Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Appl Clin Med Phys ; 25(9): e14459, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053489

RESUMO

PURPOSE: SRS MapCHECK (SMC) is a commercially available patient-specific quality assurance (PSQA) tool for stereotactic radiosurgery (SRS) applications. This study investigates the effects of degree of modulation, location off-axis, and low dose threshold (LDT) selection on gamma pass rates (GPRs) between SMC and treatment planning system, Analytical Anisotropic Algorithm (AAA), or Vancouver Island Monte Carlo (VMC++ algorithm) system calculated dose distributions. METHODS: Volumetric-modulated arc therapy (VMAT) plans with modulation factors (MFs) ranging from 2.7 to 10.2 MU/cGy were delivered to SMC at isocenter and 6 cm off-axis. SMC measured dose distributions were compared against AAA and VMC++ via gamma analysis (3%/1 mm) with LDT of 10% to 80% using SNC Patient software. RESULTS: Comparing on-axis SMC dose against AAA and VMC++ with LDT of 10%, all AAA-calculated plans met the acceptance criteria of GPR ≥ 90%, and only one VMC++ calculated plan was marginally outside the acceptance criteria with pass rate of 89.1%. Using LDT of 80% revealed decreasing GPR with increasing MF. For AAA, GPRs reduced from 100% at MF of 2.7 MU/cGy to 57% at MF of 10.2 MU/cGy, and for VMC++ calculated plans, the GPRs reduced from 89% to 60% in the same MF range. Comparison of SMC dose off-axis against AAA and VMC++ showed more pronounced reduction of GPR with increasing MF. For LDT of 10%, AAA GPRs reduced from 100% to 83% in the MF range of 2.7 to 9.8 MU/cGy, and VMC++ GPR reduced from 100% to 91% in the same range. With 80% LDT, GPRs dropped from 100% to 42% for both algorithms. CONCLUSIONS: MF, dose calculation algorithm, and LDT selections are vital in VMAT-based SRT PSQA. LDT of 80% enhances sensitivity of gamma analysis for detecting dose differences compared to 10% LDT. To achieve better agreement between calculated and SMC dose, it is recommended to limit the MF to 4.6 MU/cGy on-axis and 3.6 MU/cGy off-axis.


Assuntos
Algoritmos , Método de Monte Carlo , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Radiocirurgia/métodos , Órgãos em Risco/efeitos da radiação , Garantia da Qualidade dos Cuidados de Saúde/normas , Software , Imagens de Fantasmas , Neoplasias/radioterapia
2.
Med Phys ; 51(9): 6469-6474, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38810282

RESUMO

BACKGROUND: As radiotherapy techniques advance, so do planning methods for multi-target intracranial SRS cases. Multi-target-single-isocenter (MTSI) planning offers high-precision beam delivery with shortened duration. However, accommodating all targets in a single Patient-Specific-Quality-Assurance (PSQA) with QA devices like SRS MapCHECK (SRS MC) is generally impractical. PURPOSE: Consequently, we conducted PSQA, using a custom script, by relocating each Target or Neighboring-Target-Group (T-NTG) relative to the beam isocenter on the PSQA device, ensuring each target's dose coverage at high precision. METHODS: SRS treatment plans use 6MV-FFF beams, consisting of four Volumetric Modulated ARC Therapy (VMAT) arcs, including one full-arc and three half arcs with couch-kicks. A custom script calculated T-NTG coordinates relative to the beam isocenter. QA verification plans were created for each T-NTG, redefining the beam isocenter for precise alignment with the center of the SRS MC. CBCT images were acquired during PSQA for SRS MC alignment, and gamma-index analysis (GIA) was performed. A single-tail paired t-test assessed the passing rate (PR) for 75 QA verification plans. RESULTS: GIA with l.0 mm/2.0% criteria for each QA plan yielded a PR > 95.5%, with an average of 98.9%. Plans achieving PR > 99.0% and > 97.0% constituted 63% and 92% of studied plans, respectively. Statistical significance was observed in a t-test with an ideal PR value of 100%, while insignificance was found with a PR value of 99%, suggesting that PSQA for individual targets consistently approaches 99% PR. In MTSI cases using 6MV-FFF beams, targets within the lateral dose-fall-off region require careful verification for acceptability. Our clinical study on individual T-NTG relocation demonstrates that the presented PSQA methods are generally acceptable, supported by a statistically insignificant PR against a 99% PR value. CONCLUSIONS: Presented statistical analysis results indicate that the proposed PSQA approach can serve as a reliable tool in clinical settings.


Assuntos
Garantia da Qualidade dos Cuidados de Saúde , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radiocirurgia , Dosagem Radioterapêutica , Medicina de Precisão
3.
J Appl Clin Med Phys ; 25(5): e14343, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569013

RESUMO

PURPOSE: Single-isocenter multi-target intracranial stereotactic radiotherapy (SIMT) is an effective treatment for brain metastases with complex treatment plans and delivery optimization necessitating rigorous quality assurance. This work aims to assess five methods for quality assurance of SIMT treatment plans in terms of their suitability and sensitivity to delivery errors. METHODS: Sun Nuclear ArcCHECK and SRS MapCHECK, GafChromic EBT Radiochromic Film, machine log files, and Varian Portal Dosimetry were all used to measure 15 variations of a single SIMT plan. Variations of the original plan were created with Python. They comprised various degrees of systematic MLC offsets per leaf up to 2 mm, random per-leaf variations with differing minimum and maximum magnitudes, simulated collimator, and dose miscalibrations (MU scaling). The erroneous plans were re-imported into Eclipse and plan-quality degradation was assessed by comparing each plan variation to the original clinical plan in terms of the percentage of clinical goals passing relative to the original plan. Each erroneous plan could be then ranked by the plan-quality degradation percentage following recalculation in the TPS so that the effects of each variation could be correlated with γ pass rates and detector suitability. RESULTS & CONCLUSIONS: It was found that 2%/1 mm is a good starting point for the ArcCHECK, Portal Dosimetry, and the SRS MapCHECK methods, respectively, and provides clinically relevant error detection sensitivity. Looser dose criteria of 5%/1 mm or 5%/1.5 mm are suitable for film dosimetry and log-file-based methods. The statistical methods explored can be expanded to other areas of patient-specific QA and detector assessment.


Assuntos
Neoplasias Encefálicas , Garantia da Qualidade dos Cuidados de Saúde , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/radioterapia , Radiocirurgia/métodos , Radiocirurgia/instrumentação , Garantia da Qualidade dos Cuidados de Saúde/normas , Radioterapia de Intensidade Modulada/métodos , Aceleradores de Partículas/instrumentação , Radiometria/métodos , Radiometria/instrumentação , Algoritmos
4.
J Appl Clin Med Phys ; 25(6): e14276, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38414322

RESUMO

PURPOSE: Patient-specific quality assurance (PSQA) for vertebra stereotactic body radiation therapy (SBRT) presents challenges due to highly modulated small fields with high-dose gradients between the target and spinal cord. This study aims to explore the use of the SRS MapCHECK® (SRSMC) for vertebra SBRT PSQA. METHODS: Twenty vertebra SBRT treatment plans including prescriptions 20 Gy/1 fraction and 24 Gy/2 fractions were selected for each of Millennium (M)-Multileaf Collimator (MLC), and high-definition (HD)-MLC. All 40 plans were measured using Gafchromic EBT3 film (film) and SRSMC, using the StereoPHAN phantom. Plan complexity was assessed using modulation complexity score (MCS), edge metric (EM) (mm-1), modulation factor (MU/cGy), and average leaf pair opening (ALPO) (mm) and its correlation with gamma-pass rate was investigated. The high dose gradient between the target and the spinal cord was analyzed for film and SRSMC and compared against the treatment planning system (TPS). Applying the methodology proposed by AAPM TG-218, action and tolerance values specific to the SRSMC for vertebra SBRT were determined for ß values ranging from 5 to 8. RESULTS: Film and SRSMC gamma-pass rates showed no correlation (p > 0.05). A moderate negative correlation (R = -0.57, p = 0.01) is present between EM and SRSMC 3%/1 mm gamma-pass rate for HD-MLC plans. Both film and SRSMC accurately measured high dose gradients between the target and the spinal cord (R2 > 0.86, p ≤ 0.05). Notably, dose-gradient of HD-MLC plans is 22% steeper and has a smaller standard deviation to M-MLC plans (p ≤ 0.05). Applying TG-218, the film tolerance limit was 96% with action limit 95% for 5%/1 mm (ß = 6) and for the SRSMC tolerance limit was 97% with an action limit of 96% for 4%/1 mm (ß = 6). CONCLUSION: Our findings suggest that universal TG-218 limits may not be suitable for vertebra SBRT PSQA. This study demonstrates that SRSMC is a viable tool for vertebra SBRT PSQA, supported by TG-218 implementation of process-based tolerance and action limits.


Assuntos
Órgãos em Risco , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Garantia da Qualidade dos Cuidados de Saúde/normas , Órgãos em Risco/efeitos da radiação , Neoplasias da Coluna Vertebral/cirurgia , Neoplasias da Coluna Vertebral/radioterapia
5.
Med Dosim ; 48(4): 261-266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455221

RESUMO

We modeled the Qfix Encompass™ immobilization system and further verified the calculated dose distribution of the AcurosXB (AXB) dose calculation algorithm using SRS MapCHECKⓇ (SRSMC) in the HyperArc™ (HA) clinical plan. An Encompass system with a StereoPHAN™ QA phantom was scanned by SOMATOM go.Sim and imported to an Eclipse™ treatment planning system to create a treatment plan for Encompass modeling. The Encompass modeling was performed in the StereoPHAN with a pinpoint ion chamber for 6 MV and 6 MV flattening filter free (6 MV FFF), and 2 × 2 cm2, 4 × 4 cm2, and 6 × 6 cm2 irradiation field sizes. The dose calculation algorithm used was AXB ver. 15.5 with a 1.0 mm calculation grid size. The Hounsfield unit (HU) values of the Encompass modeling were set to 400, -100, -200, and -300 for Encompass, and -400, -600, -700, and -800 for the Encompass base. We evaluated the dose distribution after Encompass modeling by SRSMC using gamma analysis in 12 patients. We adopted HU values of -200 for Encompass, -800 for Encompass base for 6 MV, and -200 for Encompass and -700 for Encompass. Base for 6 MV FFF was adopted as the HU values for the Encompass modeling based on the measurement results. The proposed Encompass modeling resulted in a mean pass rate evaluation >98% for both 6 MV and 6 MV FFF when the 1%/1 mm criterion was used, demonstrating that the proposed HU value can be adopted to calculate more accurate dose distributions.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Imagens de Fantasmas , Radioterapia de Intensidade Modulada/métodos
6.
J Appl Clin Med Phys ; 23(8): e13645, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35789532

RESUMO

We aim to evaluate the basic characteristics of SRS MapCHECK (SRSMC) for CyberKnife (CK) and establish a dose verification system using SRSMC for the tumor-tracking irradiation for CK. The field size and angular dependence of SRSMC were evaluated for basic characterization. The output factors (OPFs) and absolute doses measured by SRSMC were compared with those measured using microDiamond and microchamber detectors and those calculated by the treatment planning system (TPS). The angular dependence was evaluated by comparing the SRSMC with a microchamber. The tumor-tracking dose verification system consists of SRSMC and a moving platform. The doses measured using SRSMC were compared with the doses measured using a microchamber and radiochromic film. The OPFs and absolute doses of SRSMC were within ±3.0% error for almost all field sizes, and the angular dependence was within ±2.0% for all incidence angles. The absolute dose errors between SRSMC and TPS tended to increase when the field size was smaller than 10 mm. The absolute doses of the tumor-tracking irradiation measured using SRSMC and those measured using a microchamber agreed within 1.0%, and the gamma pass rates of SRSMC in comparison with those of the radiochromic film were greater than 95%. The basic characteristics of SRSMC for CK presented acceptable results for clinical use. The results of the tumor-tracking dose verification system realized using SRSMC were equivalent to those of conventional methods, and this system is expected to contribute toward improving the efficiency of quality control in many facilities.


Assuntos
Neoplasias , Radiocirurgia , Humanos , Neoplasias/radioterapia , Neoplasias/cirurgia , Radiometria/métodos , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
7.
J Radiosurg SBRT ; 7(4): 295-307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631231

RESUMO

The purpose of this study is to compare patient-specific quality assurance (PSQA) results between two dimensional (2D) diode (SRS MapCHECK®) and 3D diode (ArcCHECK®) arrays. Twenty-eight intracranial stereotactic radiosurgery (SRS) and 26 lung stereotactic body radiation therapy (SBRT) clinical plans with a single lesion were selected and categorized into 4 groups: 20 SRS dynamic conformal arc therapy (DCAT) plans (Group A), 8 SRS volumetric modulated arc therapy (VMAT) plans (Group B), 6 SBRT DCAT plans (Group C) and 20 SBRT VMAT plans (Group D). An individual field of each plan was delivered on SRS MapCHECK and ArcCHECK and QA analysis was performed using 4 gamma criteria of dose difference/distance-to-agreement of 3%/3 mm, 3%/2 mm, 2%/2 mm and 2%/1 mm. Statistical analysis was performed to compare PSQA results between the 2 QA devices. For all 4 groups and all 4 gamma criteria, average gamma passing rates were higher with SRS MapCHECK.

8.
Med Phys ; 47(7): 3153-3164, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32215929

RESUMO

PURPOSE: The SRS MapCHECK® , a recently developed patient-specific quality assurance (PSQA) tool for end-to-end testing of stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT), was evaluated in a multi-institution study and compared with radiochromic film. METHODS: The SRS MapCHECK was used to collect data on 84 SBRT or SRS PSQA plans/fields at nine institutions on treatment delivery devices (TDD) manufactured by Varian and Elekta. PSQA plans from five different treatment planning software (TPS) were selected and executed on TDDs operating at beam energies of 6 and 10 MV with and without a flattening filter. The patient plans were all VMAT except for ten conformal arc therapy fields. The plans were selected to encompass a range of size and tumor sites including brain, lung, spine, abdomen, ear, pancreas, and liver. Corresponding radiochromic film data was acquired in 50 plans/fields. Results were evaluated using gamma analysis with absolute dose criterion of 3% global dose-difference (DD) and 1 mm distance-to-agreement (DTA). RESULTS: The mean 3% DD/1 mm DTA Gamma pass rate of SRS MapCHECK in comparison to film was 95.9%, whereas comparison of SRS MapCHECK to the treatment planning software was 94.7%. 80% of SRS MapCHECK comparisons against film exceed 95% pass rate, and about 30% of SRS MapCHECK comparisons against film exceed 99% pass rate. To maintain good agreement between SRS MapCHECK and film or TPS, authors recommend avoiding plans with a modified modulation complexity score (MMCS) <0.1 arbitrary units (a.u.). In the examples presented, this coincides with avoiding plans with a mu/dose limit of >3 µ/cGy. CONCLUSIONS: Stereotactic radiosurgery MapCHECK has been validated for PSQA for a variety of clinical SRS/SBRT plans in a wide range of treatment delivery conditions. The SRS MapCHECK comparison with film demonstrates near-equivalence for analysis of patient-specific QA deliveries comprised of small field measurements.


Assuntos
Radiocirurgia , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Humanos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA