Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 12(3): 1041-1053, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35530130

RESUMO

The immune checkpoint blockade (ICB) targeting on PD-1/PD-L1 has shown remarkable promise in treating cancers. However, the low response rate and frequently observed severe side effects limit its broad benefits. It is partially due to less understanding of the biological regulation of PD-L1. Here, we systematically and comprehensively summarized the regulation of PD-L1 from nuclear chromatin reorganization to extracellular presentation. In PD-L1 and PD-L2 highly expressed cancer cells, a new TAD (topologically associating domain) (chr9: 5,400,000-5,600,000) around CD274 and CD273 was discovered, which includes a reported super-enhancer to drive synchronous transcription of PD-L1 and PD-L2. The re-shaped TAD allows transcription factors such as STAT3 and IRF1 recruit to PD-L1 locus in order to guide the expression of PD-L1. After transcription, the PD-L1 is tightly regulated by miRNAs and RNA-binding proteins via the long 3'UTR. At translational level, PD-L1 protein and its membrane presentation are tightly regulated by post-translational modification such as glycosylation and ubiquitination. In addition, PD-L1 can be secreted via exosome to systematically inhibit immune response. Therefore, fully dissecting the regulation of PD-L1/PD-L2 and thoroughly detecting PD-L1/PD-L2 as well as their regulatory networks will bring more insights in ICB and ICB-based combinational therapy.

2.
Acta Pharm Sin B ; 11(2): 309-321, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33643814

RESUMO

Cullin-RING ligases (CRLs) recognize and interact with substrates for ubiquitination and degradation, and can be targeted for disease treatment when the abnormal expression of substrates involves pathologic processes. Phosphorylation, either of substrates or receptors of CRLs, can alter their interaction. Phosphorylation-dependent ubiquitination and proteasome degradation influence various cellular processes and can contribute to the occurrence of various diseases, most often tumorigenesis. These processes have the potential to be used for tumor intervention through the regulation of the activities of related kinases, along with the regulation of the stability of specific oncoproteins and tumor suppressors. This review describes the mechanisms and biological functions of crosstalk between phosphorylation and ubiquitination, and most importantly its influence on tumorigenesis, to provide new directions and strategies for tumor therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA