Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Immunol ; 14: 1258136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954588

RESUMO

Introduction: Unlike glycosylation of proteins expressed in mammalian systems, bacterial glycosylation is often neglected in the development of recombinant vaccines. Methods: Here, we compared the effects of glycosylation of YghJ, an Escherichia coli protein important for mucus attachment of bacteria causing in urinary tract infections (UTIs). A novel method based on statistical evaluation of phage display for the identification and comparison of epitopes and mimotopes of anti-YghJ antibodies in the sera was used. This is the first time that the effect of glycosylation of a recombinant bacterial antigen has been studied at the peptide epitope level. Results: The study identifies differences in the immune response for (non)-glycosylated antigens in rabbits and pigs and compares them to a large group of patients with UTI, which have been diagnosed as positive for various bacterial pathogens. We identified glycosylation-specific peptide epitopes, a large immunological similarity between different UTI pathogens, and a broad peptide epitope pattern in patients and animals, which could result in a variable response in patients upon vaccination. Discussion: This epitope analysis indicates that the vaccination of rabbits and pigs raises antibodies that translate well into the human immune system. This study underlines the importance of glycosylation in bacterial vaccines and provides detailed immune diagnostic methods to understand individual immune responses to vaccines.


Assuntos
Proteínas de Escherichia coli , Infecções Urinárias , Humanos , Coelhos , Suínos , Animais , Epitopos , Antígenos de Bactérias , Glicosilação , Escherichia coli , Infecções Urinárias/microbiologia , Peptídeos , Mamíferos , Metaloproteases
2.
Front Cell Infect Microbiol ; 11: 705468, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490144

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is a WHO priority pathogen and vaccine target which causes infections in low-income and middle-income countries, travelers visiting endemic regions. The global urgent demand for an effective preventive intervention has become more pressing as ETEC strains have become increasingly multiple antibiotic resistant. However, the vaccine development pipeline has been slow to address this urgent need. To date, vaccine development has focused mainly on canonical antigens such as colonization factors and expressed toxins but due to genomic plasticity of this enteric pathogen, it has proven difficult to develop effective vaccines. In this study, we investigated the highly conserved non-canonical vaccine candidate YghJ/SsLE. Using the mass spectrometry-based method BEMAP, we demonstrate that YghJ is hyperglycosylated in ETEC and identify 54 O-linked Set/Thr residues within the 1519 amino acid primary sequence. The glycosylation sites are evenly distributed throughout the sequence and do not appear to affect the folding of the overall protein structure. Although the glycosylation sites only constitute a minor subpopulation of the available epitopes, we observed a notable difference in the immunogenicity of the glycosylated YghJ and the non-glycosylated protein variant. We can demonstrate by ELISA that serum from patients enrolled in an ETEC H10407 controlled infection study are significantly more reactive with glycosylated YghJ compared to the non-glycosylated variant. This study provides an important link between O-linked glycosylation and the relative immunogenicity of bacterial proteins and further highlights the importance of this observation in considering ETEC proteins for inclusion in future broad coverage subunit vaccine candidates.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Metaloproteases , Antígenos de Bactérias , Epitopos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicosilação , Humanos , Metaloproteases/genética , Metaloproteases/metabolismo
3.
Front Immunol ; 12: 760135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975849

RESUMO

Efforts to develop broadly protective vaccines against pathogenic Escherichia coli are ongoing. A potential antigen candidate for vaccine development is the metalloprotease YghJ, or SslE. YghJ is a conserved mucinase that is immunogenic, heavily glycosylated, and produced by most pathogenic E. coli. To develop efficacious YghJ-based vaccines, there is a need to investigate to what extent potentially protective antibody responses target glycosylated epitopes in YghJ and to describe variations in the quality of YghJ glycosylation in the E. coli population. In this study we estimated the proportion of anti-YghJ IgA antibodies that targeted glycosylated epitopes in serum and intestinal lavage samples from 21 volunteers experimentally infected with wild-type enterotoxigenic E. coli (ETEC) strain TW10722. Glycosylated and non-glycosylated YghJ was expressed, purified, and then gycosylation pattern was verified by BEMAP analysis. Then we used a multiplex bead flow cytometric assay to analyse samples from before and 10 days after TW10722 was ingested. We found that 20 (95%) of the 21 volunteers had IgA antibody responses to homologous, glycosylated YghJ, with a median fold increase in IgA levels of 7.9 (interquartile range [IQR]: 7.1, 11.1) in serum and 3.7 (IQR: 2.1, 10.7) in lavage. The median proportion of anti-YghJ IgA response that specifically targeted glycosylated epitopes was 0.45 (IQR: 0.30, 0.59) in serum and 0.07 (IQR: 0.01, 0.22) in lavage. Our findings suggest that a substantial, but variable, proportion of the IgA antibody response to YghJ in serum during ETEC infection is targeted against glycosylated epitopes, but that gut IgA responses largely target non-glycosylated epitopes. Further research into IgA targeting glycosylated YghJ epitopes is of interest to the vaccine development efforts.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/imunologia , Imunoglobulina A/imunologia , Metaloproteases/imunologia , Anticorpos Antibacterianos/sangue , Escherichia coli Enterotoxigênica , Epitopos/imunologia , Infecções por Escherichia coli/sangue , Proteínas de Escherichia coli/genética , Glicosilação , Humanos , Imunidade nas Mucosas , Imunoglobulina A/sangue , Intestinos/imunologia , Metaloproteases/genética
4.
Int J Med Microbiol ; 309(3-4): 159-168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30940425

RESUMO

Bacterial secreted proteases are the key factors that increase the virulence potential of different pathogens. Extraintestinal pathogenic E. coli (ExPEC) is a distinct pathotype that has unique ability to infect various body sites apart from the gastrointestinal tract causing several life-threatening diseases both in human and animals. Thus, understanding of ExPEC pathogenesis is crucial in effective management of disease caused by these pathogens. It is known that ExPEC possesses a broad spectrum of virulence factors including the secreted proteases which elude the host defence system. Recent studies have shown that high prevalence as well as the action of the secreted proteases influence the pathogenesis of ExPEC. However, literature on the secreted proteases present in ExPEC and their role in promoting virulence of ExPEC is rather limited. This review describes the distribution, characterization and the role of serine and metalloproteases secreted by diverse pathotypes of ExPEC, highlighting the significance of secreted proteases of ExPEC in pathogenesis.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli Extraintestinal Patogênica/enzimologia , Escherichia coli Extraintestinal Patogênica/patogenicidade , Peptídeo Hidrolases/metabolismo , Fatores de Virulência/metabolismo , Animais , Escherichia coli Enteropatogênica/enzimologia , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Humanos , Metaloproteases/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/classificação , Serina Proteases/metabolismo , Fatores de Virulência/classificação
5.
Vaccine ; 37(2): 314-324, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30503655

RESUMO

Emergence and dissemination of multidrug resistance among pathogenic Escherichia coli have posed a serious threat to public health across developing and developed countries. In combination with a flexible repertoire of virulence mechanisms, E. coli can cause a vast range of intestinal (InPEC) and extraintestinal (ExPEC) diseases but only a very limited number of antibiotics still remains effective against this pathogen. Hence, a broad spectrum E. coli vaccine could be a promising alternative to prevent the burden of such diseases, while offering the potential for covering against several InPEC and ExPEC at once. SslE, the Secreted and Surface-associated Lipoprotein of E. coli, is a widely distributed protein among InPEC and ExPEC. SslE functions ex vivo as a mucinase capable of degrading mucins and reaching the surface of mucus-producing epithelial cells. SslE was identified by reverse vaccinology as a protective vaccine candidate against an ExPEC murine model of sepsis, and further shown to be cross-effective against other ExPEC and InPEC models of infection. In this study, we aimed to gain insight into the immune response to antigen SslE and identify an immunization strategy suited to generate robust mucosal and systemic immune responses. We showed, by analyzing T cell and antibody responses, that mice immunized with SslE via an intranasal prime followed by two intramuscular boosts developed an enhanced overall immune response compared to either intranasal-only or intramuscular-only protocols. Importantly, we also report that this regimen of immunization did not impact the richness of the murine gut microbiota, and mice had a comparable cecal microbial composition, whether immunized with SslE or PBS. Collectively, our findings further support the use of SslE in future vaccination strategies to effectively target both InPEC and ExPEC while not perturbing the resident gut microbiota.


Assuntos
Infecções por Escherichia coli/prevenção & controle , Proteínas de Escherichia coli/imunologia , Vacinas contra Escherichia coli/administração & dosagem , Microbioma Gastrointestinal , Imunidade nas Mucosas , Fatores de Virulência/imunologia , Administração Intranasal , Animais , Anticorpos Antibacterianos/sangue , Citocinas/análise , Escherichia coli , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/administração & dosagem , Vacinas contra Escherichia coli/imunologia , Imunização Secundária , Injeções Intramusculares , Camundongos , Camundongos Endogâmicos BALB C , Sepse/imunologia , Sepse/prevenção & controle , Fatores de Virulência/administração & dosagem
6.
Infect Immun ; 86(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29891541

RESUMO

SslE (YghJ), a cell surface-associated and secreted lipoprotein, was identified as a potential vaccine candidate for extraintestinal pathogenic Escherichia coli, providing nearly complete protection from sepsis in a mouse model. We earlier found that SslE from neonatal septicemic E. coli could trigger the secretion of various proinflammatory cytokines in murine macrophages, the signaling pathway of which is still obscure. In this study, we showed that SslE specifically binds to Toll-like receptor 2 (TLR2)/TLR1 heterodimers and recruits downstream adaptors MyD88, TIRAP, and TRAF6. In addition, SslE stimulates nuclear translocation of NF-κB and activates different mitogen-activated protein (MAP) kinase signaling cascades specific to the secretion of each cytokine in murine macrophages, which becomes impaired in TLR2 small interfering RNA (siRNA)-transfected cells and in cells blocked with a monoclonal antibody (MAb) against TLR2, suggesting the involvement of TLR2 in NF-κB and MAP kinase activation and subsequent cytokine secretion. Furthermore, our study is the first to show that SslE can stimulate TLR2-dependent production of other proinflammatory hallmarks, such as reactive nitrogen and oxygen species as well as type 1 chemokines, which contribute to the anti-infection immune response of the host. Also, the overexpression of major histocompatibility complex class II (MHC II) and other costimulatory molecules (CD80 and CD86) in macrophages essentially indicates that SslE promotes macrophage activation and M1 polarization, which are crucial in framing the host's innate immune response to this protein, and hence, SslE could be a potent immunotherapeutic target against E. coli sepsis.


Assuntos
Proteínas de Escherichia coli/imunologia , Sistema de Sinalização das MAP Quinases , Ativação de Macrófagos , Macrófagos/imunologia , Metaloproteases/imunologia , NF-kappa B/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Antígeno B7-1/genética , Antígeno B7-2/genética , Diferenciação Celular , Quimiocinas/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli Extraintestinal Patogênica/imunologia , Genes MHC da Classe II , Células HEK293 , Humanos , Imunidade Inata , Inflamação , Macrófagos/microbiologia , Camundongos , Células RAW 264.7 , Transdução de Sinais
7.
Microb Pathog ; 105: 96-99, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28212863

RESUMO

YghJ, also known as SslE (Secreted and surface associated lipoprotein) is a cell surface associated and secreted lipoprotein harbouring M60 metalloprotease domain. Though the gene is known to be conserved among both pathogenic and commensal Escherichia coli isolates, the expression and secretion of YghJ was found to be higher among diverse E. coli pathotypes. YghJ, secreted from intestinal pathogens such as enterotoxigenic E. coli (ETEC) and enteropathogenic E. coli (EPEC) has been demonstrated to possess mucinase activity and hence facilitates colonization of these enteric pathogens to intestinal epithelial cells. Importantly, YghJ is also reported to be secreted from extraintestinal pathogenic E. coli isolates. In our previous study we have shown that YghJ, purified from a neonatal septicemic E. coli isolate could trigger induction of various proinflammatory cytokines in vitro. This led us to investigate the role of YghJ in causing in vivo tissue hemorrhage. In the present study, we validate the earlier in vitro finding and have showed that YghJ can cause extensive tissue damage in mouse ileum and is also able to induce significant fluid accumulation in a dose dependent manner in a mouse ileal loop (MIL) assay. Hence, our present study not only confirms the pathogenic potential of YghJ in sepsis pathophysiology but also indicates the enterotoxic ability of YghJ which makes it an important virulence determinant of intestinal pathogenic E. coli.


Assuntos
Proteínas de Escherichia coli/toxicidade , Escherichia coli/enzimologia , Escherichia coli/patogenicidade , Hemorragia/induzido quimicamente , Íleo/microbiologia , Íleo/patologia , Metaloproteases/toxicidade , Animais , Camundongos Endogâmicos BALB C , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA