Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.830
Filtrar
1.
Heliyon ; 10(18): e37700, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39364237

RESUMO

Pheretima is a popular healthy food, but Pheretima and related foods have specific stenchy odor, especially after decocting or warm soaking, the odor is intense, resulting in nausea and vomiting. This indicates that the release of stenchy odor components is intensified when Pheretima was exposed to hot water. It is urgent to study the composition and release pattern of the stenchy odor components of Pheretima. In this study, a series of samples with different odors were prepared by the combination of SFE-CO2 and warm soaking. The results showed that the fishy and smoky odor of Pheretima were heavier, attributed to the components such as dimethyl trisulfide, TMA, and guaiacol. When Pheretima was exposed to hot water, the fishy odor increased sharply. Dimethyl trisulfide and TMA were the key odor components, especially the exposure of TMA increased by 2∼3 times after warm soaking. The volatilization rate of n-hexanal, TMA, dimethyl trisulfide and other components was found to be highly volatile, and the volatilization rate at 75 °C was 2.5 times that at room temperature. This study proved for the first time that stenchy odor substances include two categories: water-soluble and liposoluble. And found that the water-soluble odor components accelerate their exposure and volatilization in warm water, which is the scientific principle of "Pheretima smells worse exposed to water".

2.
J Sep Sci ; 47(19): e202400305, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39363479

RESUMO

The distinctive aroma of onions, consisting primarily of sulfur-containing compounds, is one of the reasons for the popularity of the vegetable. The rapid enzymatic and chemical reactions that occur after the destruction of onion bulb tissue render the analysis of the volatile profile challenging. Therefore, sample preparation is a crucial step in the analysis of the onion volatilome, but it often does not receive the necessary attention in the literature. In this work, we focused on two aspects: Firstly, we compared different sample preparation approaches to maximize the volatile yield and to enable the description of the onion volatile profile as it would emerge after a solid-phase microextraction (SPME) Arrow sampling procedure. For headspace (HS)-gas chromatography-mass spectrometry analysis, onion juice with the addition of an ammonium sulfate solution proved to be the best option. Secondly, we optimized the HS sampling and desorption parameters (enrichment time, enrichment temperature, agitator speed, desorption time) for onion volatiles using the efficient design of experiments (DoE) approach. The optimal conditions for the analysis with HS-SPME Arrow were an enrichment time of 75 min at 60°C with an agitator speed of 713 rpm and a desorption time of 120 s.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Cebolas , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Microextração em Fase Sólida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cebolas/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/isolamento & purificação , Compostos Orgânicos Voláteis/química
3.
Biol Open ; 13(10)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39351636

RESUMO

Tumours induce changes in body odours. We compared volatile organic compounds (VOCs) in soiled bedding of a lung adenocarcinoma male mouse model in which cancer had (CC) versus had not (NC) been induced by doxycycline at three conditions: before (T0), after 2 weeks (T2; early tumour development), after 12 weeks (T12; late tumour development) of the induction. In an earlier study, wild-derived mice behaviourally discriminated between CC and NC soiled bedding at T2 and T12. Here, we sought to identify VOCs present in the same soiled bedding that could have triggered the behavioural discrimination. Solid phase micro-extraction was performed to extract VOCs from 3 g-sample stimuli. While wild-derived mice could discriminate the odour of cancerous mice at a very early stage of tumour development (T2), the present study did not identify VOCs that could explain this behaviour. However, consistent with the earlier behavioural study, four VOCs, including two well-known male mouse sex pheromones, were found to be present in significantly different proportions in soiled bedding of CC as compared to NC at T12. We discuss the potential involvement of non-volatile molecules such as proteins and peptides in behavioural discrimination of early tumour development (T2), and point-out VOCs that could help diagnose cancer.


Assuntos
Comportamento Animal , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/metabolismo , Camundongos , Masculino , Odorantes/análise , Modelos Animais de Doenças , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Roupas de Cama, Mesa e Banho
4.
J Sci Food Agric ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297404

RESUMO

BACKGROUND: The present study focuses on the aroma and secondary metabolites profiling of three Pelargonium graveolens cultivars, baladi (GRB), sondos (GRS) and shish (GRSH), grown in Egypt. Utilizing a multiplex approach combining high resolution-ultraperformance liquid chromatography (HR-UPLC)/tandem mass spectrometry (MS/MS) and gas chromatography (GC)-MS coupled with chemometrics, the study aims to identify and profile various secondary metabolites and aroma compounds in these cultivars. RESULTS: HR-UPLC/MS/MS analysis led to the annotation of 111 secondary metabolites, including phenolics, flavonoids, terpenes and fatty acids, with several compounds being reported for the first time in geranium. Multivariate data analysis identified vinylanisole, dimethoxy-flavonol, and eicosadienoic acid as discriminatory metabolites among the cultivars, particularly distinguishing the GRS cultivar in its phenolics profile. In total, 34 aroma compounds were detected using headspace solid-phase microextraction coupled with GC-MS, including alcohols, esters, ketones, ethers and monoterpene hydrocarbons. The major metabolites contributing to aroma discrimination among the cultivars were ß-citronellol in GRB, α-farnesene in GRS and isomenthone in GRSH. CONCLUSION: The study provides a comprehensive profiling of the secondary metabolites and aroma compounds in the three Pelargonium graveolens cultivars. The GRS cultivar was identified as particularly distinct in both its phenolics and aroma profiles, suggesting its potential as a premium variety for cultivation and use. Future studies should focus on isolating and investigating the newly detected metabolites and exploring the biological effects of these compounds in food applications and other uses. © 2024 Society of Chemical Industry.

5.
Curr Res Food Sci ; 9: 100848, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39319112

RESUMO

Walnut oil oxidizes and becomes rancid during storage, that could be significantly affecting flavor and quality. This study aimed to monitor the volatile compounds present in walnut oil during storage, identify the characteristic markers of walnut oil at different oxidation levels, and establish a correlation network analysis based on the relationship between the olfactory analyzer and the characteristic markers to understand their correlation. The results indicated that the oxidation level of walnut oil had a positive correlation with the response of the olfactory analyzer. 219 volatile compounds were identified in walnut oil, with 89 identified as key volatile compounds (VIP >1). Among these, compounds such as (E, E)-2,4-decadienal (6.10%-23.04%),(E, E)-2,4-heptadienal (2.23%-13.61%),(E)-2-octenal (0.95%-11.71%), hexanoic acid (1.63%-4.30%),1-octen-3-ol (2.53%-19.01%),(Z)-2-heptenal (5.95%-25.01%),2,3-dihydro-furan (1.08%-3.20%),2-pentyl-furan (0.13%-0.54%), pyrazine (0.33%-1.32%), hexanal (24.52%-1.33%),3-hethylbutylacetate (12.44%-1.29%), 2-methyl butyl acetate (7.74%-1.56%) and ethenyl hexanoate (4.39%-0.41%) were found to be characteristic volatile compounds in the oxidation process of walnut oil. Furthermore, the correlation network analysis revealed a strong correlation between the olfactory analyzer sensors and the characteristic volatile compounds. The findings of this study can provide valuable data for the development of rapid determination of the oxidation level of walnut oil.

6.
Front Plant Sci ; 15: 1439087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39246814

RESUMO

This study explores the role of floral volatile organic compounds (FVOCs) in insect behavior, focusing on Aquilaria sinensis (AS), a valuable tropical plant threatened by Heortia vitessoides Moore. Despite H. vitessoides' attraction to AS and non-host plants like Elaeocarpus decipiens (ED) and Dalbergia odorifera (DO), little is known about their chemical interactions. FVOCs from these plants were analyzed at 9:00 and 18:00 using GC×GC-QTOF-MS and HS-SPME. The results showed that ED exhibiting the highest concentration (92.340 ng/mg), followed by DO (75.167 ng/mg) and AS (64.450 ng/mg). Through GC-EAD and EAG, a total of 11 FVOC compounds with electrophysiological activates were identified. These compounds, except linalool, showed dose-dependent responses. Y-Tube bioassays confirmed phenylethyl alcohol or the mixture of EAD-active compounds produced positive chemotactic responses in both males and females. FVOCs have the potential to be used as a natural and sustainable alternative to chemical insecticides in pest control.

7.
MethodsX ; 13: 102914, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39253006

RESUMO

This review critically assesses the determination of low molecular weight volatiles by different methods, providing context for the development of suitable techniques to determine volatile content in plant tissue and soil samples as well as the associated analytical challenges. Although sensitive analytical methods have been reported in recent decades, studies on their application in modern investigative techniques are lacking. Herein, the latest sampling methods in volatile biochemistry, current advancements in the understanding of these analytes, and the significance of these findings for other types of volatiles are summarized. Gas chromatography, high-performance liquid chromatography, ion chromatography, thin-film microextraction, and real-time monitoring techniques are discussed and critically determined. This review concerns the methods most suitable for future research in this area.

8.
Curr Res Food Sci ; 9: 100819, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234276

RESUMO

Edible wild mushrooms are one of the popular ingredients due to their high quality and unique flavor and nutrients. To gain insight into the effect of drying temperature on its composition, 86 Boletus bainiugan were divided into 5 groups and dried at different temperatures. Headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used for the identification of volatile organic compounds (VOCs) of Boletus bainiugan. The 21 differential VOCs that distinguish different drying temperatures of Boletus bainiugan were identified. 65 °C retained more VOCs. There were differences in their types and content at different temperatures, proteins, polysaccharides, crude fibers, and fats. Fourier transform near-infrared (FT-NIR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and two-dimensional correlation spectroscopy (2DCOS) images were successfully characterized for differences in the chemical composition of Boletus bainiugan. Partial least squares discriminant analysis (PLS-DA) verified the variability in the chemical composition of Boletus bainiugan with the coefficient of determination (R2) = 0.95 and predictive performance (Q2) = 0.75 with 92.31% accuracy. Next, infrared spectroscopy provides a fast and efficient assessment of the content of Boletus bainiugan nutrients (proteins, polysaccharides, crude fibers, and fats).

9.
Food Chem ; 463(Pt 1): 141112, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39255699

RESUMO

This work aimed to investigate the effects of frozen storage on volatile compounds of white meats (chicken and duck) and red meats (pork, beef, and mutton). The samples were stored at -18 °C for 0, 2, 4, 10, 18 weeks, and volatile compounds were analyzed by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Results indicated that the total amounts of volatile compounds increased with frozen storage duration of meats. The correlations were observed between frozen storage duration and levels of 2-ethyl-1-hexanol, tetradecane, nonanal, decanal, octanal, tridecanal, benzaldehyde, pentadecane, propanoic acid,2-methyl-,3-hydroxy-2,2,4-trimethylpentyl ester, heptadecane, and hexanal (r = 0.7456-0.9873). Levels of octanal and propanoic acid,2-methyl-,3-hydroxy-2,2,4-trimethylpentyl ester in white meat and benzaldehyde in red meat versus frozen storage duration fitted very well with zero-order reactions. Therefore, it was concluded that changes in volatile compounds derived from lipid oxidation may be used as indicators of quality deterioration during frozen storage of meat.

10.
Food Chem ; 463(Pt 2): 141264, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39288457

RESUMO

The four major Chinese carps are highly popular for their distinctive nutritional benefits. However, the differences in flavor among these carps remain unclear. This study investigated the flavor profiles of these carps using headspace solid-phase micro-extraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) combined with ultra-fasted gas chromatography electronic nose (GC E-nose). The four major Chinese carps had high protein content (16.68-18.61 %) and low fat levels (0.42-1.29 %). A total of 45 volatile compounds were identified in these carps. Both the GC E-nose and HS-SPME-GC-MS results consistently showed significant flavor profiles differences among these carps, with Ctenopharyngodon Idella (CI) exhibiting the most pronounced distinctions compared to the other three species. Based on VIP >1 and p < 0.05, 10 key compounds including 2-Nonanone, Cyclodecanol, Eugenol, 1,3-Cyclooctadiene, etc., largely contributed to the distinctive overall flavor profile of four major Chinese carps derived mainly from amino acid and fatty acid metabolism.

11.
Molecules ; 29(17)2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39275105

RESUMO

Calypogeia is a genus of liverworts in the family Calypogeiaceae. The subject of this study was Calypogeia suecica. Samples of the liverwort Calypogeia suecica were collected from various places in southern Poland. A total of 25 samples were collected in 2021, and 25 samples were collected in 2022. Volatile organic compounds (VOCs) from liverworts were analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 107 compounds were detected, of which 38 compounds were identified. The identified compounds were dominated by compounds from the sesquiterpene group (up to 34.77%) and sesquiterpenoids (up to 48.24%). The tested samples of Calypogeia suecica also contained compounds belonging the aromatic classification (up to 5.46%), aliphatic hydrocarbons (up to 1.66%), and small amounts of monoterpenes (up to 0.17%) and monoterpenoids (up to 0.30%). Due to the observed differences in the composition of VOCs, the tested plant material was divided into two groups, in accordance with genetic diversity.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Hepatófitas , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Hepatófitas/genética , Hepatófitas/química , Hepatófitas/classificação , Sesquiterpenos/análise
12.
Food Res Int ; 195: 114942, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277220

RESUMO

Frankincense is an important seasoning and spice known for its distinctive and intricate flavor profile. Considering the considerable variation in the aromatic quality of frankincense due to geographical origin, species diversity and cultivation conditions, frankincense from major global origins was characterized holistically for the first time. The electronic nose (E-nose) with headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and sensory evaluation were implemented to characterize the aroma components of 21 commercial varieties of frankincense from around the world. The results showed that a total of 149 volatile organic compounds (VOCs) of 10 categories were identified in frankincense, among which the numbers of alcohols, terpenes and esters compounds accounted for 22.15 %, 18.79 % and 15.44 % of the total VOCs of frankincense, respectively. The PLS-DA model effectively distinguished frankincense from Oman/Somalia and other origins. Furthermore, the study identified two differential VOCs with VIP > 1 in three Asian countries and five in six African countries. The total VOCs content and sensory characteristic score of "Lemon/Citrus" in Oman frankincense is significantly higher than other regions. The OAV results showed that 61 substances (e.g., Diacety, alpha-Pinene, Camphene, Myrcene) as key aroma compounds and OICS model indicated that p-Cymenol was found to contribute significantly to the citrus aroma in frankincense. This study identified the fundamental components of frankincense flavor and revealed different flavor descriptors of frankincense, which are crucial for reconstructing frankincense flavor and improving flavor quality.


Assuntos
Nariz Eletrônico , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Odorantes/análise , Microextração em Fase Sólida/métodos , Humanos , Feminino , Paladar , Masculino , Adulto , Olfato
13.
Food Chem ; 463(Pt 2): 141248, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39278084

RESUMO

To explore the volatile markers of typical sweet berry flavors in dry red wine, Marselan, Cabernet Sauvignon, Merlot, and Cabernet Franc wines were pretreated using solid-phase microextraction (SPME) and liquid-liquid extraction-solvent-assisted flavor evaporation (LLE-SAFE), and key odorants were analyzed using sensomics approach. Results indicated that Marselan wines exhibited intense sweet berry aromas compared to other varieties wines. Omission tests on one- and four-year-aged wines identified ß-damascenone, isoamyl acetate, 2,3-butanediol, phenylethanol as sweet aroma markers, while geranyl acetone, ethyl isobutyrate, ethyl 2-methylbutyrate as berry aroma markers, which were verified by partial least squares regression. Meanwhile, optimal flavor intensity prediction models between sweet/berry aroma and volatile markers natural logarithms concentration were created with all wines. Moreover, consistent with aroma intensity, most berry markers content increased during aging while sweet markers decreased. This study completes the analytical methodology for volatile markers of wine typical aroma and provides theoretical support for wine flavor prediction.

14.
J Chromatogr A ; 1735: 465295, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39236359

RESUMO

A new method was evaluated and developed for the analysis of pesticides in sandy-loam soil by direct-immersion solid phase microextraction (DI-SPME) followed by gas chromatography tandem-mass spectrometry (GC-MS/MS) determination. Ten pesticides were selected based on a literature survey of the compounds reported to be present in EU soils. The extraction was performed using SPME LC-Tips, a new SPME configuration with the coated fibers attached to a disposable and easy-to-handle micropipette tip, which was immersed into a soil slurry made by the addition of an aqueous solution to the soil sample. Ten experimental parameters were evaluated with a Plackett-Burman design, after which the extraction time and percentage of organic solvent in the aqueous extraction were optimized separately. The two fiber chemistries available (PDMS/DVB and C18) were evaluated in parallel for the entire work. In the final method, slurry samples were made by adding an aqueous solution (6 % methanol v/v) to 2 g of soil. The fiber was conditioned and then inserted, for extraction, into the samples, stirred by a magnetic bar. Afterwards, the analytes were desorbed onto 100 µL of methanol. After the addition of analyte protectants (ethylglycerol, gulonolactone, and sorbitol) the extract was injected into the GC-MS/MS system. Isotopically labelled penconazole was used as internal standard. A calibration was performed by extracting spiked soil with analyte concentrations of 0.1-50 µg/kg. Coefficients of determination of the linear calibration were between 0.94-0.98 for the PDMS/DVB and 0.92-0.99 for the C18. Limits of detection range between 0.01-10 µg/kg for the PDMS/DVB and 0.1-10 µg/kg for the C18. Overall, the C18 analytically outperformed the PDMS/DVB but required a longer extraction time (120 min vs 75 min for the PDMS/DVB). This method allows automation and generates low residual toxic waste, having the potential to be introduced as a greener and simpler alternative to currently used sample preparation methodologies.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Praguicidas , Poluentes do Solo , Solo , Microextração em Fase Sólida , Espectrometria de Massas em Tandem , Microextração em Fase Sólida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Poluentes do Solo/análise , Poluentes do Solo/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , Solo/química , Praguicidas/análise , Praguicidas/isolamento & purificação , Limite de Detecção , Reprodutibilidade dos Testes
15.
PeerJ ; 12: e17914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221269

RESUMO

Background: Sapota, Manilkara zapota L., are tasty, juicy, and nutrient-rich fruits, and likewise used for several medicinal uses. Methods: The current study represents an integrated metabolites profiling of sapota fruits pulp via GC/MS and UPLC/MS, alongside assessment of antioxidant capacity, pancreatic lipase (PL), and α-glucosidase enzymes inhibitory effects. Results: GC/MS analysis of silylated primary polar metabolites led to the identification of 68 compounds belonging to sugars (74%), sugar acids (18.27%), and sugar alcohols (7%) mediating the fruit sweetness. Headspace SPME-GC/MS analysis led to the detection of 17 volatile compounds belonging to nitrogenous compounds (72%), ethers (7.8%), terpenes (7.6%), and aldehydes (5.8%). Non-polar metabolites profiling by HR-UPLC/MS/MS-based Global Natural Products Social (GNPS) molecular networking led to the assignment of 31 peaks, with several novel sphingolipids and fatty acyl amides reported for the first time. Total phenolic content was estimated at 6.79 ± 0.12 mg gallic acid equivalent/gram extract (GAE/g extract), but no flavonoids were detected. The antioxidant capacities of fruit were at 1.62 ± 0.2, 1.49 ± 0.11, and 3.58 ± 0.14 mg Trolox equivalent/gram extract (TE/g extract) via DPPH, ABTS, and FRAP assays, respectively. In vitro enzyme inhibition assays revealed a considerable pancreatic lipase inhibition effect (IC50 = 2.2 ± 0.25 mg/mL), whereas no inhibitory effect towards α-glucosidase enzyme was detected. This study provides better insight into sapota fruit's flavor, nutritional, and secondary metabolites composition mediating for its sensory and health attributes.


Assuntos
Antioxidantes , Frutas , Lipase , Lipase/antagonistas & inibidores , Lipase/metabolismo , Frutas/química , Frutas/metabolismo , Antioxidantes/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , alfa-Glucosidases/metabolismo , Espectrometria de Massas em Tandem/métodos
16.
Food Res Int ; 194: 114928, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232540

RESUMO

Dark tea (DT) holds a rich cultural history in China and has gained sizeable consumers due to its unique flavor and potential health benefits. In this study, headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS), relative odor activity value (ROAV), and chemometrics approaches were used to detect and analyze aroma compounds differences among five dark teas from different geographical regions. The results revealed that the five DTs from different geographical regions differed in types, quantities, and relative concentrations of volatile compounds. A total of 1372 volatile compounds of were identified in the 56 DT samples by HS-SPME-GC-MS. Using ROAV and chemometrics approaches, based on ROAV>1 and VIP>1. Eighteen key aroma compounds can be used as potential indicators for DT classification, including dihydroactinidiolide, linalool, 1,2,3-trimethoxybenzene, geranyl acetone, 1,2,4-trimethoxybenzene, cedrol, 3,7-dimethyl-1,5,7-octatrien-3-ol, ß-ionone, 4-ethyl-1,2-dimethoxybenzene, methyl salicylate, α-ionone, geraniol, linalool oxide I, linalool oxide II, 6-methyl-5-hepten-2-one, α-terpineol, 1,2,3-trimethoxy-5-methylbenzene, and 1,2-dimethoxybenzene. These compounds provide a certain theoretical basis for distinguishing the differences in five DTs from different geographical regions. This study provides a potential method for identifying the volatile substances in DTs and elucidating the differences in key aroma compounds. Abbreviations: DT, dark tea; FZT, Fuzhuan tea; LPT, Guangxi Liupao tea; QZT, Hubei Qingzhuan tea; TBT, Sichuan Tibetan tea; PET, Yunnan Pu-erh tea; ROAV, Relative odor activity value; OT, Odor threshold; HS-SPME, Headspace solid-phase microextraction; GC-MS, Gas chromatography-mass spectrometry; PCA, Principal components analysis; PLS-DA, Partial least squares-discriminant analysis; HCA, Hierarchical clustering analysis.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Microextração em Fase Sólida , Chá , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Odorantes/análise , Chá/química , Microextração em Fase Sólida/métodos , China , Quimiometria , Camellia sinensis/química
17.
Talanta ; 281: 126812, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243440

RESUMO

Because of rapid industrialization and agriculturalization, solving the pressing problems of environment pollution, especially water and food quality, requires innovative solutions. In this paper, a novel and versatile metal-organic framework (ZIF-8)-hybrid monolithic column (ZIF-HMC) was prepared for in-tube solid-phase microextraction (IT-SPME) of organic nitrogen pesticides (ONPs). The prepared monolithic columns had superior adsorption sites, high porosity, excellent permeability, and ideal specific surface area based on Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Thermal Field Emission Scanning Electron Microscopy (SEM), Energy Dispersive Spectrometry (EDS), X-ray Photoelectron Spectroscopy (XPS), and N2 adsorption-desorption. The ZIF-HMC contained a large number of nitrogen and oxygen atoms, benzene rings and ZIF-8, which could synergistically promote the adsorption efficiency of ONPs through multiple interactions, such as hydrogen bonding, π-π accumulation, hydrophobic interactions, cation-π interactions, and pore adsorption by MOFs. Under the optimal conditions, a simple, efficient, and sensitive method for the analysis of six organic pesticides in environmental water samples was developed by using the ZIF-HMC as the extraction medium coupled with high performance liquid chromatography-ultraviolet (HPLC-UV). The method had a wide linear range (0.63-1000 µg L-1), a low detection limit (0.19-1.91 µg L-1) and satisfactory recoveries (87.4 %-110.2 %), the linear correlation coefficient was (R2) 0.9972-0.9995 and the relative standard deviation (RSD) was less than 2.64 %. The study had demonstrated the potential application of the developed method for the enrichment and analysis of organic pesticides in complex matrices of environmental samples, as well as the feasibility of MOFs materials for IT-SPME sample preparation.

18.
Plants (Basel) ; 13(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39273851

RESUMO

The volatile components emitted by fresh aromatic flowers of Plumeria rubra L., harvested in southern Ecuador during three different months were determined to evaluate the fluctuation of secondary metabolites. The volatile compounds were analyzed using headspace solid-phase microextraction (HS-SPME) followed by gas chromatography coupled to mass spectrometry (GC-MS) and a flame ionization detector (GC-FID) using two types of columns: a non-polar (DB-5ms) and polar column (HP-INNOWax). The principal chemical groups were hydrocarbon sesquiterpenes (43.5%; 40.0%), oxygenated sesquiterpenes (23.4%; 26.4%), oxygenated monoterpenes (14.0%; 11.2%), and hydrocarbon monoterpenes (12.7%; 9.3%). The most representative constituents were (E,E)-α-Farnesene (40.9-41.2%; 38.5-50.6%), (E)-nerolidol (21.4-32.6%; 23.2-33.0%), (E)-ß-ocimene (4.2-12.5%; 4.5-9.1%), (Z)-dihydro-apofarnesol (6.5-9.9%; 7.6-8.6%), linalool (5.6-8.3%; 3.3-7.8%), and perillene (3.1-5.9%; 3.0-3.2%) in DB-5ms and HP-INNOWax, respectively. Finally, we reported for the first time the enantiomeric distribution of P. rubra flowers, where the enantiomers (1R,5R)-(+)-α-pinene, (S)-(-)-limonene, (S)-(+)-Linalool, and (1S,2R,6R,7R,8R)-(+)-α-copaene were present as enantiomerically pure substances, whereas (S)-(+)-(E)-Nerolidol and (R)-(+)-(E)-Nerolidol were observed as scalemic mixtures. This study provides the first comprehensive and comparative aroma profile of Plumeria rubra cultivated in southern Ecuador and gave us a clue to the variability of P. rubra chemotypes depending on the harvesting time, which could be used for future quality control or applications in phytopharmaceutical and food industries.

19.
J Food Sci ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327541

RESUMO

Fermentation is critical for producing high-quality cocoa, yet its kinetics and resulting chemical and sensory outcomes are poorly understood and thus difficult to manage. Cocoa sweatings (CS), the liquid runoff produced early during fermentation and typically drained off, may beneficially affect fermentation outcome when added back into the fermenting mass. Here, we report how back-addition of CS affects composition and sensory perception of roasted cocoa liquor after 5, 6, and 7 days of fermentation. Cocoa liquor (= 100% chocolate) made from beans fermented for 5 days with the addition of CS were similar in sensory perception to those fermented for 7 days without added CS. Twenty-one flavor compounds showed similar patterns to the sensory results: In the beans fermented with CS, these compounds remained at similar levels after 5, 6, and 7 days of fermentation, while the same compounds significantly changed in the samples fermented conventionally, without CS addition. These results suggest a link between changes in flavor composition and sensory differences in roasted cocoa. Future work is needed to reveal the mechanism of flavor stabilization throughout fermentation resulting from the back-addition of CS. PRACTICAL APPLICATION: Roasted cocoa liquor fermented with cocoa sweating (CS) is sensorily similar when fermented for 5 or 7 days and produces cocoa that is sensorily similar to traditionally fermented cocoa in shorter time (5 days vs. 7 days). The addition of CS seems to stabilize 21 flavor compounds throughout fermentation mimicking changes in sensory perception. The back-addition of CS could help standardize cocoa fermentation as indicated by more consistent temperature evolution.

20.
Foods ; 13(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39335823

RESUMO

Rosa roxburghii (R. roxburghii), native to the southwest provinces of China, is a fruit crop of important economic value in Guizhou Province. However, the changes in fruit quality and flavor during R. roxburghii fruit ripening have remained unknown. Here, this study investigated the changes of seven active components and volatile organic compounds (VOCs) during the ripening of the R. roxburghii fruit at five different ripening stages including 45, 65, 75, 90, and 105 days after anthesis. The results indicated that during the ripening process, the levels of total acid, vitamin C, and soluble sugar significantly increased (p < 0.05), while the levels of total flavonoids, superoxide dismutase (SOD), and soluble tannin significantly decreased (p < 0.05). Additionally, the content of total phenol exhibited a trend of first decreasing significantly and then increasing significantly (p < 0.05). A total of 145 VOCs were detected by HS-SPME-GC-MS at five mature stages, primarily consisting of aldehydes, alcohols, esters, and alkenes. As R. roxburghii matured, both the diversity and total quantity of VOCs in the fruit increased, with a notable rise in the contents of acids, ketones, and alkenes. By calculating the ROAV values of these VOCs, 53 key substances were identified, which included aromas such as fruit, citrus, green, caramel, grass, flower, sweet, soap, wood, and fat notes. The aromas of citrus, caramel, sweet, and wood were predominantly concentrated in the later stages of R. roxburghii fruit ripening. Cluster heatmap analysis revealed distinct distribution patterns of VOCs across five different maturity stages, serving as characteristic chemical fingerprints for each stage. Notably, stages IV and V were primarily characterized by a dominance of alkenes. OPLS-DA analysis categorized the ripening process of R. roxburghii fruit into three segments: the first segment encompassed the initial three stages (I, II, and III), the second segment corresponded to the fourth stage (IV), and the third segment pertained to the fifth stage (V). Following the variable importance in projection (VIP) > 1 criterion, a total of 30 key differential VOCs were identified across the five stages, predominantly comprising ester compounds, which significantly influenced the aroma profiles of R. roxburghii fruit. By integrating the VIP > 1 and ROAV > 1 criteria, 21 differential VOCs were further identified as key contributors to the aroma changes in R. roxburghii fruit during the ripening process. This study provided data on the changes in quality and aroma of R. roxburghii fruit during ripening and laid the foundation for the investigation of the mechanism of compound accumulation during ripening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA