastitis sensitivity. To shed light on the involvement of R96C mutation in mammary gland development and lactation, we developed a mouse model carrying this mutation (SOCS2KI/KI). Mammary glands from virgin adult SOCS2KI/KI mice presented a branching defect and less epithelial tissue, which were not compensated for in later stages of mammary development. Mammary epithelial cell (MEC) subpopulations were modified, with mutated mice having three times as many basal cells, accompanied by a decrease in luminal cells. The SOCS2KI/KI mammary gland remained functional; however, MECs contained more lipid droplets versus fat globules, and milk lipid composition was modified. Moreover, the gene expression dynamic from virgin to pregnancy state resulted in the identification of about 3000 differentially expressed genes specific to SOCS2KI/KI or control mice. Our results show that SOCS2 is important for mammary gland development and milk production. In the long term, this finding raises the possibility of ensuring adequate milk production without compromising animal health and welfare.


Assuntos
Lactação , Glândulas Mamárias Animais , Animais , Feminino , Camundongos , Gravidez , Células Epiteliais/metabolismo , Lactação/genética , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , Mutação/genética
6.
Cell Biol Toxicol ; 40(1): 3, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267746

RESUMO

OBJECTIVE: This study investigated the effect and mechanism of POU6F1 and lncRNA-CASC2 on ferroptosis of gastric cancer (GC) cells. METHODS: GC cells treated with erastin and RSL3 were detected for ferroptosis, reactive oxygen species (ROS) level, and cell viability. The expression levels of POU6F1, lncRNA-CASC2, SOCS2, and ferroptosis-related molecules (GPX4 and SLC7A11) were also measured. The regulations among POU6F1, lncRNA-CASC2, FMR1, SOCS2, and SLC7A11 were determined. Subcutaneous tumor models were established, in which the expressions of Ki-67, SOCS2, and GPX4 were detected by immunohistochemistry. RESULTS: GC patients with decreased expressions of POU6F1 and lncRNA-CASC2 had lower survival rate. Overexpression of POU6F1 or lncRNA-CASC2 decreased cell proliferation and GSH levels in GC cells, in addition to increasing total iron, Fe2+, MDA, and ROS levels. POU6F1 directly binds to the lncRNA-CASC2 promoter to promote its transcription. LncRNA-CASC2 can target FMR1 and increase SOCS2 mRNA stability to promote SLC7A11 ubiquitination degradation and activate ferroptosis signaling. Knockdown of SOCS2 inhibited the ferroptosis sensitivity of GC cells and reversed the effects of POU6F1 and lncRNA-CASC2 overexpression on ferroptosis in GC cells. CONCLUSION: Transcription factor POU6F1 binds directly to the lncRNA-CASC2 promoter to promote its expression, while upregulated lncRNA-CASC2 increases SOCS2 stability and expression by targeting FMR1, thereby inhibiting SLC7A11 signaling to promote ferroptosis in GC cells and inhibit GC progression.


Assuntos
Ferroptose , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Sistema y+ de Transporte de Aminoácidos/genética , Proteína do X Frágil da Deficiência Intelectual , Fatores do Domínio POU , Espécies Reativas de Oxigênio , RNA Longo não Codificante/genética , Transdução de Sinais , Neoplasias Gástricas/genética , Proteínas Supressoras da Sinalização de Citocina
7.
Environ Toxicol ; 39(3): 1283-1293, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948135

RESUMO

BACKGROUND: Nonsmall-cell lung cancer (NSCLC) has emerged as one of the dreadful lung cancers globally due to its increased mortality rates. Concerning chemotherapy, gefitinib has been employed as an effective first-line treatment drug for NSCLC. Nonetheless, the acquired resistance to gefitinib has remained one of the treatment obstacles of NSCLC, requiring improvement in the therapeutic effect of gefitinib. METHODS: Initially, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and Western blotting (WB) analyses were conducted to measure micro-ribose nucleic acid (miRNA, specifically miR-578) and suppressor of cytokine signaling 2 (SOCS2) levels in the clinical samples. Further, NSCLC cell lines resistance to gefitinib, established in vitro, were transfected by miR-578 inhibitor, miR-578 mimic, and si-SOCS2. Similarly, the xenograft mouse model in vivo was constructed to validate the reversing effect of miR-578. RESULTS: Our findings indicated the increased miR-578 expression levels in the gefitinib resistance group. Further, inhibiting the miR-578 expression substantially reversed the gefitinib resistance. In addition, the miR-578 effect was modulated via the SOCS2 expression level. The decreased gefitinib resistance effect of miR-578 was weakened by inhibiting the SOCS2 expression. CONCLUSION: These findings demonstrated that miR-578 effectively abolished gefitinib resistance by regulating the SOCS2 expression within NSCLC cells in vitro and in vivo. Together, these results will undoubtedly support a reference to provide potential molecular therapeutic targets and clinical treatments for treating NSCLC patients.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Animais , Camundongos , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Antineoplásicos/farmacologia , Proliferação de Células , Proteínas Supressoras da Sinalização de Citocina
8.
Geroscience ; 46(2): 2583-2604, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38103096

RESUMO

DNA methylation (DNAm) clocks hold promise for measuring biological age, useful for guiding clinical interventions and forensic identification. This study compared the commonly used DNAm clocks, using DNA methylation and SNP data generated from nearly 1000 human blood or buccal swab samples. We evaluated different preprocessing methods for age estimation, investigated the association of epigenetic age acceleration (EAA) with various lifestyle and sociodemographic factors, and undertook a series of novel genome-wide association analyses for different EAA measures to find associated genetic variants. Our results highlighted the Skin&Blood clock with ssNoob normalization as the most accurate predictor of chronological age. We provided novel evidence for an association between the practice of yoga and a reduction in the pace of aging (DunedinPACE). Increased sleep and physical activity were associated with lower mortality risk score (MRS) in our dataset. University degree, vegetable consumption, and coffee intake were associated with reduced levels of epigenetic aging, whereas smoking, higher BMI, meat consumption, and manual occupation correlated well with faster epigenetic aging, with FitAge, GrimAge, and DunedinPACE clocks showing the most robust associations. In addition, we found a novel association signal for SOCS2 rs73218878 (p = 2.87 × 10-8) and accelerated GrimAge. Our study emphasizes the importance of an optimized DNAm analysis workflow for accurate estimation of epigenetic age, which may influence downstream analyses. The results support the influence of genetic background on EAA. The associated SOCS2 is a member of the suppressor of cytokine signaling family known for its role in human longevity. The reported association between various risk factors and EAA has practical implications for the development of health programs to improve quality of life and reduce premature mortality associated with age-related diseases.


Assuntos
Yoga , Humanos , Café , Estudo de Associação Genômica Ampla , Qualidade de Vida , Envelhecimento/genética , Sono/genética , Carne , Epigênese Genética , Proteínas Supressoras da Sinalização de Citocina
9.
Cancer Lett ; 579: 216465, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38084702

RESUMO

Lung cancer is a highly heterogeneous malignancy, and despite the rapid development of chemotherapy and radiotherapy, acquired drug resistance and tumor progression still occur. Thus, it is urgent to identify novel therapeutic targets. Our research aims to screen novel biomarkers associated with the prognosis of lung carcinoma patients and explore the potential regulatory mechanisms. We obtained RNA sequencing (RNA-seq) data of lung cancer patients from public databases. Clinical signature analysis, weighted gene coexpression network analysis (WGCNA) and the random forest algorithm showed that C1q/tumor necrosis factor-related protein-6 (CTRP6) is a core gene related to lung cancer prognosis, and it was determined to promote tumor proliferation and metastasis both in vivo and in vitro. Mechanistically, silencing CTRP6 was determined to promote xCT/GPX4-involved ferroptosis through functional assays related to lipid peroxidation, Fe2+ concentration and mitochondrial ultrastructure. By performing interactive proteomics analyses in lung tumor cells, we identified the interaction between CTRP6 and suppressor of cytokine signaling 2 (SOCS2) leading to SOCS2 ubiquitination degradation, subsequently enhancing the downstream xCT/GPX4 signaling pathway. Moreover, significant correlations between CTRP6-mediated SOCS2 and ferroptosis were revealed in mouse models and clinical specimens of lung cancer. As inducing ferroptosis has been gradually regarded as an alternative strategy to treat tumors, targeting CTRP6-mediated ferroptosis could be a potential strategy for lung cancer therapy.


Assuntos
Ferroptose , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Adipocinas/metabolismo , Ferroptose/genética , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Prognóstico , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/metabolismo
10.
Precis Clin Med ; 6(4): pbad027, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37955014

RESUMO

Introduction: Hepatoblastoma (HB) is a malignant liver tumor predominantly found in children and tumor metastasis is one of the main causes of poor prognosis in affected patients. The precise molecular mechanisms responsible for HB metastasis remain incompletely understood. However, there is evidence suggesting a connection between the dysregulation of microRNAs (miRNAs) and the progression of tumor metastasis in HB. Methods: The study utilized weighted gene co-expression network analysis (WGCNA) to analyze a miRNA microarray dataset of HB. The expression of miR-181b-5p in HB tissues and cells was detected using quantitative real-time PCR. The impact of miR-181b-5p on the metastatic capacity of HB was evaluated through scratch and Transwell assays. The effects of exogenously expressing miR-181b on the metastatic phenotypes of HB cells were evaluated in vivo. Furthermore, a luciferase reporter assay was performed to validate a potential target of miR-181b-5p in HB. Results: We found that miR-181b-5p was highly expressed in HB tissues and HB cell lines. Overexpression of miR-181b enhanced scratch healing, cell migration, and invasion abilities in vitro, as well as enhancing HB lung metastasis potential in vivo. Dual-luciferase reporter assays showed that Suppressor Of Cytokine Signaling 2 (SOCS2) was a direct target of miR-181b. The overexpression of miR-181b resulted in the suppression of SOCS2 expression, subsequently activating the epithelial-mesenchymal transition and JAK2/STAT5 signaling pathways. The rescue experiment showed that SOCS2 overexpression attenuated the effects of miR-181b on HB cells. Conclusion: Our study showed that miR-181b promotes HB metastasis by targeting SOCS2 and may be a potential therapeutic target for HB.

11.
Biochem Biophys Res Commun ; 679: 98-109, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37677983

RESUMO

BACKGROUND: Cancer stem cells are one fundamental reason for the high recurrence rate of hepatocellular carcinoma (HCC) and its resistance to treatment. This study explored the mechanism by which SOCS2-AS1 affects HCC cell stemness. METHODS: Stem cells of HCC cell lines Huh7 and SNU-398 were sorted as NANOG-positive by flow cytometry. Stem cell sphere formation ability was detected. Stem cell viability, migration, invasion, and apoptosis were assessed by colony formation assays, Transwell assays, wound-healing assays, and TUNEL assays, respectively. The binding sites for SOCS2-AS1, miR-454-3p, miR-454-3p, and CPEB1 mRNA were assessed by dual-luciferase reporter assays. Quantitative real-time PCR (qPCR) and Western blot studies were performed to evaluate gene expression levels. ChIP and EMSA assays were conducted to confirm that YY1 binds with the SOCS2-AS1 promoter. A subcutaneous xenograft model was used to verify results in vivo. Tumor tissues were analyzed by H&E and TUNEL staining. RESULTS: SOCS2-AS1 was expressed at low levels in NANOG+ HCC stem cells, and HCC patients with a high level of SOCS2-AS1 expression had a higher survival rate. SOCS2-AS1 inhibited HCC cell stemness, migration, and invasion, and increased the cisplatin sensitivity of HCC cells by regulating miR-454-3p/CPEB1. YY1 was confirmed as a transcription factor of SOCS2-AS1, and served to inhibit SOCS2-AS1 transcription. YY1 knockdown suppressed HCC stemness via SOCS2-AS1. The role of SOCS2-AS1 was confirmed in a subcutaneous xenograft model, and SOCS2-AS1 overexpression enhanced the inhibitory effect of cisplatin on HCC in vivo. CONCLUSIONS: YY1-regulated lncRNA SOCS2-AS1 suppresses HCC cell stemness and progression via miR-454-3p/CPEB1.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cisplatino , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/patologia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Movimento Celular/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-37594110

RESUMO

OBJECTIVE: SOCS2 is a member of the suppressor of cytokine signaling (SOCS) protein family associated with the occurrence and development of multiple cancers. This study revealed the expression and molecular mechanisms of SOCS2 in cervical cancer. METHODS: In this study, RT-qPCR, Western Blot, and immunohistochemistry were used to detect the expression level of SOCS2 in cervical cancer tissues and tumor cells. We overexpressed SOCS2 in SiHa cells via lentivirus. In-vitro experiments were used to investigate the changes in cervical cancer cell proliferation, migration, and invasion ability before and after SOCS2 overexpression. Western Blot was used to detect the expression of IL-6/JAK2/STAT3 pathway and EMT-related proteins. M0 macrophages were co-cultured with the tumor-conditioned medium. The effect of SOCS2 on macrophage polarization was examined by RT-qPCR. RESULTS: SOCS2 expression level was significantly downregulated in cervical cancer tissues. SOCS2 was negatively correlated with CD163+M2 macrophages. Overexpression of SOCS2 inhibited the proliferation, migration, and invasion of cervical cancer cells. The expressions of Twist-2, N-cadherin, and Vimentin were decreased, while the expression of E-cadherin was increased. Moreover, the expression of IL-6, p-JAK2, and p-STAT3 were decreased. After the addition of RhIL-6, the expression of E-cadherin protein in the LV-SOCS2 group was reversed. CM in the LV-SOCS2 group inhibited the polarization of M2 macrophages. CONCLUSION: SOCS2 acts as a novel biological target and suppressor of cervical cancer through IL-6/JAK2/STAT3 pathway.

13.
Exp Ther Med ; 26(2): 370, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37415839

RESUMO

Suppressor of cytokine signaling 2 (SOCS2) plays an essential role in a number of physiological phenomena and functions as a tumor suppressor. Understanding the predictive effects of SOCS2 on non-small cell lung cancer (NSCLC) is urgently needed. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to assess SOCS2 gene expression levels in NSCLC. The clinical significance of SOCS2 was evaluated through Kaplan-Meier curve analysis and the analysis of related clinical factors. Gene Set Enrichment Analysis (GSEA) was used to identify the biological functions of SOCS2. Subsequently proliferation, wound-healing, colony formation and Transwell assays, and carboplatin drug experiments were used for verification. The results revealed that SOCS2 expression was low in the NSCLC tissues of patients in TCGA and GEO database analyses. Downregulated SOCS2 was associated with poor prognosis, as determined by Kaplan-Meier survival analysis (HR 0.61, 95% CI 0.52-0.73; P<0.001). GSEA showed that SOCS2 was involved in intracellular reactions, including epithelial-mesenchymal transition (EMT). Cell experiments indicated that knockdown of SOCS2 caused the malignant progression of NSCLC cell lines. Furthermore, the drug experiment showed that silencing of SOCS2 promoted the resistance of NSCLC cells to carboplatin. In conclusion, low expression of SOCS2 was associated with poor clinical prognosis by effecting EMT and causing drug resistance in NSCLC cell lines. Furthermore, SOCS2 could act as a predictive indicator for NSCLC.

14.
Biochem Biophys Res Commun ; 669: 95-102, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37267865

RESUMO

Long noncoding RNAs (lncRNAs) have been shown to contribute to tumorigenesis and cancer progression. However, neither the dysregulation nor the functions of anti-sense lncRNAs in papillary thyroid carcinoma (PTC) have been exhaustively studied. In this study, we accessed The Cancer Genome Atlas (TCGA) database and discovered that the natural antisense lncRNA SOCS2-AS1 is highly expressed in PTC and that patients with a higher level of SOCS2-AS1 had a poor prognosis. Furthermore, loss- and gain-function assays demonstrated that SOCS2-AS1 promotes PTC cell proliferation and growth both in vitro and in vivo. In addition, we demonstrated that SOCS2-AS1 regulates the rate of fatty acid oxidation (FAO) in PTC cells. Analysis of the mechanism revealed that SOCS2-AS1 binds to p53 and controls its stability in PTC cell lines. Overall, our findings showed that the natural antisense lncRNA SOCS2-AS1 stimulates the degradation of p53 and enhances PTC cell proliferation and the FAO rate.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , RNA Longo não Codificante/genética , Neoplasias da Glândula Tireoide/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , RNA Antissenso/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , MicroRNAs/genética , Movimento Celular/genética , Proteínas Supressoras da Sinalização de Citocina/genética
15.
Inflamm Res ; 72(4): 859-873, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36912916

RESUMO

INTRODUCTION: The role of suppressor of cytokine signaling 2 (SOCS2) in Aggregatibacter actinomycetemcomitans (Aa)-induced alveolar bone loss is unknown; thus, it was investigated in this study. METHODS: Alveolar bone loss was induced by infecting C57BL/6 wild-type (WT) and Socs2-knockout (Socs2-/-) mice with Aa. Bone parameters, bone loss, bone cell counts, the expression of bone remodeling markers, and cytokine profile were evaluated by microtomography, histology, qPCR, and/or ELISA. Bone marrow cells (BMC) from WT and Socs2-/- mice were differentiated in osteoblasts or osteoclasts for analysis of the expression of specific markers. RESULTS: Socs2-/- mice intrinsically exhibited irregular phenotypes in the maxillary bone and an increased number of osteoclasts. Upon Aa infection, SOCS2 deficiency resulted in the increased alveolar bone loss, despite decreased proinflammatory cytokine production, in comparison to the WT mice. In vitro, SOCS2 deficiency resulted in the increased osteoclasts formation, decreased expression of bone remodeling markers, and proinflammatory cytokines after Aa-LPS stimulus. CONCLUSIONS: Collectively, data suggest that SOCS2 is a regulator of Aa-induced alveolar bone loss by controlling the differentiation and activity of bone cells, and proinflammatory cytokines availability in the periodontal microenvironment and an important target for new therapeutic strategies. Thus, it can be helpful in preventing alveolar bone loss in periodontal inflammatory conditions.


Assuntos
Perda do Osso Alveolar , Doenças Periodontais , Camundongos , Animais , Perda do Osso Alveolar/genética , Aggregatibacter actinomycetemcomitans/metabolismo , Camundongos Endogâmicos C57BL , Doenças Periodontais/metabolismo , Osteoclastos/metabolismo , Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo
16.
Biomed Pharmacother ; 157: 114060, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36455458

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers worldwide, but the precise intracellular mechanisms underlying the progression of this inflammation associated cancer are not well established. SOCS2 protein plays an important role in the carcinogenesis of different tumors by regulating cytokine signalling through the JAK/STAT axis. However, its role in HCC is unclear. Here, we investigate the role of SOCS2 in HCC progression and its potential as HCC biomarker. The effects of SOCS2 in HCC progression were evaluated in an experimental model of diethylnitrosamine (DEN)-induced HCC in C57BL/6 and SOCS2 deficient mice, in cultured hepatic cells, and in liver samples from HCC patients. Mice lacking SOCS2 showed higher liver tumor burden with increased malignancy grade, inflammation, fibrosis, and proliferation than their controls. Protein and gene expression analysis reported higher pSTAT5 and pSTAT3 activation, upregulation of different proteins involved in survival and proliferation, and increased levels of proinflammatory and pro-tumoral mediators in the absence of SOCS2. Clinically relevant, downregulated expression of SOCS2 was found in neoplasia from HCC patients compared to healthy liver tissue, correlating with the malignancy grade. In summary, our data show that lack of SOCS2 increases susceptibility to chemical-induced HCC and suggest the tumor suppressor role of this protein by regulating the oncogenic and inflammatory responses mediated by STAT5 and STAT3 in the liver. Hence, SOCS2 emerges as an attractive target molecule and potential biomarker to deepen in the study of HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Camundongos Endogâmicos C57BL , Proliferação de Células , Dietilnitrosamina/toxicidade , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo
17.
Biosci Rep ; 42(12)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36398696

RESUMO

Suppressor of cytokine signaling (SOCS) 2 is the critical negative regulator of growth hormone (GH) and prolactin signaling. Mice lacking SOCS2 display gigantism with increased body weight and length, and an enhanced response to GH treatment. Here, we characterized mice carrying a germ-line R96C mutation within the SOCS2-SH2 domain, which disrupts the ability of SOCS2 to interact with tyrosine-phosphorylated targets. Socs2R96C/R96C mice displayed a similar increase in growth as previously observed in SOCS2 null (Socs2-/-) mice, with a proportional increase in body and organ weight, and bone length. Embryonic fibroblasts isolated from Socs2R96C/R96C and Socs2-/- mice also showed a comparable increase in phosphorylation of STAT5 following GH stimulation, indicating the critical role of phosphotyrosine binding in SOCS2 function.


Assuntos
Hormônio do Crescimento , Fosfotirosina , Proteínas Supressoras da Sinalização de Citocina , Animais , Camundongos , Hormônio do Crescimento/metabolismo , Fosfotirosina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Camundongos Mutantes , Transdução de Sinais , Mutação em Linhagem Germinativa
18.
J Pers Med ; 12(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35887537

RESUMO

There is strong evidence for an association between major depressive disorder (MDD) and inflammation. However, some studies have not observed an increase in inflammatory cytokines in MDD, and the mechanism behind this is unknown. In the present study, we evaluated MDD severity using the Montgomery-Åsberg Depression Rating Scale (MADRS) and quantified mRNA levels of the blood inflammatory cytokines interleukin (IL) 1ß, IL-6 and tumor necrosis factor alpha (TNF-α), as well as negative regulators of cytokine signaling-comprising IL-10, IL-1RA, SOCS1, SOCS2 and SOCS3-in MDD patients (n = 36), with a focus on mild MDD, and normal controls (NC, n = 30). We also measured the serum levels of IL-1ß and IL-6. Neither the blood mRNA nor the protein levels of inflammatory cytokines were significantly elevated in the MDD group compared with the NC group. However, we observed significant decreases in SOCS1, SOCS2 and SOCS3 mRNA in the MDD group compared to the NC group. A significant finding was a decrease in SOCS3 mRNA after remission from MDD, suggesting that SOCS3 is a trait marker in depressive symptoms. We consider that our findings would be useful in elucidating the pathophysiological mechanism of depression.

19.
J Transl Med ; 20(1): 326, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864511

RESUMO

BACKGROUND: Our previous study has identified a novel circRNA (circDIDO1) that is down-regulated in gastric cancer (GC) and significantly inhibits GC progression. The purpose of this study is to identify the molecular mechanism for circDIDO1 and to evaluate the therapeutic effect of circDIDO1 in GC. METHODS: By combining bioinformatic analysis with RNA sequencing data, we predicted the potential target of circDIDO1 and further validated the regulatory mechanisms for its tumor suppressor function in GC. RIP assay, luciferase reporter assay and in vitro cell function assays were performed to analyze circDIDO1-regulated downstream target genes. For the therapeutic study, circDIDO1-loaded, RGD-modified exosomes (RGD-Exo-circDIDO1) were constructed and its anti-tumor efficacy and biological safety were evaluated in vitro and in vivo. RESULTS: CircDIDO1 inhibited GC progression by regulating the expression of the signal transducer inhibitor SOSC2 through sponging miR-1307-3p. Overexpression of circDIDO1 or SOSC2 antagonized the oncogenic role of miR-1307-3p. RGD-Exo-circDIDO1 could efficiently deliver circDIDO1 to increase SOCS2 expression in GC cells. Compared with PBS and RGD-Exo-vector treatment, RGD-Exo-circDIDO1 treatment significantly inhibited the proliferation, migration and invasion of GC cells while promoted cell apoptosis. The therapeutic efficacy of RGD-Exo-circDIDO1 was further confirmed in a mouse xenograft tumor model. In addition, major tissues including the heart, liver, spleen, lungs and kidneys showed no obvious histopathological abnormalities or lesions in the RGD-Exo-circDIDO1 treated group. CONCLUSION: Our findings revealed that circDIDO1 suppressed the progression of GC via modulating the miR-1307-3p/SOSC2 axis. Systemic administration of RGD modified, circDIDO1 loaded exosomes repressed the tumorigenicity and aggressiveness of GC both in vitro and in vivo, suggesting that RGD-Exo-circDIDO1 could be used as a feasible nanomedicine for GC therapy.


Assuntos
Exossomos , MicroRNAs , Neoplasias Gástricas , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Oligopeptídeos , Neoplasias Gástricas/patologia , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo
20.
Saudi J Biol Sci ; 29(8): 103348, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35800143

RESUMO

Hepatocellular carcinoma (HCC), a leading cause of cancer related deaths is predominantly driven by chronic inflammatory responses. Due to asymptomatic nature and lack of early patient biopsies, precise involvement of inflammation in hepatic injury initiation remains unidentified. Aim of the study was to elucidate the regulation patterns of inflammatory signalling from initiation of hepatic injury to development of HCC. HCC mice model was established using DEN followed by repeated doses of CCl4 and sacrificed at three different stages of disease comprising 7, 14 and 21 weeks. Serum biochemical tests, hepatic lipids quantification, histopathology and qPCR analyses were conducted to characterize the initiation and progression of liver injury and inflammatory signalling. Notably, at 7 weeks, we observed hepatocyte damage and periportal necrotic bodies coupled with induction of Socs2/Socs3 and anti-inflammatory cytokine Il-10. At 14 weeks, mice liver showed advancement of liver injury with micro-vesicular steatosis and moderate collagen deposition around portal zone. With progression of injury, the expression of Socs3 was declined with further reduction of Il-10 and Tgf-ß indicating the disturbance of anti-inflammatory mechanism. In contrast, pro-inflammatory cytokines Il1-ß, Il6 and Tnf-α were upregulated contributing inflammation. Subsequently, at 21 weeks severe liver damage was estimated as characterized by macro-vesicular steatosis, perisinusoidal collagen bridging, immune cell recruitment and significant upregulation of Col-1α and α-Sma. In parallel, there was significant upregulation of pro/anti-inflammatory cytokines highlighting the commencement of chronic inflammation. Findings of the study suggest that differential regulation of cytokine suppressors and inflammatory cytokines might play role in the initiation and progression of hepatic injury leading towards HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA